linux/crypto/skcipher.c

1159 lines
30 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Symmetric key cipher operations.
*
* Generic encrypt/decrypt wrapper for ciphers, handles operations across
* multiple page boundaries by using temporary blocks. In user context,
* the kernel is given a chance to schedule us once per page.
*
* Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <crypto/internal/aead.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/bug.h>
#include <linux/cryptouser.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <net/netlink.h>
#include "skcipher.h"
#define CRYPTO_ALG_TYPE_SKCIPHER_MASK 0x0000000e
enum {
SKCIPHER_WALK_PHYS = 1 << 0,
SKCIPHER_WALK_SLOW = 1 << 1,
SKCIPHER_WALK_COPY = 1 << 2,
SKCIPHER_WALK_DIFF = 1 << 3,
SKCIPHER_WALK_SLEEP = 1 << 4,
};
struct skcipher_walk_buffer {
struct list_head entry;
struct scatter_walk dst;
unsigned int len;
u8 *data;
u8 buffer[];
};
static const struct crypto_type crypto_skcipher_type;
static int skcipher_walk_next(struct skcipher_walk *walk);
static inline void skcipher_map_src(struct skcipher_walk *walk)
{
walk->src.virt.addr = scatterwalk_map(&walk->in);
}
static inline void skcipher_map_dst(struct skcipher_walk *walk)
{
walk->dst.virt.addr = scatterwalk_map(&walk->out);
}
static inline void skcipher_unmap_src(struct skcipher_walk *walk)
{
scatterwalk_unmap(walk->src.virt.addr);
}
static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
{
scatterwalk_unmap(walk->dst.virt.addr);
}
static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
{
return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
}
/* Get a spot of the specified length that does not straddle a page.
* The caller needs to ensure that there is enough space for this operation.
*/
static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
{
u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
return max(start, end_page);
}
static inline struct skcipher_alg *__crypto_skcipher_alg(
struct crypto_alg *alg)
{
return container_of(alg, struct skcipher_alg, base);
}
static inline struct crypto_istat_cipher *skcipher_get_stat(
struct skcipher_alg *alg)
{
return skcipher_get_stat_common(&alg->co);
}
static inline int crypto_skcipher_errstat(struct skcipher_alg *alg, int err)
{
struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
return err;
if (err && err != -EINPROGRESS && err != -EBUSY)
atomic64_inc(&istat->err_cnt);
return err;
}
static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
{
u8 *addr;
addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
addr = skcipher_get_spot(addr, bsize);
scatterwalk_copychunks(addr, &walk->out, bsize,
(walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
return 0;
}
int skcipher_walk_done(struct skcipher_walk *walk, int err)
{
unsigned int n = walk->nbytes;
unsigned int nbytes = 0;
crypto: skcipher - fix crash flushing dcache in error path scatterwalk_done() is only meant to be called after a nonzero number of bytes have been processed, since scatterwalk_pagedone() will flush the dcache of the *previous* page. But in the error case of skcipher_walk_done(), e.g. if the input wasn't an integer number of blocks, scatterwalk_done() was actually called after advancing 0 bytes. This caused a crash ("BUG: unable to handle kernel paging request") during '!PageSlab(page)' on architectures like arm and arm64 that define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was page-aligned as in that case walk->offset == 0. Fix it by reorganizing skcipher_walk_done() to skip the scatterwalk_advance() and scatterwalk_done() if an error has occurred. This bug was found by syzkaller fuzzing. Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "skcipher", .salg_name = "cbc(aes-generic)", }; char buffer[4096] __attribute__((aligned(4096))) = { 0 }; int fd; fd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(fd, (void *)&addr, sizeof(addr)); setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16); fd = accept(fd, NULL, NULL); write(fd, buffer, 15); read(fd, buffer, 15); } Reported-by: Liu Chao <liuchao741@huawei.com> Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface") Cc: <stable@vger.kernel.org> # v4.10+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-23 10:54:56 -07:00
