linux/drivers/fsi/fsi-master-aspeed.c

674 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
// Copyright (C) IBM Corporation 2018
// FSI master driver for AST2600
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/fsi.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/iopoll.h>
#include <linux/gpio/consumer.h>
#include "fsi-master.h"
struct fsi_master_aspeed {
struct fsi_master master;
struct mutex lock; /* protect HW access */
struct device *dev;
void __iomem *base;
struct clk *clk;
struct gpio_desc *cfam_reset_gpio;
};
#define to_fsi_master_aspeed(m) \
container_of(m, struct fsi_master_aspeed, master)
/* Control register (size 0x400) */
static const u32 ctrl_base = 0x80000000;
static const u32 fsi_base = 0xa0000000;
#define OPB_FSI_VER 0x00
#define OPB_TRIGGER 0x04
#define OPB_CTRL_BASE 0x08
#define OPB_FSI_BASE 0x0c
#define OPB_CLK_SYNC 0x3c
#define OPB_IRQ_CLEAR 0x40
#define OPB_IRQ_MASK 0x44
#define OPB_IRQ_STATUS 0x48
#define OPB0_SELECT 0x10
#define OPB0_RW 0x14
#define OPB0_XFER_SIZE 0x18
#define OPB0_FSI_ADDR 0x1c
#define OPB0_FSI_DATA_W 0x20
#define OPB0_STATUS 0x80
#define OPB0_FSI_DATA_R 0x84
#define OPB0_WRITE_ORDER1 0x4c
#define OPB0_WRITE_ORDER2 0x50
#define OPB1_WRITE_ORDER1 0x54
#define OPB1_WRITE_ORDER2 0x58
#define OPB0_READ_ORDER1 0x5c
#define OPB1_READ_ORDER2 0x60
#define OPB_RETRY_COUNTER 0x64
/* OPBn_STATUS */
#define STATUS_HALFWORD_ACK BIT(0)
#define STATUS_FULLWORD_ACK BIT(1)
#define STATUS_ERR_ACK BIT(2)
#define STATUS_RETRY BIT(3)
#define STATUS_TIMEOUT BIT(4)
/* OPB_IRQ_MASK */
#define OPB1_XFER_ACK_EN BIT(17)
#define OPB0_XFER_ACK_EN BIT(16)
/* OPB_RW */
#define CMD_READ BIT(0)
#define CMD_WRITE 0
/* OPBx_XFER_SIZE */
#define XFER_FULLWORD (BIT(1) | BIT(0))
#define XFER_HALFWORD (BIT(0))
#define XFER_BYTE (0)
#define CREATE_TRACE_POINTS
#include <trace/events/fsi_master_aspeed.h>
#define FSI_LINK_ENABLE_SETUP_TIME 10 /* in mS */
/* Run the bus at maximum speed by default */
#define FSI_DIVISOR_DEFAULT 1
#define FSI_DIVISOR_CABLED 2
static u16 aspeed_fsi_divisor = FSI_DIVISOR_DEFAULT;
module_param_named(bus_div,aspeed_fsi_divisor, ushort, 0);
fsi: Aspeed: Reduce poll timeout The lengthy timeout previously used sometimes resulted in scheduling problems, detailed below. Therefore reduce the timeout to 500us. This timeout selection is supported by the benchmarks collected below with various clock dividers. This is purely the time spent polling (reported by ktime_get()). div 1: max:150us avg: 2us div 2: max:155us avg: 3us div 4: max:149us avg: 7us div 8: max:153us avg: 13us div 16: max:197us avg: 21us div 32: max:181us avg: 50us div 64: max:262us avg:100us Jan 22 01:27:21 rain27bmc kernel: rcu: INFO: rcu_sched self-detected stall on CPU Jan 22 01:27:21 rain27bmc kernel: rcu: 0-....: (2099 ticks this GP) idle=0ca/1/0x40000002 softirq=349573/349573 fqs=1048 Jan 22 01:27:21 rain27bmc kernel: (t=2100 jiffies g=841149 q=7163) Jan 22 01:27:21 rain27bmc kernel: NMI backtrace for cpu 0 Jan 22 01:27:21 rain27bmc kernel: CPU: 0 PID: 5959 Comm: ibm-read-vpd