linux/fs/xfs/xfs_inode.h

623 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __XFS_INODE_H__
#define __XFS_INODE_H__
struct posix_acl;
struct xfs_dinode;
struct xfs_inode;
/*
* Fork identifiers.
*/
#define XFS_DATA_FORK 0
#define XFS_ATTR_FORK 1
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
/*
* The following xfs_ext_irec_t struct introduces a second (top) level
* to the in-core extent allocation scheme. These structs are allocated
* in a contiguous block, creating an indirection array where each entry
* (irec) contains a pointer to a buffer of in-core extent records which
* it manages. Each extent buffer is 4k in size, since 4k is the system
* page size on Linux i386 and systems with larger page sizes don't seem
* to gain much, if anything, by using their native page size as the
* extent buffer size. Also, using 4k extent buffers everywhere provides
* a consistent interface for CXFS across different platforms.
*
* There is currently no limit on the number of irec's (extent lists)
* allowed, so heavily fragmented files may require an indirection array
* which spans multiple system pages of memory. The number of extents
* which would require this amount of contiguous memory is very large
* and should not cause problems in the foreseeable future. However,
* if the memory needed for the contiguous array ever becomes a problem,
* it is possible that a third level of indirection may be required.
*/
typedef struct xfs_ext_irec {
xfs_bmbt_rec_host_t *er_extbuf; /* block of extent records */
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
xfs_extnum_t er_extoff; /* extent offset in file */
xfs_extnum_t er_extcount; /* number of extents in page/block */
} xfs_ext_irec_t;
/*
* File incore extent information, present for each of data & attr forks.
*/
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
#define XFS_IEXT_BUFSZ 4096
#define XFS_LINEAR_EXTS (XFS_IEXT_BUFSZ / (uint)sizeof(xfs_bmbt_rec_t))
#define XFS_INLINE_EXTS 2
#define XFS_INLINE_DATA 32
typedef struct xfs_ifork {
int if_bytes; /* bytes in if_u1 */
int if_real_bytes; /* bytes allocated in if_u1 */
struct xfs_btree_block *if_broot; /* file's incore btree root */
short if_broot_bytes; /* bytes allocated for root */
unsigned char if_flags; /* per-fork flags */
unsigned char if_ext_max; /* max # of extent records */
xfs_extnum_t if_lastex; /* last if_extents used */
union {
xfs_bmbt_rec_host_t *if_extents;/* linear map file exts */
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
xfs_ext_irec_t *if_ext_irec; /* irec map file exts */
char *if_data; /* inline file data */
} if_u1;
union {
xfs_bmbt_rec_host_t if_inline_ext[XFS_INLINE_EXTS];
/* very small file extents */
char if_inline_data[XFS_INLINE_DATA];
/* very small file data */
xfs_dev_t if_rdev; /* dev number if special */
uuid_t if_uuid; /* mount point value */
} if_u2;
} xfs_ifork_t;
/*
* Inode location information. Stored in the inode and passed to
* xfs_imap_to_bp() to get a buffer and dinode for a given inode.
*/
struct xfs_imap {
xfs_daddr_t im_blkno; /* starting BB of inode chunk */
ushort im_len; /* length in BBs of inode chunk */
ushort im_boffset; /* inode offset in block in bytes */
};
/*
* This is the xfs in-core inode structure.
* Most of the on-disk inode is embedded in the i_d field.
*
* The extent pointers/inline file space, however, are managed
* separately. The memory for this information is pointed to by
* the if_u1 unions depending on the type of the data.
* This is used to linearize the array of extents for fast in-core
* access. This is used until the file's number of extents
* surpasses XFS_MAX_INCORE_EXTENTS, at which point all extent pointers
* are accessed through the buffer cache.
*
* Other state kept in the in-core inode is used for identification,
* locking, transactional updating, etc of the inode.
*
* Generally, we do not want to hold the i_rlock while holding the
* i_ilock. Hierarchy is i_iolock followed by i_rlock.
*
* xfs_iptr_t contains all the inode fields upto and including the
* i_mnext and i_mprev fields, it is used as a marker in the inode
* chain off the mount structure by xfs_sync calls.