if (!n)
crypto: skcipher - fix crash flushing dcache in error path scatterwalk_done() is only meant to be called after a nonzero number of bytes have been processed, since scatterwalk_pagedone() will flush the dcache of the *previous* page. But in the error case of skcipher_walk_done(), e.g. if the input wasn't an integer number of blocks, scatterwalk_done() was actually called after advancing 0 bytes. This caused a crash ("BUG: unable to handle kernel paging request") during '!PageSlab(page)' on architectures like arm and arm64 that define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was page-aligned as in that case walk->offset == 0. Fix it by reorganizing skcipher_walk_done() to skip the scatterwalk_advance() and scatterwalk_done() if an error has occurred. This bug was found by syzkaller fuzzing. Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "skcipher", .salg_name = "cbc(aes-generic)", }; char buffer[4096] __attribute__((aligned(4096))) = { 0 }; int fd; fd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(fd, (void *)&addr, sizeof(addr)); setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16); fd = accept(fd, NULL, NULL); write(fd, buffer, 15); read(fd, buffer, 15); } Reported-by: Liu Chao <liuchao741@huawei.com> Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface") Cc: <stable@vger.kernel.org> # v4.10+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-23 10:54:56 -07:00
goto finish;
if (likely(err >= 0)) {
n -= err;
nbytes = walk->total - n;
}
crypto: skcipher - fix crash flushing dcache in error path scatterwalk_done() is only meant to be called after a nonzero number of bytes have been processed, since scatterwalk_pagedone() will flush the dcache of the *previous* page. But in the error case of skcipher_walk_done(), e.g. if the input wasn't an integer number of blocks, scatterwalk_done() was actually called after advancing 0 bytes. This caused a crash ("BUG: unable to handle kernel paging request") during '!PageSlab(page)' on architectures like arm and arm64 that define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was page-aligned as in that case walk->offset == 0. Fix it by reorganizing skcipher_walk_done() to skip the scatterwalk_advance() and scatterwalk_done() if an error has occurred. This bug was found by syzkaller fuzzing. Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE: #include <linux/if_alg.h> #include <sys/socket.h> #include <unistd.h> int main() { struct sockaddr_alg addr = { .salg_type = "skcipher", .salg_name = "cbc(aes-generic)", }; char buffer[4096] __attribute__((aligned(4096))) = { 0 }; int fd; fd = socket(AF_ALG, SOCK_SEQPACKET, 0); bind(fd, (void *)&addr, sizeof(addr)); setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16); fd = accept(fd, NULL, NULL); write(fd, buffer, 15); read(fd, buffer, 15); } Reported-by: Liu Chao <liuchao741@huawei.com> Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface") Cc: <stable@vger.kernel.org> # v4.10+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-07-23 10:54:56 -07:00
if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
SKCIPHER_WALK_SLOW |
SKCIPHER_WALK_COPY |
SKCIPHER_WALK_DIFF)))) {
unmap_src:
skcipher_unmap_src(walk);
} else if (walk->flags & SKCIPHER_WALK_DIFF) {
skcipher_unmap_dst(walk);
goto unmap_src;
} else if (walk->flags & SKCIPHER_WALK_COPY) {
skcipher_map_dst(walk);
memcpy(walk->dst.virt.addr, walk->page, n);
skcipher_unmap_dst(walk);
} else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
if (err > 0) {
/*
* Didn't process all bytes. Either the algorithm is
* broken, or this was the last step and it turned out
* the message wasn't evenly divisible into blocks but
* the algorithm requires it.