Not tainted 5.8.17-a9b4ea8 #1 Jan 22 01:27:21 rain27bmc kernel: Hardware name: Generic DT based system Jan 22 01:27:21 rain27bmc kernel: Backtrace: Jan 22 01:27:25 rain27bmc kernel: [<8010d92c>] (dump_backtrace) from [<8010db80>] (show_stack+0x20/0x24) ... Jan 22 01:27:25 rain27bmc kernel: [<8010130c>] (gic_handle_irq) from [<80100b0c>] (__irq_svc+0x6c/0x90) Jan 22 01:27:25 rain27bmc kernel: Exception stack(0xb79159b0 to 0xb79159f8) Jan 22 01:27:25 rain27bmc kernel: 59a0: 9e88e5d5 00000559 00000559 00000018 Jan 22 01:27:25 rain27bmc kernel: 59c0: 00000000 9f217c55 00000003 00000559 a0201c00 bfa4d048 bfa4d000 b7915a44 Jan 22 01:27:25 rain27bmc kernel: 59e0: 40e88f8a b7915a00 3254e553 80734924 80030113 ffffffff Jan 22 01:27:25 rain27bmc kernel: r9:b7914000 r8:a0201c00 r7:b79159e4 r6:ffffffff r5:80030113 r4:80734924 Jan 22 01:27:25 rain27bmc kernel: [<807348b4>] (__opb_read) from [<80734d98>] (aspeed_master_read+0xbc/0xcc) Jan 22 01:27:25 rain27bmc kernel: r10:00000004 r9:00000002 r8:80734cdc r7:bd33fa40 r6:00000004 r5:bd33f840 Jan 22 01:27:25 rain27bmc kernel: r4:00201c00 Jan 22 01:27:25 rain27bmc kernel: [<80734cdc>] (aspeed_master_read) from [<807320f0>] (fsi_master_read+0x6c/0x1bc) ... Signed-off-by: Eddie James <eajames@linux.ibm.com> Link: https://lore.kernel.org/r/20210211194846.35475-1-eajames@linux.ibm.com Signed-off-by: Joel Stanley <joel@jms.id.au>
2021-02-11 13:48:46 -06:00
#define OPB_POLL_TIMEOUT 500
static int __opb_write(struct fsi_master_aspeed *aspeed, u32 addr,
u32 val, u32 transfer_size)
{
void __iomem *base = aspeed->base;
u32 reg, status;
int ret;
/*
* The ordering of these writes up until the trigger
* write does not matter, so use writel_relaxed.
*/
writel_relaxed(CMD_WRITE, base + OPB0_RW);
writel_relaxed(transfer_size, base + OPB0_XFER_SIZE);
writel_relaxed(addr, base + OPB0_FSI_ADDR);
writel_relaxed(val, base + OPB0_FSI_DATA_W);
writel_relaxed(0x1, base + OPB_IRQ_CLEAR);
writel(0x1, base + OPB_TRIGGER);
ret = readl_poll_timeout(base + OPB_IRQ_STATUS, reg,
(reg & OPB0_XFER_ACK_EN) != 0,
0, OPB_POLL_TIMEOUT);
status = readl(base + OPB0_STATUS);
trace_fsi_master_aspeed_opb_write(addr, val, transfer_size, status, reg);
/* Return error when poll timed out */
if (ret)
return ret;
/* Command failed, master will reset */
if (status & STATUS_ERR_ACK)
return -EIO;
return 0;
}
static int opb_writeb(struct fsi_master_aspeed *aspeed, u32 addr, u8 val)
{
return __opb_write(aspeed, addr, val, XFER_BYTE);
}
static int opb_writew(struct fsi_master_aspeed *aspeed, u32 addr, __be16 val)
{
return __opb_write(aspeed, addr, (__force u16)val, XFER_HALFWORD);
}
static int opb_writel(struct fsi_master_aspeed *aspeed, u32 addr, __be32 val)
{
return __opb_write(aspeed, addr, (__force u32)val, XFER_FULLWORD);
}
static int __opb_read(struct fsi_master_aspeed *aspeed, uint32_t addr,
u32 transfer_size, void *out)
{
void __iomem *base = aspeed->base;
u32 result, reg;
int status, ret;
/*
* The ordering of these writes up until the trigger
* write does not matter, so use writel_relaxed.