*/
typedef struct xfs_ictimestamp {
__int32_t t_sec; /* timestamp seconds */
__int32_t t_nsec; /* timestamp nanoseconds */
} xfs_ictimestamp_t;
/*
* NOTE: This structure must be kept identical to struct xfs_dinode
* in xfs_dinode.h except for the endianness annotations.
*/
typedef struct xfs_icdinode {
__uint16_t di_magic; /* inode magic # = XFS_DINODE_MAGIC */
__uint16_t di_mode; /* mode and type of file */
__int8_t di_version; /* inode version */
__int8_t di_format; /* format of di_c data */
__uint16_t di_onlink; /* old number of links to file */
__uint32_t di_uid; /* owner's user id */
__uint32_t di_gid; /* owner's group id */
__uint32_t di_nlink; /* number of links to file */
__uint16_t di_projid; /* owner's project id */
__uint8_t di_pad[8]; /* unused, zeroed space */
__uint16_t di_flushiter; /* incremented on flush */
xfs_ictimestamp_t di_atime; /* time last accessed */
xfs_ictimestamp_t di_mtime; /* time last modified */
xfs_ictimestamp_t di_ctime; /* time created/inode modified */
xfs_fsize_t di_size; /* number of bytes in file */
xfs_drfsbno_t di_nblocks; /* # of direct & btree blocks used */
xfs_extlen_t di_extsize; /* basic/minimum extent size for file */
xfs_extnum_t di_nextents; /* number of extents in data fork */
xfs_aextnum_t di_anextents; /* number of extents in attribute fork*/
__uint8_t di_forkoff; /* attr fork offs, <<3 for 64b align */
__int8_t di_aformat; /* format of attr fork's data */
__uint32_t di_dmevmask; /* DMIG event mask */
__uint16_t di_dmstate; /* DMIG state info */
__uint16_t di_flags; /* random flags, XFS_DIFLAG_... */
__uint32_t di_gen; /* generation number */
} xfs_icdinode_t;
/*
* Flags for xfs_ichgtime().
*/
#define XFS_ICHGTIME_MOD 0x1 /* data fork modification timestamp */
#define XFS_ICHGTIME_CHG 0x2 /* inode field change timestamp */
/*
* Per-fork incore inode flags.
*/
#define XFS_IFINLINE 0x01 /* Inline data is read in */
#define XFS_IFEXTENTS 0x02 /* All extent pointers are read in */
#define XFS_IFBROOT 0x04 /* i_broot points to the bmap b-tree root */
#define XFS_IFEXTIREC 0x08 /* Indirection array of extent blocks */
/*
* Fork handling.
*/
#define XFS_IFORK_Q(ip) ((ip)->i_d.di_forkoff != 0)
#define XFS_IFORK_BOFF(ip) ((int)((ip)->i_d.di_forkoff << 3))
#define XFS_IFORK_PTR(ip,w) \
((w) == XFS_DATA_FORK ? \
&(ip)->i_df : \
(ip)->i_afp)
#define XFS_IFORK_DSIZE(ip) \
(XFS_IFORK_Q(ip) ? \
XFS_IFORK_BOFF(ip) : \
XFS_LITINO((ip)->i_mount))
#define XFS_IFORK_ASIZE(ip) \
(XFS_IFORK_Q(ip) ? \
XFS_LITINO((ip)->i_mount) - XFS_IFORK_BOFF(ip) : \
0)
#define XFS_IFORK_SIZE(ip,w) \
((w) == XFS_DATA_FORK ? \
XFS_IFORK_DSIZE(ip) : \
XFS_IFORK_ASIZE(ip))
#define XFS_IFORK_FORMAT(ip,w) \
((w) == XFS_DATA_FORK ? \
(ip)->i_d.di_format : \
(ip)->i_d.di_aformat)
#define XFS_IFORK_FMT_SET(ip,w,n) \
((w) == XFS_DATA_FORK ? \
((ip)->i_d.di_format = (n)) : \
((ip)->i_d.di_aformat = (n)))
#define XFS_IFORK_NEXTENTS(ip,w) \
((w) == XFS_DATA_FORK ? \
(ip)->i_d.di_nextents : \
(ip)->i_d.di_anextents)
#define XFS_IFORK_NEXT_SET(ip,w,n) \
((w) == XFS_DATA_FORK ? \
((ip)->i_d.di_nextents = (n)) : \
((ip)->i_d.di_anextents = (n)))
#ifdef __KERNEL__
struct bhv_desc;
struct cred;
struct ktrace;
struct xfs_buf;
struct xfs_bmap_free;
struct xfs_bmbt_irec;
struct xfs_inode_log_item;
struct xfs_mount;
struct xfs_trans;
struct xfs_dquot;
#if defined(XFS_ILOCK_TRACE)
#define XFS_ILOCK_KTRACE_SIZE 32
