linux/fs/bcachefs/move.c

1161 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "backpointers.h"
#include "bkey_buf.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_write_buffer.h"
#include "disk_groups.h"
#include "ec.h"
#include "errcode.h"
#include "error.h"
#include "inode.h"
#include "io.h"
#include "journal_reclaim.h"
#include "keylist.h"
#include "move.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"
#include <linux/ioprio.h>
#include <linux/kthread.h>
static void trace_move_extent2(struct bch_fs *c, struct bkey_s_c k)
{
if (trace_move_extent_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
trace_move_extent(c, buf.buf);
printbuf_exit(&buf);
}
}
static void trace_move_extent_read2(struct bch_fs *c, struct bkey_s_c k)
{
if (trace_move_extent_read_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
trace_move_extent_read(c, buf.buf);
printbuf_exit(&buf);
}
}
static void trace_move_extent_alloc_mem_fail2(struct bch_fs *c, struct bkey_s_c k)
{
if (trace_move_extent_alloc_mem_fail_enabled()) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, k);
trace_move_extent_alloc_mem_fail(c, buf.buf);
printbuf_exit(&buf);
}
}
static void progress_list_add(struct bch_fs *c, struct bch_move_stats *stats)
{
mutex_lock(&c->data_progress_lock);
list_add(&stats->list, &c->data_progress_list);
mutex_unlock(&c->data_progress_lock);
}
static void progress_list_del(struct bch_fs *c, struct bch_move_stats *stats)
{
mutex_lock(&c->data_progress_lock);
list_del(&stats->list);
mutex_unlock(&c->data_progress_lock);
}
struct moving_io {
struct list_head read_list;
struct list_head io_list;
struct move_bucket_in_flight *b;
struct closure cl;
bool read_completed;
unsigned read_sectors;
unsigned write_sectors;
struct bch_read_bio rbio;
struct data_update write;
/* Must be last since it is variable size */
struct bio_vec bi_inline_vecs[0];
};
static void move_free(struct moving_io *io)
{
struct moving_context *ctxt = io->write.ctxt;
if (io->b)
atomic_dec(&io->b->count);
bch2_data_update_exit(&io->write);
mutex_lock(&ctxt->lock);
list_del(&io->io_list);
wake_up(&ctxt->wait);
mutex_unlock(&ctxt->lock);
kfree(io);
}
static void move_write_done(struct bch_write_op *op)
{
struct moving_io *io = container_of(op, struct moving_io, write.op);
struct moving_context *ctxt = io->write.ctxt;
if (io->write.op.error)
ctxt->write_error = true;
atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors);
atomic_dec(&io->write.ctxt->write_ios);
move_free(io);
closure_put(&ctxt->cl);
}
static void move_write(struct moving_io *io)
{
if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) {
move_free(io);
return;
}
closure_get(&io->write.ctxt->cl);
atomic_add(io->write_sectors, &io->write.ctxt->write_sectors);
atomic_inc(&io->write.ctxt->write_ios);
bch2_data_update_read_done(&io->write, io->rbio.pick.crc);
}
struct moving_io *bch2_moving_ctxt_next_pending_write(struct moving_context *ctxt)
{
struct moving_io *io =
list_first_entry_or_null(&ctxt->reads, struct moving_io, read_list);
return io && io->read_completed ? io : NULL;
}
static void move_read_endio(struct bio *bio)
{
struct moving_io *io = container_of(bio, struct moving_io, rbio.bio);
struct moving_context *ctxt = io->write.ctxt;
atomic_sub(io->read_sectors, &ctxt->read_sectors);
atomic_dec(&ctxt->read_ios);
io->read_completed = true;
wake_up(&ctxt->wait);
closure_put(&ctxt->cl);
}
void bch2_moving_ctxt_do_pending_writes(struct moving_context *ctxt,