*/
err = -EINVAL;
nbytes = 0;
} else
n = skcipher_done_slow(walk, n);
}
if (err > 0)
err = 0;
walk->total = nbytes;
walk->nbytes = 0;
scatterwalk_advance(&walk->in, n);
scatterwalk_advance(&walk->out, n);
scatterwalk_done(&walk->in, 0, nbytes);
scatterwalk_done(&walk->out, 1, nbytes);
if (nbytes) {
crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
CRYPTO_TFM_REQ_MAY_SLEEP : 0);
return skcipher_walk_next(walk);
}
finish:
/* Short-circuit for the common/fast path. */
if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
goto out;
if (walk->flags & SKCIPHER_WALK_PHYS)
goto out;
if (walk->iv != walk->oiv)
memcpy(walk->oiv, walk->iv, walk->ivsize);
if (walk->buffer != walk->page)
kfree(walk->buffer);
if (walk->page)
free_page((unsigned long)walk->page);
out:
return err;
}
EXPORT_SYMBOL_GPL(skcipher_walk_done);
void skcipher_walk_complete(struct skcipher_walk *walk, int err)
{
struct skcipher_walk_buffer *p, *tmp;
list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
u8 *data;
if (err)
goto done;
data = p->data;
if (!data) {
data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
data = skcipher_get_spot(data, walk->stride);
}
scatterwalk_copychunks(data, &p->dst, p->len, 1);
if (offset_in_page(p->data) + p->len + walk->stride >
PAGE_SIZE)
free_page((unsigned long)p->data);
done:
list_del(&p->entry);
kfree(p);
}
if (!err && walk->iv != walk->oiv)
memcpy(walk->oiv, walk->iv, walk->ivsize);
if (walk->buffer != walk->page)
kfree(walk->buffer);
if (walk->page)
free_page((unsigned long)walk->page);
}
EXPORT_SYMBOL_GPL(skcipher_walk_complete);
static void skcipher_queue_write(struct skcipher_walk *walk,
struct skcipher_walk_buffer *p)
{
p->dst = walk->out;
list_add_tail(&p->entry, &walk->buffers);
}
static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
{
bool phys = walk->flags & SKCIPHER_WALK_PHYS;
unsigned alignmask = walk->alignmask;
struct skcipher_walk_buffer *p;
unsigned a;
unsigned n;
u8 *buffer;
void *v;
if (!phys) {
if (!walk->buffer)
walk->buffer = walk->page;
buffer = walk->buffer;
if (buffer)
goto ok;
}
/* Start with the minimum alignment of kmalloc. */
a = crypto_tfm_ctx_alignment() - 1;
n = bsize;
if (phys) {
/* Calculate the minimum alignment of p->buffer. */
a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
n += sizeof(*p);
}
/* Minimum size to align p->buffer by alignmask. */
n += alignmask & ~a;
/* Minimum size to ensure p->buffer does not straddle a page. */
n += (bsize - 1) & ~(alignmask | a);
v = kzalloc(n, skcipher_walk_gfp(walk));
if (!v)
return skcipher_walk_done(walk, -ENOMEM);
if (phys) {
p = v;
p->len = bsize;
skcipher_queue_write(walk, p);
buffer = p->buffer;
} else {
walk->buffer = v;
buffer = v;
}
ok:
walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
walk->src.virt.addr = walk->dst.virt.addr;
scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
walk->nbytes = bsize;
walk->flags |= SKCIPHER_WALK_SLOW;
return 0;
}
static int skcipher_next_copy(struct skcipher_walk *walk)
{
struct skcipher_walk_buffer *p;
u8 *tmp = walk->page;
skcipher_map_src(walk);
memcpy(tmp, walk->src.virt.addr, walk->nbytes);
skcipher_unmap_src(walk);
walk->src.virt.addr = tmp;
walk->dst.virt.addr = tmp;
if (!(walk->flags & SKCIPHER_WALK_PHYS))
return 0;
p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
if (!p)
return -ENOMEM;
p->data = walk->page;
p->len = walk->nbytes;
skcipher_queue_write(walk, p);
if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
PAGE_SIZE)
walk->page = NULL;
else
walk->page += walk->nbytes;
return 0;
}
static int skcipher_next_fast(struct skcipher_walk *walk)
{
unsigned long diff;
walk->src.phys.page = scatterwalk_page(&walk->in);
walk->src.phys.offset = offset_in_page(walk->in.offset);
walk->dst.phys.page = scatterwalk_page(&walk->out);
walk->dst.phys.offset = offset_in_page(walk->out.offset);
if (walk->flags & SKCIPHER_WALK_PHYS)
return 0;
diff = walk->src.phys.offset - walk->dst.phys.offset;
diff |= walk->src.virt.page - walk->dst.virt.page;
skcipher_map_src(walk);
walk->dst.virt.addr = walk->src.virt.addr;
if (diff) {
walk->flags |= SKCIPHER_WALK_DIFF;
skcipher_map_dst(walk);
}
return 0;
}
static int skcipher_walk_next(struct skcipher_walk *walk)
{
unsigned int bsize;
unsigned int n;
int err;
walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