extern void xfs_ilock_trace(struct xfs_inode *, int, unsigned int, inst_t *);
#else
#define xfs_ilock_trace(i,n,f,ra)
#endif
typedef struct dm_attrs_s {
__uint32_t da_dmevmask; /* DMIG event mask */
__uint16_t da_dmstate; /* DMIG state info */
__uint16_t da_pad; /* DMIG extra padding */
} dm_attrs_t;
typedef struct xfs_inode {
/* Inode linking and identification information. */
struct xfs_mount *i_mount; /* fs mount struct ptr */
struct xfs_dquot *i_udquot; /* user dquot */
struct xfs_dquot *i_gdquot; /* group dquot */
/* Inode location stuff */
xfs_ino_t i_ino; /* inode number (agno/agino)*/
struct xfs_imap i_imap; /* location for xfs_imap() */
/* Extent information. */
xfs_ifork_t *i_afp; /* attribute fork pointer */
xfs_ifork_t i_df; /* data fork */
/* Transaction and locking information. */
struct xfs_trans *i_transp; /* ptr to owning transaction*/
struct xfs_inode_log_item *i_itemp; /* logging information */
mrlock_t i_lock; /* inode lock */
mrlock_t i_iolock; /* inode IO lock */
struct completion i_flush; /* inode flush completion q */
atomic_t i_pincount; /* inode pin count */
wait_queue_head_t i_ipin_wait; /* inode pinning wait queue */
spinlock_t i_flags_lock; /* inode i_flags lock */
/* Miscellaneous state. */
unsigned short i_flags; /* see defined flags below */
unsigned char i_update_core; /* timestamps/size is dirty */
unsigned int i_delayed_blks; /* count of delay alloc blks */
xfs_icdinode_t i_d; /* most of ondisk inode */
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
xfs_fsize_t i_size; /* in-memory size */
xfs_fsize_t i_new_size; /* size when write completes */
atomic_t i_iocount; /* outstanding I/O count */
/* VFS inode */
struct inode i_vnode; /* embedded VFS inode */
/* Trace buffers per inode. */
#ifdef XFS_INODE_TRACE
struct ktrace *i_trace; /* general inode trace */
#endif
#ifdef XFS_BMAP_TRACE
struct ktrace *i_xtrace; /* inode extent list trace */
#endif
#ifdef XFS_BTREE_TRACE
struct ktrace *i_btrace; /* inode bmap btree trace */
#endif
#ifdef XFS_RW_TRACE
struct ktrace *i_rwtrace; /* inode read/write trace */
#endif
#ifdef XFS_ILOCK_TRACE
struct ktrace *i_lock_trace; /* inode lock/unlock trace */
#endif
#ifdef XFS_DIR2_TRACE
struct ktrace *i_dir_trace; /* inode directory trace */
#endif
} xfs_inode_t;
[XFS] Fix to prevent the notorious 'NULL files' problem after a crash. The problem that has been addressed is that of synchronising updates of the file size with writes that extend a file. Without the fix the update of a file's size, as a result of a write beyond eof, is independent of when the cached data is flushed to disk. Often the file size update would be written to the filesystem log before the data is flushed to disk. When a system crashes between these two events and the filesystem log is replayed on mount the file's size will be set but since the contents never made it to disk the file is full of holes. If some of the cached data was flushed to disk then it may just be a section of the file at the end that has holes. There are existing fixes to help alleviate this problem, particularly in the case where a file has been truncated, that force cached data to be flushed to disk when the file is closed. If the system crashes while the file(s) are still open then this flushing will never occur. The fix that we have implemented is to introduce a second file size, called the in-memory file size, that represents the current file size as viewed by