struct btree_trans *trans)
{
struct moving_io *io;
if (trans)
bch2_trans_unlock(trans);
while ((io = bch2_moving_ctxt_next_pending_write(ctxt))) {
list_del(&io->read_list);
move_write(io);
}
}
static void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt,
struct btree_trans *trans)
{
unsigned sectors_pending = atomic_read(&ctxt->write_sectors);
move_ctxt_wait_event(ctxt, trans,
!atomic_read(&ctxt->write_sectors) ||
atomic_read(&ctxt->write_sectors) != sectors_pending);
}
void bch2_moving_ctxt_exit(struct moving_context *ctxt)
{
struct bch_fs *c = ctxt->c;
move_ctxt_wait_event(ctxt, NULL, list_empty(&ctxt->reads));
closure_sync(&ctxt->cl);
EBUG_ON(atomic_read(&ctxt->write_sectors));
EBUG_ON(atomic_read(&ctxt->write_ios));
EBUG_ON(atomic_read(&ctxt->read_sectors));
EBUG_ON(atomic_read(&ctxt->read_ios));
if (ctxt->stats) {
progress_list_del(c, ctxt->stats);
trace_move_data(c,
atomic64_read(&ctxt->stats->sectors_moved),
atomic64_read(&ctxt->stats->keys_moved));
}
mutex_lock(&c->moving_context_lock);
list_del(&ctxt->list);
mutex_unlock(&c->moving_context_lock);
}
void bch2_moving_ctxt_init(struct moving_context *ctxt,
struct bch_fs *c,
struct bch_ratelimit *rate,
struct bch_move_stats *stats,
struct write_point_specifier wp,
bool wait_on_copygc)
{
memset(ctxt, 0, sizeof(*ctxt));
ctxt->c = c;
ctxt->fn = (void *) _RET_IP_;
ctxt->rate = rate;
ctxt->stats = stats;
ctxt->wp = wp;
ctxt->wait_on_copygc = wait_on_copygc;
closure_init_stack(&ctxt->cl);
mutex_init(&ctxt->lock);
INIT_LIST_HEAD(&ctxt->reads);
INIT_LIST_HEAD(&ctxt->ios);
init_waitqueue_head(&ctxt->wait);
mutex_lock(&c->moving_context_lock);
list_add(&ctxt->list, &c->moving_context_list);
mutex_unlock(&c->moving_context_lock);
if (stats) {
progress_list_add(c, stats);
stats->data_type = BCH_DATA_user;
}
}
void bch2_move_stats_init(struct bch_move_stats *stats, char *name)
{
memset(stats, 0, sizeof(*stats));
scnprintf(stats->name, sizeof(stats->name), "%s", name);
}
static int bch2_extent_drop_ptrs(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_s_c k,
struct data_update_opts data_opts)
{
struct bch_fs *c = trans->c;
struct bkey_i *n;
int ret;
n = bch2_bkey_make_mut_noupdate(trans, k);
ret = PTR_ERR_OR_ZERO(n);
if (ret)
return ret;
while (data_opts.kill_ptrs) {
unsigned i = 0, drop = __fls(data_opts.kill_ptrs);
struct bch_extent_ptr *ptr;
bch2_bkey_drop_ptrs(bkey_i_to_s(n), ptr, i++ == drop);
data_opts.kill_ptrs ^= 1U << drop;
}
/*
* If the new extent no longer has any pointers, bch2_extent_normalize()
* will do the appropriate thing with it (turning it into a
* KEY_TYPE_error key, or just a discard if it was a cached extent)
*/
bch2_extent_normalize(c, bkey_i_to_s(n));
/*
* Since we're not inserting through an extent iterator
* (BTREE_ITER_ALL_SNAPSHOTS iterators aren't extent iterators),
* we aren't using the extent overwrite path to delete, we're
* just using the normal key deletion path:
*/
if (bkey_deleted(&n->k))
n->k.size = 0;
return bch2_trans_relock(trans) ?:
bch2_trans_update(trans, iter, n, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL);
}
static int bch2_move_extent(struct btree_trans *trans,
struct btree_iter *iter,
struct moving_context *ctxt,
struct move_bucket_in_flight *bucket_in_flight,
struct bch_io_opts io_opts,
enum btree_id btree_id,
struct bkey_s_c k,
struct data_update_opts data_opts)
{
struct bch_fs *c = trans->c;
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
struct moving_io *io;