SKCIPHER_WALK_DIFF);
n = walk->total;
bsize = min(walk->stride, max(n, walk->blocksize));
n = scatterwalk_clamp(&walk->in, n);
n = scatterwalk_clamp(&walk->out, n);
if (unlikely(n < bsize)) {
if (unlikely(walk->total < walk->blocksize))
return skcipher_walk_done(walk, -EINVAL);
slow_path:
err = skcipher_next_slow(walk, bsize);
goto set_phys_lowmem;
}
if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
if (!walk->page) {
gfp_t gfp = skcipher_walk_gfp(walk);
walk->page = (void *)__get_free_page(gfp);
if (!walk->page)
goto slow_path;
}
walk->nbytes = min_t(unsigned, n,
PAGE_SIZE - offset_in_page(walk->page));
walk->flags |= SKCIPHER_WALK_COPY;
err = skcipher_next_copy(walk);
goto set_phys_lowmem;
}
walk->nbytes = n;
return skcipher_next_fast(walk);
set_phys_lowmem:
if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
walk->src.phys.page = virt_to_page(walk->src.virt.addr);
walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
walk->src.phys.offset &= PAGE_SIZE - 1;
walk->dst.phys.offset &= PAGE_SIZE - 1;
}
return err;
}
static int skcipher_copy_iv(struct skcipher_walk *walk)
{
unsigned a = crypto_tfm_ctx_alignment() - 1;
unsigned alignmask = walk->alignmask;
unsigned ivsize = walk->ivsize;
unsigned bs = walk->stride;
unsigned aligned_bs;
unsigned size;
u8 *iv;
aligned_bs = ALIGN(bs, alignmask + 1);
/* Minimum size to align buffer by alignmask. */
size = alignmask & ~a;
if (walk->flags & SKCIPHER_WALK_PHYS)
size += ivsize;
else {
size += aligned_bs + ivsize;
/* Minimum size to ensure buffer does not straddle a page. */
size += (bs - 1) & ~(alignmask | a);
}
walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
if (!walk->buffer)
return -ENOMEM;
iv = PTR_ALIGN(walk->buffer, alignmask + 1);
iv = skcipher_get_spot(iv, bs) + aligned_bs;
walk->iv = memcpy(iv, walk->iv, walk->ivsize);
return 0;
}
static int skcipher_walk_first(struct skcipher_walk *walk)
{
if (WARN_ON_ONCE(in_hardirq()))
return -EDEADLK;
walk->buffer = NULL;
if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
int err = skcipher_copy_iv(walk);
if (err)
return err;
}
walk->page = NULL;
return skcipher_walk_next(walk);
}
static int skcipher_walk_skcipher(struct skcipher_walk *walk,
struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
walk->total = req->cryptlen;
walk->nbytes = 0;
walk->iv = req->iv;
walk->oiv = req->iv;
if (unlikely(!walk->total))
return 0;
scatterwalk_start(&walk->in, req->src);
scatterwalk_start(&walk->out, req->dst);
walk->flags &= ~SKCIPHER_WALK_SLEEP;
walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
SKCIPHER_WALK_SLEEP : 0;
walk->blocksize = crypto_skcipher_blocksize(tfm);
walk->ivsize = crypto_skcipher_ivsize(tfm);
walk->alignmask = crypto_skcipher_alignmask(tfm);
if (alg->co.base.cra_type != &crypto_skcipher_type)
walk->stride = alg->co.chunksize;
else
walk->stride = alg->walksize;
return skcipher_walk_first(walk);
}
int skcipher_walk_virt(struct skcipher_walk *walk,
struct skcipher_request *req, bool atomic)
{
int err;
might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
walk->flags &= ~SKCIPHER_WALK_PHYS;
err = skcipher_walk_skcipher(walk, req);
walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
return err;
}
EXPORT_SYMBOL_GPL(skcipher_walk_virt);
int skcipher_walk_async(struct skcipher_walk *walk,
struct skcipher_request *req)
{
walk->flags |= SKCIPHER_WALK_PHYS;
INIT_LIST_HEAD(&walk->buffers);
return skcipher_walk_skcipher(walk, req);
}
EXPORT_SYMBOL_GPL(skcipher_walk_async);
static int skcipher_walk_aead_common(struct skcipher_walk *walk,
struct aead_request *req, bool atomic)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int err;
walk->nbytes = 0;
walk->iv = req->iv;
walk->oiv = req->iv;
if (unlikely(!walk->total))
return 0;
walk->flags &= ~SKCIPHER_WALK_PHYS;
scatterwalk_start(&walk->in, req->src);
scatterwalk_start(&walk->out, req->dst);
scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
scatterwalk_done(&walk->in, 0, walk->total);
scatterwalk_done(&walk->out, 0, walk->total);
if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
walk->flags |= SKCIPHER_WALK_SLEEP;
else
walk->flags &= ~SKCIPHER_WALK_SLEEP;
walk->blocksize = crypto_aead_blocksize(tfm);
walk->stride = crypto_aead_chunksize(tfm);
walk->ivsize = crypto_aead_ivsize(tfm);
walk->alignmask = crypto_aead_alignmask(tfm);
