226 lines
5.2 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
#undef TRACE_SYSTEM
#define TRACE_SYSTEM nilfs2
#if !defined(_TRACE_NILFS2_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_NILFS2_H
#include <linux/tracepoint.h>
struct nilfs_sc_info;
#define show_collection_stage(type) \
__print_symbolic(type, \
{ NILFS_ST_INIT, "ST_INIT" }, \
{ NILFS_ST_GC, "ST_GC" }, \
{ NILFS_ST_FILE, "ST_FILE" }, \
{ NILFS_ST_IFILE, "ST_IFILE" }, \
{ NILFS_ST_CPFILE, "ST_CPFILE" }, \
{ NILFS_ST_SUFILE, "ST_SUFILE" }, \
{ NILFS_ST_DAT, "ST_DAT" }, \
{ NILFS_ST_SR, "ST_SR" }, \
{ NILFS_ST_DSYNC, "ST_DSYNC" }, \
{ NILFS_ST_DONE, "ST_DONE"})
TRACE_EVENT(nilfs2_collection_stage_transition,
TP_PROTO(struct nilfs_sc_info *sci),
TP_ARGS(sci),
TP_STRUCT__entry(
__field(void *, sci)
__field(int, stage)
),
TP_fast_assign(
__entry->sci = sci;
__entry->stage = sci->sc_stage.scnt;
),
TP_printk("sci = %p stage = %s",
__entry->sci,
show_collection_stage(__entry->stage))
);
nilfs2: add a tracepoint for transaction events This patch adds a tracepoint for transaction events of nilfs. With the tracepoint, these events can be tracked: begin, abort, commit, trylock, lock, and unlock. Basically, these events have corresponding functions e.g. begin event corresponds nilfs_transaction_begin(). The unlock event is an exception. It corresponds to the iteration in nilfs_transaction_lock(). Only one tracepoint is introcued: nilfs2_transaction_transition. The above events are distinguished with newly introduced enum. With this tracepoint, we can analyse a critical section of segment constructoin. Sample output by tpoint of perf-tools: cp-4457 [000] ...1 63.266220: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 1 flags = 9 state = BEGIN cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT cp-4457 [000] ...1 63.266221: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800bf5ccc58 count = 0 flags = 9 state = COMMIT segctord-4371 [001] ...1 68.261196: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK segctord-4371 [001] ...1 68.261280: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = LOCK segctord-4371 [001] ...1 68.261877: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 1 flags = 10 state = BEGIN segctord-4371 [001] ...1 68.262116: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = COMMIT segctord-4371 [001] ...1 68.265032: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 18 state = UNLOCK segctord-4371 [001] ...1 132.376847: nilfs2_transaction_transition: sb = ffff8802112b8800 ti = ffff8800b889bdf8 count = 0 flags = 10 state = TRYLOCK This patch also does trivial cleaning of comma usage in collection stage transition event for consistent coding style. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:32:02 -08:00
#ifndef TRACE_HEADER_MULTI_READ
enum nilfs2_transaction_transition_state {
TRACE_NILFS2_TRANSACTION_BEGIN,
TRACE_NILFS2_TRANSACTION_COMMIT,
TRACE_NILFS2_TRANSACTION_ABORT,
TRACE_NILFS2_TRANSACTION_TRYLOCK,
TRACE_NILFS2_TRANSACTION_LOCK,
TRACE_NILFS2_TRANSACTION_UNLOCK,
};
#endif
#define show_transaction_state(type) \
__print_symbolic(type, \
{ TRACE_NILFS2_TRANSACTION_BEGIN, "BEGIN" }, \
{ TRACE_NILFS2_TRANSACTION_COMMIT, "COMMIT" }, \
{ TRACE_NILFS2_TRANSACTION_ABORT, "ABORT" }, \
{ TRACE_NILFS2_TRANSACTION_TRYLOCK, "TRYLOCK" }, \
{ TRACE_NILFS2_TRANSACTION_LOCK, "LOCK" }, \
{ TRACE_NILFS2_TRANSACTION_UNLOCK, "UNLOCK" })
TRACE_EVENT(nilfs2_transaction_transition,
TP_PROTO(struct super_block *sb,
struct nilfs_transaction_info *ti,
int count,
unsigned int flags,
enum nilfs2_transaction_transition_state state),
TP_ARGS(sb, ti, count, flags, state),
TP_STRUCT__entry(
__field(void *, sb)
__field(void *, ti)
__field(int, count)
__field(unsigned int, flags)
__field(int, state)
),
TP_fast_assign(
__entry->sb = sb;
__entry->ti = ti;
__entry->count = count;
__entry->flags = flags;
__entry->state = state;
),
TP_printk("sb = %p ti = %p count = %d flags = %x state = %s",
__entry->sb,
__entry->ti,
__entry->count,
__entry->flags,
show_transaction_state(__entry->state))
);
TRACE_EVENT(nilfs2_segment_usage_check,
TP_PROTO(struct inode *sufile,
__u64 segnum,
unsigned long cnt),