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
unsigned sectors = k.k->size, pages;
int ret = -ENOMEM;
trace_move_extent2(c, k);
bch2_data_update_opts_normalize(k, &data_opts);
if (!data_opts.rewrite_ptrs &&
!data_opts.extra_replicas) {
if (data_opts.kill_ptrs)
return bch2_extent_drop_ptrs(trans, iter, k, data_opts);
return 0;
}
bcachefs: Nocow support This adds support for nocow mode, where we do writes in-place when possible. Patch components: - New boolean filesystem and inode option, nocow: note that when nocow is enabled, data checksumming and compression are implicitly disabled - To prevent in-place writes from racing with data moves (data_update.c) or bucket reuse (i.e. a bucket being reused and re-allocated while a nocow write is in flight, we have a new locking mechanism. Buckets can be locked for either data update or data move, using a fixed size hash table of two_state_shared locks. We don't have any chaining, meaning updates and moves to different buckets that hash to the same lock will wait unnecessarily - we'll want to watch for this becoming an issue. - The allocator path also needs to check for in-place writes in flight to a given bucket before giving it out: thus we add another counter to bucket_alloc_state so we can track this. - Fsync now may need to issue cache flushes to block devices instead of flushing the journal. We add a device bitmask to bch_inode_info, ei_devs_need_flush, which tracks devices that need to have flushes issued - note that this will lead to unnecessary flushes when other codepaths have already issued flushes, we may want to replace this with a sequence number. - New nocow write path: look up extents, and if they're writable write to them - otherwise fall back to the normal COW write path. XXX: switch to sequence numbers instead of bitmask for devs needing journal flush XXX: ei_quota_lock being a mutex means bch2_nocow_write_done() needs to run in process context - see if we can improve this Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2022-11-03 00:12:00 +03:00
/*
* Before memory allocations & taking nocow locks in
* bch2_data_update_init():
*/
bch2_trans_unlock(trans);
/* write path might have to decompress data: */
bkey_for_each_ptr_decode(k.k, ptrs, p, entry)
sectors = max_t(unsigned, sectors, p.crc.uncompressed_size);
pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
io = kzalloc(sizeof(struct moving_io) +
sizeof(struct bio_vec) * pages, GFP_KERNEL);
if (!io)
goto err;
INIT_LIST_HEAD(&io->io_list);
io->write.ctxt = ctxt;
io->read_sectors = k.k->size;
io->write_sectors = k.k->size;
bio_init(&io->write.op.wbio.bio, NULL, io->bi_inline_vecs, pages, 0);
bio_set_prio(&io->write.op.wbio.bio,
IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9,
GFP_KERNEL))
goto err_free;
io->rbio.c = c;
io->rbio.opts = io_opts;
bio_init(&io->rbio.bio, NULL, io->bi_inline_vecs, pages, 0);
io->rbio.bio.bi_vcnt = pages;
bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
io->rbio.bio.bi_iter.bi_size = sectors << 9;
io->rbio.bio.bi_opf = REQ_OP_READ;
io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(k.k);
io->rbio.bio.bi_end_io = move_read_endio;
ret = bch2_data_update_init(trans, ctxt, &io->write, ctxt->wp,
io_opts, data_opts, btree_id, k);
if (ret && ret != -BCH_ERR_unwritten_extent_update)
goto err_free_pages;
if (ret == -BCH_ERR_unwritten_extent_update) {
bch2_update_unwritten_extent(trans, &io->write);
move_free(io);
return 0;
}
BUG_ON(ret);
io->write.ctxt = ctxt;