err = skcipher_walk_first(walk);
if (atomic)
walk->flags &= ~SKCIPHER_WALK_SLEEP;
return err;
}
int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
struct aead_request *req, bool atomic)
{
walk->total = req->cryptlen;
return skcipher_walk_aead_common(walk, req, atomic);
}
EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
struct aead_request *req, bool atomic)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
walk->total = req->cryptlen - crypto_aead_authsize(tfm);
return skcipher_walk_aead_common(walk, req, atomic);
}
EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
static void skcipher_set_needkey(struct crypto_skcipher *tfm)
{
if (crypto_skcipher_max_keysize(tfm) != 0)
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
}
static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
u8 *buffer, *alignbuffer;
unsigned long absize;
int ret;
absize = keylen + alignmask;
buffer = kmalloc(absize, GFP_ATOMIC);
if (!buffer)
return -ENOMEM;
alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
memcpy(alignbuffer, key, keylen);
ret = cipher->setkey(tfm, alignbuffer, keylen);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-06 23:18:13 -07:00
kfree_sensitive(buffer);
return ret;
}
int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
unsigned long alignmask = crypto_skcipher_alignmask(tfm);
int err;
if (cipher->co.base.cra_type != &crypto_skcipher_type) {
struct crypto_lskcipher **ctx = crypto_skcipher_ctx(tfm);
crypto_lskcipher_clear_flags(*ctx, CRYPTO_TFM_REQ_MASK);
crypto_lskcipher_set_flags(*ctx,
crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_lskcipher_setkey(*ctx, key, keylen);
goto out;
}
crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to make the ->setkey() functions provide more information about errors. However, no one actually checks for this flag, which makes it pointless. Also, many algorithms fail to set this flag when given a bad length key. Reviewing just the generic implementations, this is the case for aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309, rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably many more in arch/*/crypto/ and drivers/crypto/. Some algorithms can even set this flag when the key is the correct length. For example, authenc and authencesn set it when the key payload is malformed in any way (not just a bad length), the atmel-sha and ccree drivers can set it if a memory allocation fails, and the chelsio driver sets it for bad auth tag lengths, not just bad key lengths. So even if someone actually wanted to start checking this flag (which seems unlikely, since it's been unused for a long time), there would be a lot of work needed to get it working correctly. But it would probably be much better to go back to the drawing board and just define different return values, like -EINVAL if the key is invalid for the algorithm vs. -EKEYREJECTED if the key was rejected by a policy like "no weak keys". That would be much simpler, less error-prone, and easier to test. So just remove this flag. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-12-30 21:19:36 -06:00
if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
return -EINVAL;
if ((unsigned long)key & alignmask)
err = skcipher_setkey_unaligned(tfm, key, keylen);
else
err = cipher->setkey(tfm, key, keylen);
out:
if (unlikely(err)) {
skcipher_set_needkey(tfm);
return err;
}
crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
int crypto_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
int ret;
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
atomic64_inc(&istat->encrypt_cnt);
atomic64_add(req->cryptlen, &istat->encrypt_tlen);
}
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
ret = -ENOKEY;
else if (alg->co.base.cra_type != &crypto_skcipher_type)
ret = crypto_lskcipher_encrypt_sg(req);
else
ret = alg->encrypt(req);
return crypto_skcipher_errstat(alg, ret);
}
EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
int crypto_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
int ret;
if (IS_ENABLED(CONFIG_CRYPTO_STATS)) {
struct crypto_istat_cipher *istat = skcipher_get_stat(alg);
atomic64_inc(&istat->decrypt_cnt);
atomic64_add(req->cryptlen, &istat->decrypt_tlen);
}
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
ret = -ENOKEY;