*/
writel_relaxed(CMD_READ, base + OPB0_RW);
writel_relaxed(transfer_size, base + OPB0_XFER_SIZE);
writel_relaxed(addr, base + OPB0_FSI_ADDR);
writel_relaxed(0x1, base + OPB_IRQ_CLEAR);
writel(0x1, base + OPB_TRIGGER);
ret = readl_poll_timeout(base + OPB_IRQ_STATUS, reg,
(reg & OPB0_XFER_ACK_EN) != 0,
0, OPB_POLL_TIMEOUT);
status = readl(base + OPB0_STATUS);
result = readl(base + OPB0_FSI_DATA_R);
trace_fsi_master_aspeed_opb_read(addr, transfer_size, result,
readl(base + OPB0_STATUS),
reg);
/* Return error when poll timed out */
if (ret)
return ret;
/* Command failed, master will reset */
if (status & STATUS_ERR_ACK)
return -EIO;
if (out) {
switch (transfer_size) {
case XFER_BYTE:
*(u8 *)out = result;
break;
case XFER_HALFWORD:
*(u16 *)out = result;
break;
case XFER_FULLWORD:
*(u32 *)out = result;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int opb_readl(struct fsi_master_aspeed *aspeed, uint32_t addr, __be32 *out)
{
return __opb_read(aspeed, addr, XFER_FULLWORD, out);
}
static int opb_readw(struct fsi_master_aspeed *aspeed, uint32_t addr, __be16 *out)
{
return __opb_read(aspeed, addr, XFER_HALFWORD, (void *)out);
}
static int opb_readb(struct fsi_master_aspeed *aspeed, uint32_t addr, u8 *out)
{
return __opb_read(aspeed, addr, XFER_BYTE, (void *)out);
}
static int check_errors(struct fsi_master_aspeed *aspeed, int err)
{
int ret;
if (trace_fsi_master_aspeed_opb_error_enabled()) {
__be32 mresp0, mstap0, mesrb0;
opb_readl(aspeed, ctrl_base + FSI_MRESP0, &mresp0);
opb_readl(aspeed, ctrl_base + FSI_MSTAP0, &mstap0);
opb_readl(aspeed, ctrl_base + FSI_MESRB0, &mesrb0);
trace_fsi_master_aspeed_opb_error(
be32_to_cpu(mresp0),
be32_to_cpu(mstap0),
be32_to_cpu(mesrb0));
}
if (err == -EIO) {
/* Check MAEB (0x70) ? */
/* Then clear errors in master */
ret = opb_writel(aspeed, ctrl_base + FSI_MRESP0,
cpu_to_be32(FSI_MRESP_RST_ALL_MASTER));
if (ret) {
/* TODO: log? return different code? */
return ret;
}
/* TODO: confirm that 0x70 was okay */
}
/* This will pass through timeout errors */
return err;
}
static int aspeed_master_read(struct fsi_master *master, int link,
uint8_t id, uint32_t addr, void *val, size_t size)
{
struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master);
int ret;
if (id > 0x3)
return -EINVAL;
addr |= id << 21;
addr += link * FSI_HUB_LINK_SIZE;
mutex_lock(&aspeed->lock);
switch (size) {
case 1:
ret = opb_readb(aspeed, fsi_base + addr, val);
break;
case 2:
ret = opb_readw(aspeed, fsi_base + addr, val);
break;
case 4:
ret = opb_readl(aspeed, fsi_base + addr, val);
break;
default:
ret = -EINVAL;
goto done;
}
ret = check_errors(aspeed, ret);
done:
mutex_unlock(&aspeed->lock);
return ret;
}
static int aspeed_master_write(struct fsi_master *master, int link,
uint8_t id, uint32_t addr, const void *val, size_t size)
{
struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master);
int ret;
if (id > 0x3)
return -EINVAL;
addr |= id << 21;
addr += link * FSI_HUB_LINK_SIZE;
mutex_lock(&aspeed->lock);
switch (size) {
case 1:
ret = opb_writeb(aspeed, fsi_base + addr, *(u8 *)val);
break;
case 2:
ret = opb_writew(aspeed, fsi_base + addr, *(__be16 *)val);
break;
case 4:
ret = opb_writel(aspeed, fsi_base + addr, *(__be32 *)val);
break;
default:
ret = -EINVAL;
goto done;
}
ret = check_errors(aspeed, ret);
done:
mutex_unlock(&aspeed->lock);
return ret;
}
static int aspeed_master_link_enable(struct fsi_master *master, int link,
bool enable)
{
struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master);
int idx, bit, ret;
__be32 reg;
idx = link / 32;
bit = link % 32;