io->write.op.end_io = move_write_done;
if (ctxt->stats) {
atomic64_inc(&ctxt->stats->keys_moved);
atomic64_add(k.k->size, &ctxt->stats->sectors_moved);
}
if (bucket_in_flight) {
io->b = bucket_in_flight;
atomic_inc(&io->b->count);
}
this_cpu_add(c->counters[BCH_COUNTER_io_move], k.k->size);
this_cpu_add(c->counters[BCH_COUNTER_move_extent_read], k.k->size);
trace_move_extent_read2(c, k);
mutex_lock(&ctxt->lock);
atomic_add(io->read_sectors, &ctxt->read_sectors);
atomic_inc(&ctxt->read_ios);
list_add_tail(&io->read_list, &ctxt->reads);
list_add_tail(&io->io_list, &ctxt->ios);
mutex_unlock(&ctxt->lock);
/*
* dropped by move_read_endio() - guards against use after free of
* ctxt when doing wakeup
*/
closure_get(&ctxt->cl);
bch2_read_extent(trans, &io->rbio,
bkey_start_pos(k.k),
btree_id, k, 0,
BCH_READ_NODECODE|
BCH_READ_LAST_FRAGMENT);
return 0;
err_free_pages:
bio_free_pages(&io->write.op.wbio.bio);
err_free:
kfree(io);
err:
this_cpu_inc(c->counters[BCH_COUNTER_move_extent_alloc_mem_fail]);
trace_move_extent_alloc_mem_fail2(c, k);
return ret;
}
static int lookup_inode(struct btree_trans *trans, struct bpos pos,
struct bch_inode_unpacked *inode)
{
struct btree_iter iter;
struct bkey_s_c k;
int ret;
bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes, pos,
BTREE_ITER_ALL_SNAPSHOTS);
k = bch2_btree_iter_peek(&iter);
ret = bkey_err(k);
if (ret)
goto err;
if (!k.k || !bkey_eq(k.k->p, pos)) {
ret = -BCH_ERR_ENOENT_inode;
goto err;
}
ret = bkey_is_inode(k.k) ? 0 : -EIO;
if (ret)
goto err;
ret = bch2_inode_unpack(k, inode);
if (ret)
goto err;
err:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int move_ratelimit(struct btree_trans *trans,
struct moving_context *ctxt)
{
struct bch_fs *c = trans->c;
u64 delay;
if (ctxt->wait_on_copygc) {
bch2_trans_unlock(trans);
wait_event_killable(c->copygc_running_wq,
!c->copygc_running ||
kthread_should_stop());
}
do {
delay = ctxt->rate ? bch2_ratelimit_delay(ctxt->rate) : 0;
if (delay) {
bch2_trans_unlock(trans);
set_current_state(TASK_INTERRUPTIBLE);
}
if ((current->flags & PF_KTHREAD) && kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 1;
}
if (delay)
schedule_timeout(delay);
if (unlikely(freezing(current))) {
move_ctxt_wait_event(ctxt, trans, list_empty(&ctxt->reads));
try_to_freeze();
}
} while (delay);
/*
* XXX: these limits really ought to be per device, SSDs and hard drives
* will want different limits
*/
move_ctxt_wait_event(ctxt, trans,
atomic_read(&ctxt->write_sectors) < c->opts.move_bytes_in_flight >> 9 &&
atomic_read(&ctxt->read_sectors) < c->opts.move_bytes_in_flight >> 9 &&
atomic_read(&ctxt->write_ios) < c->opts.move_ios_in_flight &&
atomic_read(&ctxt->read_ios) < c->opts.move_ios_in_flight);
return 0;
}
static int move_get_io_opts(struct btree_trans *trans,
struct bch_io_opts *io_opts,
struct bkey_s_c k, u64 *cur_inum)
{
struct bch_inode_unpacked inode;
int ret;
if (*cur_inum == k.k->p.inode)
return 0;
ret = lookup_inode(trans,
SPOS(0, k.k->p.inode, k.k->p.snapshot),
&inode);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ret;
if (!ret)
bch2_inode_opts_get(io_opts, trans->c, &inode);
else
*io_opts = bch2_opts_to_inode_opts(trans->c->opts);
*cur_inum = k.k->p.inode;
return 0;
}
static int __bch2_move_data(struct moving_context *ctxt,
struct bpos start,
struct bpos end,
move_pred_fn pred, void *arg,
enum btree_id btree_id)
{
struct bch_fs *c = ctxt->c;
struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts);
struct bkey_buf sk;