else if (alg->co.base.cra_type != &crypto_skcipher_type)
ret = crypto_lskcipher_decrypt_sg(req);
else
ret = alg->decrypt(req);
return crypto_skcipher_errstat(alg, ret);
}
EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
static int crypto_lskcipher_export(struct skcipher_request *req, void *out)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
u8 *ivs = skcipher_request_ctx(req);
ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1);
memcpy(out, ivs + crypto_skcipher_ivsize(tfm),
crypto_skcipher_statesize(tfm));
return 0;
}
static int crypto_lskcipher_import(struct skcipher_request *req, const void *in)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
u8 *ivs = skcipher_request_ctx(req);
ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(tfm) + 1);
memcpy(ivs + crypto_skcipher_ivsize(tfm), in,
crypto_skcipher_statesize(tfm));
return 0;
}
static int skcipher_noexport(struct skcipher_request *req, void *out)
{
return 0;
}
static int skcipher_noimport(struct skcipher_request *req, const void *in)
{
return 0;
}
int crypto_skcipher_export(struct skcipher_request *req, void *out)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
if (alg->co.base.cra_type != &crypto_skcipher_type)
return crypto_lskcipher_export(req, out);
return alg->export(req, out);
}
EXPORT_SYMBOL_GPL(crypto_skcipher_export);
int crypto_skcipher_import(struct skcipher_request *req, const void *in)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
if (alg->co.base.cra_type != &crypto_skcipher_type)
return crypto_lskcipher_import(req, in);
return alg->import(req, in);
}
EXPORT_SYMBOL_GPL(crypto_skcipher_import);
static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
alg->exit(skcipher);
}
static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
skcipher_set_needkey(skcipher);
if (tfm->__crt_alg->cra_type != &crypto_skcipher_type) {
unsigned am = crypto_skcipher_alignmask(skcipher);
unsigned reqsize;
reqsize = am & ~(crypto_tfm_ctx_alignment() - 1);
reqsize += crypto_skcipher_ivsize(skcipher);
reqsize += crypto_skcipher_statesize(skcipher);
crypto_skcipher_set_reqsize(skcipher, reqsize);
return crypto_init_lskcipher_ops_sg(tfm);
}
if (alg->exit)
skcipher->base.exit = crypto_skcipher_exit_tfm;
if (alg->init)
return alg->init(skcipher);
return 0;
}
static unsigned int crypto_skcipher_extsize(struct crypto_alg *alg)
{
if (alg->cra_type != &crypto_skcipher_type)
return sizeof(struct crypto_lskcipher *);
return crypto_alg_extsize(alg);
}
static void crypto_skcipher_free_instance(struct crypto_instance *inst)
{
struct skcipher_instance *skcipher =
container_of(inst, struct skcipher_instance, s.base);
skcipher->free(skcipher);
}
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
__maybe_unused;
static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
{
struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
seq_printf(m, "type : skcipher\n");
seq_printf(m, "async : %s\n",
alg->cra_flags & CRYPTO_ALG_ASYNC ? "yes" : "no");
seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
seq_printf(m, "min keysize : %u\n", skcipher->min_keysize);
seq_printf(m, "max keysize : %u\n", skcipher->max_keysize);
seq_printf(m, "ivsize : %u\n", skcipher->ivsize);
seq_printf(m, "chunksize : %u\n", skcipher->chunksize);
seq_printf(m, "walksize : %u\n", skcipher->walksize);
seq_printf(m, "statesize : %u\n", skcipher->statesize);
}
static int __maybe_unused crypto_skcipher_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
struct crypto_report_blkcipher rblkcipher;
crypto: user - clean up report structure copying There have been a pretty ridiculous number of issues with initializing the report structures that are copied to userspace by NETLINK_CRYPTO. Commit 4473710df1f8 ("crypto: user - Prepare for CRYPTO_MAX_ALG_NAME expansion") replaced some strncpy()s with strlcpy()s, thereby introducing information leaks. Later two other people tried to replace other strncpy()s with strlcpy() too, which would have introduced even more information leaks: - https://lore.kernel.org/patchwork/patch/954991/ - https://patchwork.kernel.org/patch/10434351/ Commit cac5818c25d0 ("crypto: user - Implement a generic crypto statistics") also uses the buggy strlcpy() approach and therefore leaks uninitialized memory to userspace. A fix was proposed, but it was originally incomplete. Seeing as how apparently no one can get this right with the current approach, change all the reporting functions to: - Start by memsetting the report structure to 0. This guarantees it's always initialized, regardless of what happens later. - Initialize all strings using strscpy(). This is safe after the memset, ensures null termination of long strings, avoids unnecessary work, and avoids the -Wstringop-truncation warnings from gcc. - Use sizeof(var) instead of sizeof(type). This is more robust against copy+paste errors. For simplicity, also reuse the -EMSGSIZE return value from nla_put(). Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-03 14:56:03 -07:00
memset(&rblkcipher, 0, sizeof(rblkcipher));
strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
rblkcipher.blocksize = alg->cra_blocksize;
rblkcipher.min_keysize = skcipher->min_keysize;
rblkcipher.max_keysize = skcipher->max_keysize;
rblkcipher.ivsize = skcipher->ivsize;
crypto: user - clean up report structure copying There have been a pretty ridiculous number of issues with initializing the report structures that are copied to userspace by NETLINK_CRYPTO. Commit 4473710df1f8 ("crypto: user - Prepare for CRYPTO_MAX_ALG_NAME expansion") replaced some strncpy()s with strlcpy()s, thereby introducing information leaks. Later two other people tried to replace other strncpy()s with strlcpy() too, which would have introduced even more information leaks: - https://lore.kernel.org/patchwork/patch/954991/ - https://patchwork.kernel.org/patch/10434351/ Commit cac5818c25d0 ("crypto: user - Implement a generic crypto statistics") also uses the buggy strlcpy() approach and therefore leaks uninitialized memory to userspace. A fix was proposed, but it was originally incomplete. Seeing as how apparently no one can get this right with the current approach, change all the reporting functions to: - Start by memsetting the report structure to 0. This guarantees it's always initialized, regardless of what happens later. - Initialize all strings using strscpy(). This is safe after the memset, ensures null termination of long strings, avoids unnecessary work, and avoids the -Wstringop-truncation warnings from gcc. - Use sizeof(var) instead of sizeof(type). This is more robust against copy+paste errors. For simplicity, also reuse the -EMSGSIZE return value from nla_put(). Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-11-03 14:56:03 -07:00
return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
sizeof(rblkcipher), &rblkcipher);
}
static int __maybe_unused crypto_skcipher_report_stat(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct skcipher_alg *skcipher = __crypto_skcipher_alg(alg);
struct crypto_istat_cipher *istat;
struct crypto_stat_cipher rcipher;
istat = skcipher_get_stat(skcipher);
memset(&rcipher, 0, sizeof(rcipher));
strscpy(rcipher.type, "cipher", sizeof(rcipher.type));
rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt);
rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen);
rcipher.stat_decrypt_cnt = atomic64_read(&istat->decrypt_cnt);
rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen);
rcipher.stat_err_cnt = atomic64_read(&istat->err_cnt);
return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher);
}
static const struct crypto_type crypto_skcipher_type = {
.extsize = crypto_skcipher_extsize,
.init_tfm = crypto_skcipher_init_tfm,
.free = crypto_skcipher_free_instance,
#ifdef CONFIG_PROC_FS
.show = crypto_skcipher_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_skcipher_report,
#endif
#ifdef CONFIG_CRYPTO_STATS
.report_stat = crypto_skcipher_report_stat,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_SKCIPHER_MASK,
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.tfmsize = offsetof(struct crypto_skcipher, base),
};
int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
spawn->base.frontend = &crypto_skcipher_type;
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
u32 type, u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
const char *alg_name, u32 type, u32 mask)
{
struct crypto_skcipher *tfm;
/* Only sync algorithms allowed. */
mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
/*
* Make sure we do not allocate something that might get used with
* an on-stack request: check the request size.
