linux/drivers/gpu/drm/amd/amdkfd/kfd_process_queue_manager.c

955 lines
24 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/slab.h>
#include <linux/list.h>
#include "kfd_device_queue_manager.h"
#include "kfd_priv.h"
#include "kfd_kernel_queue.h"
#include "amdgpu_amdkfd.h"
static inline struct process_queue_node *get_queue_by_qid(
struct process_queue_manager *pqm, unsigned int qid)
{
struct process_queue_node *pqn;
list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
if ((pqn->q && pqn->q->properties.queue_id == qid) ||
(pqn->kq && pqn->kq->queue->properties.queue_id == qid))
return pqn;
}
return NULL;
}
static int assign_queue_slot_by_qid(struct process_queue_manager *pqm,
unsigned int qid)
{
if (qid >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
return -EINVAL;
if (__test_and_set_bit(qid, pqm->queue_slot_bitmap)) {
pr_err("Cannot create new queue because requested qid(%u) is in use\n", qid);
return -ENOSPC;
}
return 0;
}
static int find_available_queue_slot(struct process_queue_manager *pqm,
unsigned int *qid)
{
unsigned long found;
found = find_first_zero_bit(pqm->queue_slot_bitmap,
drm/amdkfd: Allow user to limit only queues per device This patch replaces the two current amdkfd module parameters with a new one. The current parameters that are being replaced are: - Maximum number of HSA processes - Maximum number of queues per process The new parameter that replaces them is called "Maximum queues per device" This replacement achieves two goals: - Allows the user to have as many HSA processes as it wants (until a maximum of 512 HSA processes in Kaveri). - Removes the limitation the user had on maximum number of queues per HSA process. E.g. the user can now have processes which only have one queue and other processes which have hundreds of queues, while before the user couldn't have more than 128 queues per process (as default). The default value of the new parameter is 4096 (32 * 128, which were the defaults of the old parameters). There is almost no additional GART memory required for the default case. As a reminder, this amount of queues requires a little bit below 4MB of GART memory. v2: In addition, This patch defines a new counter for queues accounting in the DQM structure. This is done because the current counter only counts active queues which allows the user to create more queues than the max_num_of_queues_per_device module parameter allows. However, we need the current counter for the runlist packet build process, so the solution is to have a dedicated counter for this accounting. Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> Reviewed-by: Ben Goz <ben.goz@amd.com>
2015-01-18 13:18:01 +02:00
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
pr_debug("The new slot id %lu\n", found);
drm/amdkfd: Allow user to limit only queues per device This patch replaces the two current amdkfd module parameters with a new one. The current parameters that are being replaced are: - Maximum number of HSA processes - Maximum number of queues per process The new parameter that replaces them is called "Maximum queues per device" This replacement achieves two goals: - Allows the user to have as many HSA processes as it wants (until a maximum of 512 HSA processes in Kaveri). - Removes the limitation the user had on maximum number of queues per HSA process. E.g. the user can now have processes which only have one queue and other processes which have hundreds of queues, while before the user couldn't have more than 128 queues per process (as default). The default value of the new parameter is 4096 (32 * 128, which were the defaults of the old parameters). There is almost no additional GART memory required for the default case. As a reminder, this amount of queues requires a little bit below 4MB of GART memory. v2: In addition, This patch defines a new counter for queues accounting in the DQM structure. This is done because the current counter only counts active queues which allows the user to create more queues than the max_num_of_queues_per_device module parameter allows. However, we need the current counter for the runlist packet build process, so the solution is to have a dedicated counter for this accounting. Signed-off-by: Oded Gabbay <oded.gabbay@amd.com> Reviewed-by: Ben Goz <ben.goz@amd.com>
2015-01-18 13:18:01 +02:00
if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
pr_info("Cannot open more queues for process with pasid 0x%x\n",