the user. The existing file size, called the on-disk file size, is the one that get's written to the filesystem log and we only update it when it is safe to do so. When we write to a file beyond eof we only update the in- memory file size in the write operation. Later when the I/O operation, that flushes the cached data to disk completes, an I/O completion routine will update the on-disk file size. The on-disk file size will be updated to the maximum offset of the I/O or to the value of the in-memory file size if the I/O includes eof. SGI-PV: 958522 SGI-Modid: xfs-linux-melb:xfs-kern:28322a Signed-off-by: Lachlan McIlroy <lachlan@sgi.com> Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-08 07:49:46 +04:00
#define XFS_ISIZE(ip) (((ip)->i_d.di_mode & S_IFMT) == S_IFREG) ? \
(ip)->i_size : (ip)->i_d.di_size;
/* Convert from vfs inode to xfs inode */
static inline struct xfs_inode *XFS_I(struct inode *inode)
{
return container_of(inode, struct xfs_inode, i_vnode);
}
/* convert from xfs inode to vfs inode */
static inline struct inode *VFS_I(struct xfs_inode *ip)
{
return &ip->i_vnode;
}
/*
* i_flags helper functions
*/
static inline void
__xfs_iflags_set(xfs_inode_t *ip, unsigned short flags)
{
ip->i_flags |= flags;
}
static inline void
xfs_iflags_set(xfs_inode_t *ip, unsigned short flags)
{
spin_lock(&ip->i_flags_lock);
__xfs_iflags_set(ip, flags);
spin_unlock(&ip->i_flags_lock);
}
static inline void
xfs_iflags_clear(xfs_inode_t *ip, unsigned short flags)
{
spin_lock(&ip->i_flags_lock);
ip->i_flags &= ~flags;
spin_unlock(&ip->i_flags_lock);
}
static inline int
__xfs_iflags_test(xfs_inode_t *ip, unsigned short flags)
{
return (ip->i_flags & flags);
}
static inline int
xfs_iflags_test(xfs_inode_t *ip, unsigned short flags)
{
int ret;
spin_lock(&ip->i_flags_lock);
ret = __xfs_iflags_test(ip, flags);
spin_unlock(&ip->i_flags_lock);
return ret;
}
static inline int
xfs_iflags_test_and_clear(xfs_inode_t *ip, unsigned short flags)
{
int ret;
spin_lock(&ip->i_flags_lock);
ret = ip->i_flags & flags;
if (ret)
ip->i_flags &= ~flags;
spin_unlock(&ip->i_flags_lock);
return ret;
}
/*
* Manage the i_flush queue embedded in the inode. This completion
* queue synchronizes processes attempting to flush the in-core
* inode back to disk.
*/
static inline void xfs_iflock(xfs_inode_t *ip)
{
wait_for_completion(&ip->i_flush);
}
static inline int xfs_iflock_nowait(xfs_inode_t *ip)
{
return try_wait_for_completion(&ip->i_flush);
}
static inline void xfs_ifunlock(xfs_inode_t *ip)
{
complete(&ip->i_flush);
}
/*
* In-core inode flags.
*/
#define XFS_IRECLAIM 0x0001 /* we have started reclaiming this inode */
#define XFS_ISTALE 0x0002 /* inode has been staled */
#define XFS_IRECLAIMABLE 0x0004 /* inode can be reclaimed */
#define XFS_INEW 0x0008 /* inode has just been allocated */
#define XFS_IFILESTREAM 0x0010 /* inode is in a filestream directory */
#define XFS_ITRUNCATED 0x0020 /* truncated down so flush-on-close */
/*
* Flags for inode locking.
* Bit ranges: 1<<1 - 1<<16-1 -- iolock/ilock modes (bitfield)
* 1<<16 - 1<<32-1 -- lockdep annotation (integers)
*/
#define XFS_IOLOCK_EXCL (1<<0)
#define XFS_IOLOCK_SHARED (1<<1)
#define XFS_ILOCK_EXCL (1<<2)
#define XFS_ILOCK_SHARED (1<<3)
#define XFS_IUNLOCK_NONOTIFY (1<<4)
#define XFS_LOCK_MASK (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED \
| XFS_ILOCK_EXCL | XFS_ILOCK_SHARED)
/*
* Flags for lockdep annotations.