*/
if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
MAX_SYNC_SKCIPHER_REQSIZE)) {
crypto_free_skcipher(tfm);
return ERR_PTR(-EINVAL);
}
return (struct crypto_sync_skcipher *)tfm;
}
EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
{
return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_has_skcipher);
int skcipher_prepare_alg_common(struct skcipher_alg_common *alg)
{
struct crypto_istat_cipher *istat = skcipher_get_stat_common(alg);
struct crypto_alg *base = &alg->base;
if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
alg->statesize > PAGE_SIZE / 2 ||
(alg->ivsize + alg->statesize) > PAGE_SIZE / 2)
return -EINVAL;
if (!alg->chunksize)
alg->chunksize = base->cra_blocksize;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
if (IS_ENABLED(CONFIG_CRYPTO_STATS))
memset(istat, 0, sizeof(*istat));
return 0;
}
static int skcipher_prepare_alg(struct skcipher_alg *alg)
{
struct crypto_alg *base = &alg->base;
int err;
err = skcipher_prepare_alg_common(&alg->co);
if (err)
return err;
if (alg->walksize > PAGE_SIZE / 8)
return -EINVAL;
if (!alg->walksize)
alg->walksize = alg->chunksize;
if (!alg->statesize) {
alg->import = skcipher_noimport;
alg->export = skcipher_noexport;
} else if (!(alg->import && alg->export))
return -EINVAL;
base->cra_type = &crypto_skcipher_type;
base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
return 0;
}
int crypto_register_skcipher(struct skcipher_alg *alg)
{
struct crypto_alg *base = &alg->base;
int err;
err = skcipher_prepare_alg(alg);
if (err)
return err;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_skcipher);
void crypto_unregister_skcipher(struct skcipher_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
int crypto_register_skciphers(struct skcipher_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_skcipher(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_skcipher(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_skciphers);
void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_skcipher(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
int skcipher_register_instance(struct crypto_template *tmpl,
struct skcipher_instance *inst)
{
int err;
if (WARN_ON(!inst->free))
return -EINVAL;
err = skcipher_prepare_alg(&inst->alg);
if (err)
return err;
return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(skcipher_register_instance);
static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
return crypto_cipher_setkey(cipher, key, keylen);
}
static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
struct crypto_cipher *cipher;
cipher = crypto_spawn_cipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->cipher = cipher;
return 0;
}
static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
{
struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
crypto_free_cipher(ctx->cipher);
}
static void skcipher_free_instance_simple(struct skcipher_instance *inst)
{
crypto_drop_cipher(skcipher_instance_ctx(inst));
kfree(inst);
}
/**
* skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
*
* Allocate an skcipher_instance for a simple block cipher mode of operation,
* e.g. cbc or ecb. The instance context will have just a single crypto_spawn,
* that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize,
* alignmask, and priority are set from the underlying cipher but can be
* overridden if needed. The tfm context defaults to skcipher_ctx_simple, and
* default ->setkey(), ->init(), and ->exit() methods are installed.
*
* @tmpl: the template being instantiated
* @tb: the template parameters
*
* Return: a pointer to the new instance, or an ERR_PTR(). The caller still
* needs to register the instance.
*/
struct skcipher_instance *skcipher_alloc_instance_simple(
struct crypto_template *tmpl, struct rtattr **tb)
{
u32 mask;
struct skcipher_instance *inst;
struct crypto_cipher_spawn *spawn;
struct crypto_alg *cipher_alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
if (err)
return ERR_PTR(err);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return ERR_PTR(-ENOMEM);
spawn = skcipher_instance_ctx(inst);
err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
cipher_alg = crypto_spawn_cipher_alg(spawn);
err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
cipher_alg);
if (err)
goto err_free_inst;
inst->free = skcipher_free_instance_simple;
/* Default algorithm properties, can be overridden */
inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
inst->alg.base.cra_priority = cipher_alg->cra_priority;
inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
inst->alg.ivsize = cipher_alg->cra_blocksize;
/* Use skcipher_ctx_simple by default, can be overridden */
inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
inst->alg.setkey = skcipher_setkey_simple;
inst->alg.init = skcipher_init_tfm_simple;
inst->alg.exit = skcipher_exit_tfm_simple;
return inst;
err_free_inst:
skcipher_free_instance_simple(inst);
return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Symmetric key cipher type");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);