reg = cpu_to_be32(0x80000000 >> bit);
mutex_lock(&aspeed->lock);
if (!enable) {
ret = opb_writel(aspeed, ctrl_base + FSI_MCENP0 + (4 * idx), reg);
goto done;
}
ret = opb_writel(aspeed, ctrl_base + FSI_MSENP0 + (4 * idx), reg);
if (ret)
goto done;
mdelay(FSI_LINK_ENABLE_SETUP_TIME);
done:
mutex_unlock(&aspeed->lock);
return ret;
}
static int aspeed_master_term(struct fsi_master *master, int link, uint8_t id)
{
uint32_t addr;
__be32 cmd;
addr = 0x4;
cmd = cpu_to_be32(0xecc00000);
return aspeed_master_write(master, link, id, addr, &cmd, 4);
}
static int aspeed_master_break(struct fsi_master *master, int link)
{
uint32_t addr;
__be32 cmd;
addr = 0x0;
cmd = cpu_to_be32(0xc0de0000);
return aspeed_master_write(master, link, 0, addr, &cmd, 4);
}
static void aspeed_master_release(struct device *dev)
{
struct fsi_master_aspeed *aspeed =
to_fsi_master_aspeed(dev_to_fsi_master(dev));
kfree(aspeed);
}
/* mmode encoders */
static inline u32 fsi_mmode_crs0(u32 x)
{
return (x & FSI_MMODE_CRS0MASK) << FSI_MMODE_CRS0SHFT;
}
static inline u32 fsi_mmode_crs1(u32 x)
{
return (x & FSI_MMODE_CRS1MASK) << FSI_MMODE_CRS1SHFT;
}
static int aspeed_master_init(struct fsi_master_aspeed *aspeed)
{
__be32 reg;
reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK
| FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE);
opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg);
/* Initialize the MFSI (hub master) engine */
reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK
| FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE);
opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg);
reg = cpu_to_be32(FSI_MECTRL_EOAE | FSI_MECTRL_P8_AUTO_TERM);
opb_writel(aspeed, ctrl_base + FSI_MECTRL, reg);
reg = cpu_to_be32(FSI_MMODE_ECRC | FSI_MMODE_EPC | FSI_MMODE_RELA
| fsi_mmode_crs0(aspeed_fsi_divisor)
| fsi_mmode_crs1(aspeed_fsi_divisor)
| FSI_MMODE_P8_TO_LSB);
dev_info(aspeed->dev, "mmode set to %08x (divisor %d)\n",
be32_to_cpu(reg), aspeed_fsi_divisor);
opb_writel(aspeed, ctrl_base + FSI_MMODE, reg);
reg = cpu_to_be32(0xffff0000);
opb_writel(aspeed, ctrl_base + FSI_MDLYR, reg);
reg = cpu_to_be32(~0);
opb_writel(aspeed, ctrl_base + FSI_MSENP0, reg);
/* Leave enabled long enough for master logic to set up */
mdelay(FSI_LINK_ENABLE_SETUP_TIME);
opb_writel(aspeed, ctrl_base + FSI_MCENP0, reg);
opb_readl(aspeed, ctrl_base + FSI_MAEB, NULL);
reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK);
opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg);
opb_readl(aspeed, ctrl_base + FSI_MLEVP0, NULL);
/* Reset the master bridge */
reg = cpu_to_be32(FSI_MRESB_RST_GEN);
opb_writel(aspeed, ctrl_base + FSI_MRESB0, reg);
reg = cpu_to_be32(FSI_MRESB_RST_ERR);
opb_writel(aspeed, ctrl_base + FSI_MRESB0, reg);
return 0;
}
static ssize_t cfam_reset_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct fsi_master_aspeed *aspeed = dev_get_drvdata(dev);
trace_fsi_master_aspeed_cfam_reset(true);
mutex_lock(&aspeed->lock);
gpiod_set_value(aspeed->cfam_reset_gpio, 1);
usleep_range(900, 1000);
gpiod_set_value(aspeed->cfam_reset_gpio, 0);
mutex_unlock(&aspeed->lock);
trace_fsi_master_aspeed_cfam_reset(false);
return count;
}
static DEVICE_ATTR(cfam_reset, 0200, NULL, cfam_reset_store);
static int setup_cfam_reset(struct fsi_master_aspeed *aspeed)
{
struct device *dev = aspeed->dev;
struct gpio_desc *gpio;
int rc;
gpio = devm_gpiod_get_optional(dev, "cfam-reset", GPIOD_OUT_LOW);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (!gpio)
return 0;
aspeed->cfam_reset_gpio = gpio;