struct btree_trans trans;
struct btree_iter iter;
struct bkey_s_c k;
struct data_update_opts data_opts;
u64 cur_inum = U64_MAX;
int ret = 0, ret2;
bch2_bkey_buf_init(&sk);
bch2_trans_init(&trans, c, 0, 0);
if (ctxt->stats) {
ctxt->stats->data_type = BCH_DATA_user;
ctxt->stats->btree_id = btree_id;
ctxt->stats->pos = start;
}
bch2_trans_iter_init(&trans, &iter, btree_id, start,
BTREE_ITER_PREFETCH|
BTREE_ITER_ALL_SNAPSHOTS);
if (ctxt->rate)
bch2_ratelimit_reset(ctxt->rate);
while (!move_ratelimit(&trans, ctxt)) {
bch2_trans_begin(&trans);
k = bch2_btree_iter_peek(&iter);
if (!k.k)
break;
ret = bkey_err(k);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
if (bkey_ge(bkey_start_pos(k.k), end))
break;
if (ctxt->stats)
ctxt->stats->pos = iter.pos;
if (!bkey_extent_is_direct_data(k.k))
goto next_nondata;
ret = move_get_io_opts(&trans, &io_opts, k, &cur_inum);
if (ret)
continue;
memset(&data_opts, 0, sizeof(data_opts));
if (!pred(c, arg, k, &io_opts, &data_opts))
goto next;
/*
* The iterator gets unlocked by __bch2_read_extent - need to
* save a copy of @k elsewhere:
*/
bch2_bkey_buf_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
ret2 = bch2_move_extent(&trans, &iter, ctxt, NULL,
io_opts, btree_id, k, data_opts);
if (ret2) {
if (bch2_err_matches(ret2, BCH_ERR_transaction_restart))
continue;
if (ret2 == -ENOMEM) {
/* memory allocation failure, wait for some IO to finish */
bch2_move_ctxt_wait_for_io(ctxt, &trans);
continue;
}
/* XXX signal failure */
goto next;
}
if (ctxt->rate)
bch2_ratelimit_increment(ctxt->rate, k.k->size);
next:
if (ctxt->stats)
atomic64_add(k.k->size, &ctxt->stats->sectors_seen);
next_nondata:
bch2_btree_iter_advance(&iter);
}
bch2_trans_iter_exit(&trans, &iter);
bch2_trans_exit(&trans);
bch2_bkey_buf_exit(&sk, c);
return ret;
}
int bch2_move_data(struct bch_fs *c,
enum btree_id start_btree_id, struct bpos start_pos,
enum btree_id end_btree_id, struct bpos end_pos,
struct bch_ratelimit *rate,
struct bch_move_stats *stats,
struct write_point_specifier wp,
bool wait_on_copygc,
move_pred_fn pred, void *arg)
{
struct moving_context ctxt;
enum btree_id id;
int ret;
bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc);
for (id = start_btree_id;
id <= min_t(unsigned, end_btree_id, BTREE_ID_NR - 1);
id++) {
stats->btree_id = id;
if (id != BTREE_ID_extents &&
id != BTREE_ID_reflink)
continue;
ret = __bch2_move_data(&ctxt,
id == start_btree_id ? start_pos : POS_MIN,
id == end_btree_id ? end_pos : POS_MAX,
pred, arg, id);
if (ret)
break;
}
bch2_moving_ctxt_exit(&ctxt);
return ret;
}
int __bch2_evacuate_bucket(struct btree_trans *trans,
struct moving_context *ctxt,
struct move_bucket_in_flight *bucket_in_flight,
struct bpos bucket, int gen,
struct data_update_opts _data_opts)
{
struct bch_fs *c = ctxt->c;
struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts);
struct btree_iter iter;
struct bkey_buf sk;
struct bch_backpointer bp;
struct bch_alloc_v4 a_convert;
const struct bch_alloc_v4 *a;
struct bkey_s_c k;
struct data_update_opts data_opts;
unsigned dirty_sectors, bucket_size;
u64 fragmentation;
u64 cur_inum = U64_MAX;
struct bpos bp_pos = POS_MIN;
int ret = 0;
trace_bucket_evacuate(c, &bucket);
bch2_bkey_buf_init(&sk);
/*
* We're not run in a context that handles transaction restarts:
*/
bch2_trans_begin(trans);
bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc,
bucket, BTREE_ITER_CACHED);
ret = lockrestart_do(trans,
bkey_err(k = bch2_btree_iter_peek_slot(&iter)));