TP_ARGS(sufile, segnum, cnt),
TP_STRUCT__entry(
__field(struct inode *, sufile)
__field(__u64, segnum)
__field(unsigned long, cnt)
),
TP_fast_assign(
__entry->sufile = sufile;
__entry->segnum = segnum;
__entry->cnt = cnt;
),
TP_printk("sufile = %p segnum = %llu cnt = %lu",
__entry->sufile,
__entry->segnum,
__entry->cnt)
);
TRACE_EVENT(nilfs2_segment_usage_allocated,
TP_PROTO(struct inode *sufile,
__u64 segnum),
TP_ARGS(sufile, segnum),
TP_STRUCT__entry(
__field(struct inode *, sufile)
__field(__u64, segnum)
),
TP_fast_assign(
__entry->sufile = sufile;
__entry->segnum = segnum;
),
TP_printk("sufile = %p segnum = %llu",
__entry->sufile,
__entry->segnum)
);
TRACE_EVENT(nilfs2_segment_usage_freed,
TP_PROTO(struct inode *sufile,
__u64 segnum),
TP_ARGS(sufile, segnum),
TP_STRUCT__entry(
__field(struct inode *, sufile)
__field(__u64, segnum)
),
TP_fast_assign(
__entry->sufile = sufile;
__entry->segnum = segnum;
),
TP_printk("sufile = %p segnum = %llu",
__entry->sufile,
__entry->segnum)
);
TRACE_EVENT(nilfs2_mdt_insert_new_block,
TP_PROTO(struct inode *inode,
unsigned long ino,
unsigned long block),
TP_ARGS(inode, ino, block),
TP_STRUCT__entry(
__field(struct inode *, inode)
__field(unsigned long, ino)
__field(unsigned long, block)
),
TP_fast_assign(
__entry->inode = inode;
__entry->ino = ino;
__entry->block = block;
),
TP_printk("inode = %p ino = %lu block = %lu",
__entry->inode,
__entry->ino,
__entry->block)
);
TRACE_EVENT(nilfs2_mdt_submit_block,
TP_PROTO(struct inode *inode,
unsigned long ino,
unsigned long blkoff,
enum req_op mode),
TP_ARGS(inode, ino, blkoff, mode),
TP_STRUCT__entry(
__field(struct inode *, inode)
__field(unsigned long, ino)
__field(unsigned long, blkoff)
__field(enum req_op, mode)
),
TP_fast_assign(
__entry->inode = inode;
__entry->ino = ino;
__entry->blkoff = blkoff;
__entry->mode = mode;
),
TP_printk("inode = %p ino = %lu blkoff = %lu mode = %x",
__entry->inode,
__entry->ino,
__entry->blkoff,
__entry->mode)
);
nilfs2: add a tracepoint for tracking stage transition of segment construction This patch adds a tracepoint for tracking stage transition of block collection in segment construction. With the tracepoint, we can analysis the behavior of segment construction in depth. It would be useful for bottleneck detection and debugging, etc. The tracepoint is created with the standard trace API of linux (like ext3, ext4, f2fs and btrfs). So we can analysis with existing tools easily. Of course, more detailed analysis will be possible if we can create nilfs specific analysis tools. Below is an example of event dump with Brendan Gregg's perf-tools (https://github.com/brendangregg/perf-tools). Time consumption between each stage can be obtained. $ sudo bin/tpoint nilfs2:nilfs2_collection_stage_transition Tracing nilfs2:nilfs2_collection_stage_transition. Ctrl-C to end. segctord-14875 [003] ...1 28311.067794: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_INIT segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_GC segctord-14875 [003] ...1 28311.068139: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_FILE segctord-14875 [003] ...1 28311.068486: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_IFILE segctord-14875 [003] ...1 28311.068540: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_CPFILE segctord-14875 [003] ...1 28311.068561: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SUFILE segctord-14875 [003] ...1 28311.068565: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DAT segctord-14875 [003] ...1 28311.068573: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_SR segctord-14875 [003] ...1 28311.068574: nilfs2_collection_stage_transition: sci = ffff8800ce6de000 stage = ST_DONE For capturing transition correctly, this patch adds wrappers for the member scnt of nilfs_cstage. With this change, every transition of the stage can produce trace event in a correct manner. Signed-off-by: Hitoshi Mitake <mitake.hitoshi@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 16:31:59 -08:00
#endif /* _TRACE_NILFS2_H */
/* This part must be outside protection */
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE nilfs2
#include <trace/define_trace.h>