*
* XFS_I[O]LOCK_PARENT - for operations that require locking two inodes
* (ie directory operations that require locking a directory inode and
* an entry inode). The first inode gets locked with this flag so it
* gets a lockdep subclass of 1 and the second lock will have a lockdep
* subclass of 0.
*
* XFS_LOCK_INUMORDER - for locking several inodes at the some time
* with xfs_lock_inodes(). This flag is used as the starting subclass
* and each subsequent lock acquired will increment the subclass by one.
* So the first lock acquired will have a lockdep subclass of 2, the
* second lock will have a lockdep subclass of 3, and so on. It is
* the responsibility of the class builder to shift this to the correct
* portion of the lock_mode lockdep mask.
*/
#define XFS_LOCK_PARENT 1
#define XFS_LOCK_INUMORDER 2
#define XFS_IOLOCK_SHIFT 16
#define XFS_IOLOCK_PARENT (XFS_LOCK_PARENT << XFS_IOLOCK_SHIFT)
#define XFS_ILOCK_SHIFT 24
#define XFS_ILOCK_PARENT (XFS_LOCK_PARENT << XFS_ILOCK_SHIFT)
#define XFS_IOLOCK_DEP_MASK 0x00ff0000
#define XFS_ILOCK_DEP_MASK 0xff000000
#define XFS_LOCK_DEP_MASK (XFS_IOLOCK_DEP_MASK | XFS_ILOCK_DEP_MASK)
#define XFS_IOLOCK_DEP(flags) (((flags) & XFS_IOLOCK_DEP_MASK) >> XFS_IOLOCK_SHIFT)
#define XFS_ILOCK_DEP(flags) (((flags) & XFS_ILOCK_DEP_MASK) >> XFS_ILOCK_SHIFT)
/*
* Flags for xfs_iflush()
*/
#define XFS_IFLUSH_DELWRI_ELSE_SYNC 1
#define XFS_IFLUSH_DELWRI_ELSE_ASYNC 2
#define XFS_IFLUSH_SYNC 3
#define XFS_IFLUSH_ASYNC 4
#define XFS_IFLUSH_DELWRI 5
#define XFS_IFLUSH_ASYNC_NOBLOCK 6
/*
* Flags for xfs_itruncate_start().
*/
#define XFS_ITRUNC_DEFINITE 0x1
#define XFS_ITRUNC_MAYBE 0x2
/*
* For multiple groups support: if S_ISGID bit is set in the parent
* directory, group of new file is set to that of the parent, and
* new subdirectory gets S_ISGID bit from parent.
*/
#define XFS_INHERIT_GID(pip) \
(((pip)->i_mount->m_flags & XFS_MOUNT_GRPID) || \
((pip)->i_d.di_mode & S_ISGID))
/*
* xfs_iget.c prototypes.
*/
int xfs_iget(struct xfs_mount *, struct xfs_trans *, xfs_ino_t,
uint, uint, xfs_inode_t **, xfs_daddr_t);
void xfs_iput(xfs_inode_t *, uint);
void xfs_iput_new(xfs_inode_t *, uint);
void xfs_ilock(xfs_inode_t *, uint);
int xfs_ilock_nowait(xfs_inode_t *, uint);
void xfs_iunlock(xfs_inode_t *, uint);
void xfs_ilock_demote(xfs_inode_t *, uint);
int xfs_isilocked(xfs_inode_t *, uint);
uint xfs_ilock_map_shared(xfs_inode_t *);
void xfs_iunlock_map_shared(xfs_inode_t *, uint);
void xfs_ireclaim(xfs_inode_t *);
/*
* xfs_inode.c prototypes.