bch2_trans_iter_exit(trans, &iter);
if (ret) {
bch_err(c, "%s: error looking up alloc key: %s", __func__, bch2_err_str(ret));
goto err;
}
a = bch2_alloc_to_v4(k, &a_convert);
dirty_sectors = a->dirty_sectors;
bucket_size = bch_dev_bkey_exists(c, bucket.inode)->mi.bucket_size;
fragmentation = a->fragmentation_lru;
ret = bch2_btree_write_buffer_flush(trans);
if (ret) {
bch_err(c, "%s: error flushing btree write buffer: %s", __func__, bch2_err_str(ret));
goto err;
}
while (!(ret = move_ratelimit(trans, ctxt))) {
bch2_trans_begin(trans);
ret = bch2_get_next_backpointer(trans, bucket, gen,
&bp_pos, &bp,
BTREE_ITER_CACHED);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (bkey_eq(bp_pos, POS_MAX))
break;
if (!bp.level) {
const struct bch_extent_ptr *ptr;
struct bkey_s_c k;
unsigned i = 0;
k = bch2_backpointer_get_key(trans, &iter, bp_pos, bp, 0);
ret = bkey_err(k);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (!k.k)
goto next;
bch2_bkey_buf_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
ret = move_get_io_opts(trans, &io_opts, k, &cur_inum);
if (ret) {
bch2_trans_iter_exit(trans, &iter);
continue;
}
data_opts = _data_opts;
data_opts.target = io_opts.background_target;
data_opts.rewrite_ptrs = 0;
bkey_for_each_ptr(bch2_bkey_ptrs_c(k), ptr) {
if (ptr->dev == bucket.inode) {
data_opts.rewrite_ptrs |= 1U << i;
if (ptr->cached) {
bch2_trans_iter_exit(trans, &iter);
goto next;
}
}
i++;
}
ret = bch2_move_extent(trans, &iter, ctxt,
bucket_in_flight,
io_opts, bp.btree_id, k, data_opts);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret == -ENOMEM) {
/* memory allocation failure, wait for some IO to finish */
bch2_move_ctxt_wait_for_io(ctxt, trans);
continue;
}
if (ret)
goto err;
if (ctxt->rate)
bch2_ratelimit_increment(ctxt->rate, k.k->size);
if (ctxt->stats)
atomic64_add(k.k->size, &ctxt->stats->sectors_seen);
} else {
struct btree *b;
b = bch2_backpointer_get_node(trans, &iter, bp_pos, bp);
ret = PTR_ERR_OR_ZERO(b);
if (ret == -BCH_ERR_backpointer_to_overwritten_btree_node)
continue;
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (!b)
goto next;
ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
bch2_trans_iter_exit(trans, &iter);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
goto err;
if (ctxt->rate)
bch2_ratelimit_increment(ctxt->rate,
c->opts.btree_node_size >> 9);
if (ctxt->stats) {
atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_seen);
atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_moved);
}
}
next:
bp_pos = bpos_nosnap_successor(bp_pos);
}
trace_evacuate_bucket(c, &bucket, dirty_sectors, bucket_size, fragmentation, ret);
err:
bch2_bkey_buf_exit(&sk, c);
return ret;
}
int bch2_evacuate_bucket(struct bch_fs *c,
struct bpos bucket, int gen,
struct data_update_opts data_opts,
struct bch_ratelimit *rate,
struct bch_move_stats *stats,
struct write_point_specifier wp,
bool wait_on_copygc)
{
struct btree_trans trans;
struct moving_context ctxt;
int ret;
bch2_trans_init(&trans, c, 0, 0);
bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc);
ret = __bch2_evacuate_bucket(&trans, &ctxt, NULL, bucket, gen, data_opts);
bch2_moving_ctxt_exit(&ctxt);
bch2_trans_exit(&trans);
return ret;
}
typedef bool (*move_btree_pred)(struct bch_fs *, void *,
struct btree *, struct bch_io_opts *,
struct data_update_opts *);
static int bch2_move_btree(struct bch_fs *c,
enum btree_id start_btree_id, struct bpos start_pos,
enum btree_id end_btree_id, struct bpos end_pos,