rc = device_create_file(dev, &dev_attr_cfam_reset);
if (rc) {
devm_gpiod_put(dev, gpio);
return rc;
}
return 0;
}
static int tacoma_cabled_fsi_fixup(struct device *dev)
{
struct gpio_desc *routing_gpio, *mux_gpio;
int gpio;
/*
* The routing GPIO is a jumper indicating we should mux for the
* externally connected FSI cable.
*/
routing_gpio = devm_gpiod_get_optional(dev, "fsi-routing",
GPIOD_IN | GPIOD_FLAGS_BIT_NONEXCLUSIVE);
if (IS_ERR(routing_gpio))
return PTR_ERR(routing_gpio);
if (!routing_gpio)
return 0;
mux_gpio = devm_gpiod_get_optional(dev, "fsi-mux", GPIOD_ASIS);
if (IS_ERR(mux_gpio))
return PTR_ERR(mux_gpio);
if (!mux_gpio)
return 0;
gpio = gpiod_get_value(routing_gpio);
if (gpio < 0)
return gpio;
/* If the routing GPIO is high we should set the mux to low. */
if (gpio) {
/*
* Cable signal integrity means we should run the bus
* slightly slower. Do not override if a kernel param
* has already overridden.
*/
if (aspeed_fsi_divisor == FSI_DIVISOR_DEFAULT)
aspeed_fsi_divisor = FSI_DIVISOR_CABLED;
gpiod_direction_output(mux_gpio, 0);
dev_info(dev, "FSI configured for external cable\n");
} else {
gpiod_direction_output(mux_gpio, 1);
}
devm_gpiod_put(dev, routing_gpio);
return 0;
}
static int fsi_master_aspeed_probe(struct platform_device *pdev)
{
struct fsi_master_aspeed *aspeed;
int rc, links, reg;
__be32 raw;
rc = tacoma_cabled_fsi_fixup(&pdev->dev);
if (rc) {
dev_err(&pdev->dev, "Tacoma FSI cable fixup failed\n");
return rc;
}
aspeed = kzalloc(sizeof(*aspeed), GFP_KERNEL);
if (!aspeed)
return -ENOMEM;
aspeed->dev = &pdev->dev;
aspeed->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(aspeed->base)) {
rc = PTR_ERR(aspeed->base);
goto err_free_aspeed;
}
aspeed->clk = devm_clk_get(aspeed->dev, NULL);
if (IS_ERR(aspeed->clk)) {
dev_err(aspeed->dev, "couldn't get clock\n");
rc = PTR_ERR(aspeed->clk);
goto err_free_aspeed;
}
rc = clk_prepare_enable(aspeed->clk);
if (rc) {
dev_err(aspeed->dev, "couldn't enable clock\n");
goto err_free_aspeed;
}
rc = setup_cfam_reset(aspeed);
if (rc) {
dev_err(&pdev->dev, "CFAM reset GPIO setup failed\n");
}
writel(0x1, aspeed->base + OPB_CLK_SYNC);
writel(OPB1_XFER_ACK_EN | OPB0_XFER_ACK_EN,
aspeed->base + OPB_IRQ_MASK);
/* TODO: determine an appropriate value */
writel(0x10, aspeed->base + OPB_RETRY_COUNTER);
writel(ctrl_base, aspeed->base + OPB_CTRL_BASE);
writel(fsi_base, aspeed->base + OPB_FSI_BASE);
/* Set read data order */
fsi: aspeed: Fix OPB0 byte order register values The data byte order selection registers in the APB2OPB primarily expose some internal plumbing necessary to get correct write accesses onto the OPB. OPB write cycles require "data mirroring" across the 32-bit data bus to support variable data width slaves that don't implement "byte enables". For slaves that do implement byte enables the master can signal which bytes on the data bus the slave should consider valid. The data mirroring behaviour is specified by the following table: +-----------------+----------+-----------------------------------+ | | | 32-bit Data Bus | +---------+-------+----------+---------+---------+-------+-------+ | | | | | | | | | ABus | Mn_BE | Request | Dbus | Dbus | Dbus | Dbus | | (30:31) | (0:3) | Transfer | 0:7 | 8:15 | 16:23 | 24:31 | | | | Size | byte0 | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1111 | fullword | byte0 | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1110 | halfword | byte0 | byte1 | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0111 | byte | _byte1_ | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1100 | halfword | byte0 | byte1 | | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0110 | byte | _byte1_ | byte1 | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 10 | 0011 | halfword | _byte2_ | _byte3_ | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1000 | byte | byte0 | | | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0100 | byte | _byte1_ | byte1 | | | +---------+-------+----------+---------+---------+-------+-------+ | 10 | 0010 | byte | _byte2_ | | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 11 | 0001 | byte | _byte3_ | _byte3_ | | byte3 | +---------+-------+----------+---------+---------+-------+-------+ Mirrored data values are highlighted by underscores in the Dbus columns. The values in the ABus and Request Transfer Size columns correspond to values in the field names listed in the write data order select register descriptions. Similar configuration registers are exposed for reads which enables the secondary purpose of configuring hardware endian conversions. It appears the data bus byte order is switched around in hardware so set the registers such that we can access the correct values for all widths. The values were determined by experimentation on hardware against fixed CFAM register values to configure the read data order, then in combination with the table above and the register layout documentation in the AST2600 datasheet performing write/read cycles to configure the write data order registers. Signed-off-by: Andrew Jeffery <andrew@aj.id.au> Signed-off-by: Joel Stanley <joel@jms.id.au> Acked-by: Alistair Popple <alistair@popple.id.au> Link: https://lore.kernel.org/r/20191108051945.7109-12-joel@jms.id.au Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-08 15:49:45 +10:30
writel(0x00030b1b, aspeed->base + OPB0_READ_ORDER1);
/* Set write data order */
fsi: aspeed: Fix OPB0 byte order register values The data byte order selection registers in the APB2OPB primarily expose some internal plumbing necessary to get correct write accesses onto the OPB. OPB write cycles require "data mirroring" across the 32-bit data bus to support variable data width slaves that don't implement "byte enables". For slaves that do implement byte enables the master can signal which bytes on the data bus the slave should consider valid. The data mirroring behaviour is specified by the following table: +-----------------+----------+-----------------------------------+ | | | 32-bit Data Bus | +---------+-------+----------+---------+---------+-------+-------+ | | | | | | | | | ABus | Mn_BE | Request | Dbus | Dbus | Dbus | Dbus | | (30:31) | (0:3) | Transfer | 0:7 | 8:15 | 16:23 | 24:31 | | | | Size | byte0 | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1111 | fullword | byte0 | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1110 | halfword | byte0 | byte1 | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0111 | byte | _byte1_ | byte1 | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1100 | halfword | byte0 | byte1 | | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0110 | byte | _byte1_ | byte1 | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 10 | 0011 | halfword | _byte2_ | _byte3_ | byte2 | byte3 | +---------+-------+----------+---------+---------+-------+-------+ | 00 | 1000 | byte | byte0 | | | | +---------+-------+----------+---------+---------+-------+-------+ | 01 | 0100 | byte | _byte1_ | byte1 | | | +---------+-------+----------+---------+---------+-------+-------+ | 10 | 0010 | byte | _byte2_ | | byte2 | | +---------+-------+----------+---------+---------+-------+-------+ | 11 | 0001 | byte | _byte3_ | _byte3_ | | byte3 | +---------+-------+----------+---------+---------+-------+-------+ Mirrored data values are highlighted by underscores in the Dbus columns. The values in the ABus and Request Transfer Size columns correspond to values in the field names listed in the write data order select register descriptions. Similar configuration registers are exposed for reads which enables the secondary purpose of configuring hardware endian conversions. It appears the data bus byte order is switched around in hardware so set the registers such that we can access the correct values for all widths. The values were determined by experimentation on hardware against fixed CFAM register values to configure the read data order, then in combination with the table above and the register layout documentation in the AST2600 datasheet performing write/read cycles to configure the write data order registers. Signed-off-by: Andrew Jeffery <andrew@aj.id.au> Signed-off-by: Joel Stanley <joel@jms.id.au> Acked-by: Alistair Popple <alistair@popple.id.au> Link: https://lore.kernel.org/r/20191108051945.7109-12-joel@jms.id.au Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-08 15:49:45 +10:30
writel(0x0011101b, aspeed->base + OPB0_WRITE_ORDER1);
writel(0x0c330f3f, aspeed->base + OPB0_WRITE_ORDER2);
/*
* Select OPB0 for all operations.
* Will need to be reworked when enabling DMA or anything that uses
* OPB1.
*/
writel(0x1, aspeed->base + OPB0_SELECT);
rc = opb_readl(aspeed, ctrl_base + FSI_MVER, &raw);
if (rc) {
dev_err(&pdev->dev, "failed to read hub version\n");
goto err_release;
}
reg = be32_to_cpu(raw);
links = (reg >> 8) & 0xff;
dev_info(&pdev->dev, "hub version %08x (%d links)\n", reg, links);
aspeed->master.dev.parent = &pdev->dev;
aspeed->master.dev.release = aspeed_master_release;
aspeed->master.dev.of_node = of_node_get(dev_of_node(&pdev->dev));
aspeed->master.n_links = links;
aspeed->master.read = aspeed_master_read;
aspeed->master.write = aspeed_master_write;
aspeed->master.send_break = aspeed_master_break;
aspeed->master.term = aspeed_master_term;
aspeed->master.link_enable = aspeed_master_link_enable;
dev_set_drvdata(&pdev->dev, aspeed);
mutex_init(&aspeed->lock);
aspeed_master_init(aspeed);
rc = fsi_master_register(&aspeed->master);
if (rc)
goto err_release;
/* At this point, fsi_master_register performs the device_initialize(),
* and holds the sole reference on master.dev. This means the device
* will be freed (via ->release) during any subsequent call to
* fsi_master_unregister. We add our own reference to it here, so we
* can perform cleanup (in _remove()) without it being freed before
* we're ready.
*/
get_device(&aspeed->master.dev);
return 0;
err_release:
clk_disable_unprepare(aspeed->clk);
err_free_aspeed:
kfree(aspeed);
return rc;
}
static int fsi_master_aspeed_remove(struct platform_device *pdev)
{
struct fsi_master_aspeed *aspeed = platform_get_drvdata(pdev);
fsi_master_unregister(&aspeed->master);
clk_disable_unprepare(aspeed->clk);
return 0;
}
static const struct of_device_id fsi_master_aspeed_match[] = {
{ .compatible = "aspeed,ast2600-fsi-master" },
{ },
};
MODULE_DEVICE_TABLE(of, fsi_master_aspeed_match);
static struct platform_driver fsi_master_aspeed_driver = {
.driver = {
.name = "fsi-master-aspeed",
.of_match_table = fsi_master_aspeed_match,
},
.probe = fsi_master_aspeed_probe,
.remove = fsi_master_aspeed_remove,
};
module_platform_driver(fsi_master_aspeed_driver);
MODULE_LICENSE("GPL");