*/
int xfs_ialloc(struct xfs_trans *, xfs_inode_t *, mode_t,
xfs_nlink_t, xfs_dev_t, cred_t *, xfs_prid_t,
int, struct xfs_buf **, boolean_t *, xfs_inode_t **);
uint xfs_ip2xflags(struct xfs_inode *);
uint xfs_dic2xflags(struct xfs_dinode *);
int xfs_ifree(struct xfs_trans *, xfs_inode_t *,
struct xfs_bmap_free *);
int xfs_itruncate_start(xfs_inode_t *, uint, xfs_fsize_t);
int xfs_itruncate_finish(struct xfs_trans **, xfs_inode_t *,
xfs_fsize_t, int, int);
int xfs_iunlink(struct xfs_trans *, xfs_inode_t *);
void xfs_iext_realloc(xfs_inode_t *, int, int);
void xfs_ipin(xfs_inode_t *);
void xfs_iunpin(xfs_inode_t *);
int xfs_iflush(xfs_inode_t *, uint);
void xfs_ichgtime(xfs_inode_t *, int);
void xfs_lock_inodes(xfs_inode_t **, int, uint);
void xfs_lock_two_inodes(xfs_inode_t *, xfs_inode_t *, uint);
void xfs_synchronize_atime(xfs_inode_t *);
void xfs_mark_inode_dirty_sync(xfs_inode_t *);
#if defined(XFS_INODE_TRACE)
#define INODE_TRACE_SIZE 16 /* number of trace entries */
#define INODE_KTRACE_ENTRY 1
#define INODE_KTRACE_EXIT 2
#define INODE_KTRACE_HOLD 3
#define INODE_KTRACE_REF 4
#define INODE_KTRACE_RELE 5
extern void _xfs_itrace_entry(struct xfs_inode *, const char *, inst_t *);
extern void _xfs_itrace_exit(struct xfs_inode *, const char *, inst_t *);
extern void xfs_itrace_hold(struct xfs_inode *, char *, int, inst_t *);
extern void _xfs_itrace_ref(struct xfs_inode *, char *, int, inst_t *);
extern void xfs_itrace_rele(struct xfs_inode *, char *, int, inst_t *);
#define xfs_itrace_entry(ip) \
_xfs_itrace_entry(ip, __func__, (inst_t *)__return_address)
#define xfs_itrace_exit(ip) \
_xfs_itrace_exit(ip, __func__, (inst_t *)__return_address)
#define xfs_itrace_exit_tag(ip, tag) \
_xfs_itrace_exit(ip, tag, (inst_t *)__return_address)
#define xfs_itrace_ref(ip) \
_xfs_itrace_ref(ip, __FILE__, __LINE__, (inst_t *)__return_address)
#else
#define xfs_itrace_entry(a)
#define xfs_itrace_exit(a)
#define xfs_itrace_exit_tag(a, b)
#define xfs_itrace_hold(a, b, c, d)
#define xfs_itrace_ref(a)
#define xfs_itrace_rele(a, b, c, d)
#endif
#define IHOLD(ip) \
do { \
ASSERT(atomic_read(&VFS_I(ip)->i_count) > 0) ; \
atomic_inc(&(VFS_I(ip)->i_count)); \
xfs_itrace_hold((ip), __FILE__, __LINE__, (inst_t *)__return_address); \
} while (0)
#define IRELE(ip) \
do { \
xfs_itrace_rele((ip), __FILE__, __LINE__, (inst_t *)__return_address); \
iput(VFS_I(ip)); \
} while (0)
#endif /* __KERNEL__ */
/*
* Flags for xfs_iget()
*/
#define XFS_IGET_CREATE 0x1
#define XFS_IGET_BULKSTAT 0x2
int xfs_inotobp(struct xfs_mount *, struct xfs_trans *,
xfs_ino_t, struct xfs_dinode **,
struct xfs_buf **, int *, uint);
int xfs_itobp(struct xfs_mount *, struct xfs_trans *,
struct xfs_inode *, struct xfs_dinode **,
struct xfs_buf **, uint);
int xfs_iread(struct xfs_mount *, struct xfs_trans *,
struct xfs_inode *, xfs_daddr_t, uint);
void xfs_dinode_to_disk(struct xfs_dinode *,
struct xfs_icdinode *);
void xfs_idestroy_fork(struct xfs_inode *, int);
void xfs_idata_realloc(struct xfs_inode *, int, int);
void xfs_iroot_realloc(struct xfs_inode *, int, int);
int xfs_iread_extents(struct xfs_trans *, struct xfs_inode *, int);
int xfs_iextents_copy(struct xfs_inode *, xfs_bmbt_rec_t *, int);
xfs_bmbt_rec_host_t *xfs_iext_get_ext(xfs_ifork_t *, xfs_extnum_t);
void xfs_iext_insert(xfs_ifork_t *, xfs_extnum_t, xfs_extnum_t,
xfs_bmbt_irec_t *);
void xfs_iext_add(xfs_ifork_t *, xfs_extnum_t, int);