move_btree_pred pred, void *arg,
struct bch_move_stats *stats)
{
bool kthread = (current->flags & PF_KTHREAD) != 0;
struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts);
struct btree_trans trans;
struct btree_iter iter;
struct btree *b;
enum btree_id id;
struct data_update_opts data_opts;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
progress_list_add(c, stats);
stats->data_type = BCH_DATA_btree;
for (id = start_btree_id;
id <= min_t(unsigned, end_btree_id, BTREE_ID_NR - 1);
id++) {
stats->btree_id = id;
bch2_trans_node_iter_init(&trans, &iter, id, POS_MIN, 0, 0,
BTREE_ITER_PREFETCH);
retry:
ret = 0;
while (bch2_trans_begin(&trans),
(b = bch2_btree_iter_peek_node(&iter)) &&
!(ret = PTR_ERR_OR_ZERO(b))) {
if (kthread && kthread_should_stop())
break;
if ((cmp_int(id, end_btree_id) ?:
bpos_cmp(b->key.k.p, end_pos)) > 0)
break;
stats->pos = iter.pos;
if (!pred(c, arg, b, &io_opts, &data_opts))
goto next;
ret = bch2_btree_node_rewrite(&trans, &iter, b, 0) ?: ret;
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
continue;
if (ret)
break;
next:
bch2_btree_iter_next_node(&iter);
}
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
goto retry;
bch2_trans_iter_exit(&trans, &iter);
if (kthread && kthread_should_stop())
break;
}
bch2_trans_exit(&trans);
if (ret)
bch_err(c, "error in %s(): %s", __func__, bch2_err_str(ret));
bch2_btree_interior_updates_flush(c);
progress_list_del(c, stats);
return ret;
}
static bool rereplicate_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
unsigned nr_good = bch2_bkey_durability(c, k);
unsigned replicas = bkey_is_btree_ptr(k.k)
? c->opts.metadata_replicas
: io_opts->data_replicas;
if (!nr_good || nr_good >= replicas)
return false;
data_opts->target = 0;
data_opts->extra_replicas = replicas - nr_good;
data_opts->btree_insert_flags = 0;
return true;
}
static bool migrate_pred(struct bch_fs *c, void *arg,
struct bkey_s_c k,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
struct bch_ioctl_data *op = arg;
unsigned i = 0;
data_opts->rewrite_ptrs = 0;
data_opts->target = 0;
data_opts->extra_replicas = 0;
data_opts->btree_insert_flags = 0;
bkey_for_each_ptr(ptrs, ptr) {
if (ptr->dev == op->migrate.dev)
data_opts->rewrite_ptrs |= 1U << i;
i++;
}
return data_opts->rewrite_ptrs != 0;
}
static bool rereplicate_btree_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
return rereplicate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts);
}
static bool migrate_btree_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
return migrate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts);
}
static bool bformat_needs_redo(struct bkey_format *f)
{
unsigned i;
for (i = 0; i < f->nr_fields; i++) {
unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i];
u64 unpacked_mask = ~((~0ULL << 1) << (unpacked_bits - 1));
u64 field_offset = le64_to_cpu(f->field_offset[i]);
if (f->bits_per_field[i] > unpacked_bits)
return true;
if ((f->bits_per_field[i] == unpacked_bits) && field_offset)
return true;
if (((field_offset + ((1ULL << f->bits_per_field[i]) - 1)) &
unpacked_mask) <
field_offset)
return true;
}
return false;
}
static bool rewrite_old_nodes_pred(struct bch_fs *c, void *arg,
struct btree *b,
struct bch_io_opts *io_opts,
struct data_update_opts *data_opts)
{
if (b->version_ondisk != c->sb.version ||
btree_node_need_rewrite(b) ||
bformat_needs_redo(&b->format)) {
data_opts->target = 0;
data_opts->extra_replicas = 0;
data_opts->btree_insert_flags = 0;