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
void xfs_iext_add_indirect_multi(xfs_ifork_t *, int, xfs_extnum_t, int);
void xfs_iext_remove(xfs_ifork_t *, xfs_extnum_t, int);
void xfs_iext_remove_inline(xfs_ifork_t *, xfs_extnum_t, int);
void xfs_iext_remove_direct(xfs_ifork_t *, xfs_extnum_t, int);
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
void xfs_iext_remove_indirect(xfs_ifork_t *, xfs_extnum_t, int);
void xfs_iext_realloc_direct(xfs_ifork_t *, int);
void xfs_iext_direct_to_inline(xfs_ifork_t *, xfs_extnum_t);
void xfs_iext_inline_to_direct(xfs_ifork_t *, int);
void xfs_iext_destroy(xfs_ifork_t *);
xfs_bmbt_rec_host_t *xfs_iext_bno_to_ext(xfs_ifork_t *, xfs_fileoff_t, int *);
[XFS] 929045 567344 This mod introduces multi-level in-core file extent functionality, building upon the new layout introduced in mod xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are only required for heavily fragmented files, so the old-style linear extent list is used on files until the extents reach a pre-determined size of 4k. 4k buffers are used because this is the system page size on Linux i386 and systems with larger page sizes don't seem to gain much, if anything, by using their native page size as the extent buffer size. Also, using 4k extent buffers everywhere provides a consistent interface for CXFS across different platforms. The 4k extent buffers are managed by an indirection array (xfs_ext_irec_t) which is basically just a pointer array with a bit of extra information to keep track of the number of extents in each buffer as well as the extent offset of each buffer. Major changes include: - Add multi-level in-core file extent functionality to the xfs_iext_ subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13 new subroutines which add functionality for multi-level in-core file extents: xfs_iext_add_indirect_multi() xfs_iext_remove_indirect() xfs_iext_realloc_indirect() xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec() xfs_iext_idx_to_irec() xfs_iext_irec_init() xfs_iext_irec_new() xfs_iext_irec_remove() xfs_iext_irec_compact() xfs_iext_irec_compact_pages() xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs() SGI-PV: 928864 SGI-Modid: xfs-linux-melb:xfs-kern:207393a Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com> Signed-off-by: Nathan Scott <nathans@sgi.com>
2006-03-14 05:30:23 +03:00
xfs_ext_irec_t *xfs_iext_bno_to_irec(xfs_ifork_t *, xfs_fileoff_t, int *);
xfs_ext_irec_t *xfs_iext_idx_to_irec(xfs_ifork_t *, xfs_extnum_t *, int *, int);
void xfs_iext_irec_init(xfs_ifork_t *);
xfs_ext_irec_t *xfs_iext_irec_new(xfs_ifork_t *, int);
void xfs_iext_irec_remove(xfs_ifork_t *, int);
void xfs_iext_irec_compact(xfs_ifork_t *);
void xfs_iext_irec_compact_pages(xfs_ifork_t *);
void xfs_iext_irec_compact_full(xfs_ifork_t *);
void xfs_iext_irec_update_extoffs(xfs_ifork_t *, int, int);
#define xfs_ipincount(ip) ((unsigned int) atomic_read(&ip->i_pincount))
#ifdef DEBUG
void xfs_isize_check(struct xfs_mount *, struct xfs_inode *,
xfs_fsize_t);
#else /* DEBUG */
#define xfs_isize_check(mp, ip, isize)
#endif /* DEBUG */
#if defined(DEBUG)
void xfs_inobp_check(struct xfs_mount *, struct xfs_buf *);
#else
#define xfs_inobp_check(mp, bp)
#endif /* DEBUG */
extern struct kmem_zone *xfs_ifork_zone;
extern struct kmem_zone *xfs_inode_zone;
extern struct kmem_zone *xfs_ili_zone;
#endif /* __XFS_INODE_H__ */