return true;
}
return false;
}
int bch2_scan_old_btree_nodes(struct bch_fs *c, struct bch_move_stats *stats)
{
int ret;
ret = bch2_move_btree(c,
0, POS_MIN,
BTREE_ID_NR, SPOS_MAX,
rewrite_old_nodes_pred, c, stats);
if (!ret) {
mutex_lock(&c->sb_lock);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
c->disk_sb.sb->version_min = c->disk_sb.sb->version;
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
return ret;
}
int bch2_data_job(struct bch_fs *c,
struct bch_move_stats *stats,
struct bch_ioctl_data op)
{
int ret = 0;
switch (op.op) {
case BCH_DATA_OP_REREPLICATE:
bch2_move_stats_init(stats, "rereplicate");
stats->data_type = BCH_DATA_journal;
ret = bch2_journal_flush_device_pins(&c->journal, -1);
ret = bch2_move_btree(c,
op.start_btree, op.start_pos,
op.end_btree, op.end_pos,
rereplicate_btree_pred, c, stats) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
ret = bch2_move_data(c,
op.start_btree, op.start_pos,
op.end_btree, op.end_pos,
NULL,
stats,
writepoint_hashed((unsigned long) current),
true,
rereplicate_pred, c) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
break;
case BCH_DATA_OP_MIGRATE:
if (op.migrate.dev >= c->sb.nr_devices)
return -EINVAL;
bch2_move_stats_init(stats, "migrate");
stats->data_type = BCH_DATA_journal;
ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev);
ret = bch2_move_btree(c,
op.start_btree, op.start_pos,
op.end_btree, op.end_pos,
migrate_btree_pred, &op, stats) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
ret = bch2_move_data(c,
op.start_btree, op.start_pos,
op.end_btree, op.end_pos,
NULL,
stats,
writepoint_hashed((unsigned long) current),
true,
migrate_pred, &op) ?: ret;
ret = bch2_replicas_gc2(c) ?: ret;
break;
case BCH_DATA_OP_REWRITE_OLD_NODES:
bch2_move_stats_init(stats, "rewrite_old_nodes");
ret = bch2_scan_old_btree_nodes(c, stats);
break;
default:
ret = -EINVAL;
}
return ret;
}
void bch2_data_jobs_to_text(struct printbuf *out, struct bch_fs *c)
{
struct bch_move_stats *stats;
mutex_lock(&c->data_progress_lock);
list_for_each_entry(stats, &c->data_progress_list, list) {
prt_printf(out, "%s: data type %s btree_id %s position: ",
stats->name,
bch2_data_types[stats->data_type],
bch2_btree_ids[stats->btree_id]);
bch2_bpos_to_text(out, stats->pos);
prt_printf(out, "%s", "\n");
}
mutex_unlock(&c->data_progress_lock);
}
static void bch2_moving_ctxt_to_text(struct printbuf *out, struct moving_context *ctxt)
{
struct moving_io *io;
prt_printf(out, "%ps:", ctxt->fn);
prt_newline(out);
printbuf_indent_add(out, 2);
prt_printf(out, "reads: %u sectors %u",
atomic_read(&ctxt->read_ios),
atomic_read(&ctxt->read_sectors));
prt_newline(out);
prt_printf(out, "writes: %u sectors %u",
atomic_read(&ctxt->write_ios),
atomic_read(&ctxt->write_sectors));
prt_newline(out);
printbuf_indent_add(out, 2);
mutex_lock(&ctxt->lock);
list_for_each_entry(io, &ctxt->ios, io_list) {
bch2_write_op_to_text(out, &io->write.op);
}
mutex_unlock(&ctxt->lock);
printbuf_indent_sub(out, 4);
}
void bch2_fs_moving_ctxts_to_text(struct printbuf *out, struct bch_fs *c)
{
struct moving_context *ctxt;
mutex_lock(&c->moving_context_lock);
list_for_each_entry(ctxt, &c->moving_context_list, list)
bch2_moving_ctxt_to_text(out, ctxt);
mutex_unlock(&c->moving_context_lock);
}
void bch2_fs_move_init(struct bch_fs *c)
{
INIT_LIST_HEAD(&c->moving_context_list);
mutex_init(&c->moving_context_lock);
INIT_LIST_HEAD(&c->data_progress_list);
mutex_init(&c->data_progress_lock);
}