pqm->process->pasid);
return -ENOMEM;
}
set_bit(found, pqm->queue_slot_bitmap);
*qid = found;
return 0;
}
void kfd_process_dequeue_from_device(struct kfd_process_device *pdd)
{
struct kfd_dev *dev = pdd->dev;
if (pdd->already_dequeued)
return;
dev->dqm->ops.process_termination(dev->dqm, &pdd->qpd);
pdd->already_dequeued = true;
}
int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
void *gws)
{
struct kfd_dev *dev = NULL;
struct process_queue_node *pqn;
struct kfd_process_device *pdd;
struct kgd_mem *mem = NULL;
int ret;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_err("Queue id does not match any known queue\n");
return -EINVAL;
}
if (pqn->q)
dev = pqn->q->device;
if (WARN_ON(!dev))
return -ENODEV;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -EINVAL;
}
/* Only allow one queue per process can have GWS assigned */
if (gws && pdd->qpd.num_gws)
return -EBUSY;
if (!gws && pdd->qpd.num_gws == 0)
return -EINVAL;
if (gws)
ret = amdgpu_amdkfd_add_gws_to_process(pdd->process->kgd_process_info,
gws, &mem);
else
ret = amdgpu_amdkfd_remove_gws_from_process(pdd->process->kgd_process_info,
pqn->q->gws);
if (unlikely(ret))
return ret;
pqn->q->gws = mem;
pdd->qpd.num_gws = gws ? dev->adev->gds.gws_size : 0;
return pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, NULL);
}
void kfd_process_dequeue_from_all_devices(struct kfd_process *p)
{
int i;
for (i = 0; i < p->n_pdds; i++)
kfd_process_dequeue_from_device(p->pdds[i]);
}
int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p)
{
INIT_LIST_HEAD(&pqm->queues);
pqm->queue_slot_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
GFP_KERNEL);
if (!pqm->queue_slot_bitmap)
return -ENOMEM;
pqm->process = p;
return 0;
}
void pqm_uninit(struct process_queue_manager *pqm)
{
struct process_queue_node *pqn, *next;
list_for_each_entry_safe(pqn, next, &pqm->queues, process_queue_list) {
if (pqn->q && pqn->q->gws)
amdgpu_amdkfd_remove_gws_from_process(pqm->process->kgd_process_info,
pqn->q->gws);
kfd_procfs_del_queue(pqn->q);
uninit_queue(pqn->q);
list_del(&pqn->process_queue_list);
kfree(pqn);
}
bitmap_free(pqm->queue_slot_bitmap);
pqm->queue_slot_bitmap = NULL;
}
static int init_user_queue(struct process_queue_manager *pqm,
struct kfd_dev *dev, struct queue **q,
struct queue_properties *q_properties,
struct file *f, unsigned int qid)
{
int retval;
/* Doorbell initialized in user space*/
q_properties->doorbell_ptr = NULL;
/* let DQM handle it*/
q_properties->vmid = 0;
q_properties->queue_id = qid;
retval = init_queue(q, q_properties);
if (retval != 0)
return retval;
(*q)->device = dev;
(*q)->process = pqm->process;
if (dev->shared_resources.enable_mes) {
retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
AMDGPU_MES_GANG_CTX_SIZE,
&(*q)->gang_ctx_bo,
&(*q)->gang_ctx_gpu_addr,
&(*q)->gang_ctx_cpu_ptr,
false);
if (retval) {
pr_err("failed to allocate gang context bo\n");
goto cleanup;
}
memset((*q)->gang_ctx_cpu_ptr, 0, AMDGPU_MES_GANG_CTX_SIZE);
}
pr_debug("PQM After init queue");
return 0;
cleanup:
if (dev->shared_resources.enable_mes)
uninit_queue(*q);
return retval;
}
int pqm_create_queue(struct process_queue_manager *pqm,
struct kfd_dev *dev,
struct file *f,
struct queue_properties *properties,
unsigned int *qid,
const struct kfd_criu_queue_priv_data *q_data,
const void *restore_mqd,
const void *restore_ctl_stack,
uint32_t *p_doorbell_offset_in_process)
{
int retval;
struct kfd_process_device *pdd;
struct queue *q;
struct process_queue_node *pqn;
struct kernel_queue *kq;
enum kfd_queue_type type = properties->type;
unsigned int max_queues = 127; /* HWS limit */
q = NULL;
kq = NULL;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -1;
}
/*
* for debug process, verify that it is within the static queues limit
* currently limit is set to half of the total avail HQD slots
* If we are just about to create DIQ, the is_debug flag is not set yet
* Hence we also check the type as well
*/
if ((pdd->qpd.is_debug) || (type == KFD_QUEUE_TYPE_DIQ))
max_queues = dev->device_info.max_no_of_hqd/2;
if (pdd->qpd.queue_count >= max_queues)
return -ENOSPC;
if (q_data) {
retval = assign_queue_slot_by_qid(pqm, q_data->q_id);
*qid = q_data->q_id;
} else
retval = find_available_queue_slot(pqm, qid);
if (retval != 0)
return retval;
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dev->dqm->ops.register_process(dev->dqm, &pdd->qpd);
pqn = kzalloc(sizeof(*pqn), GFP_KERNEL);
if (!pqn) {
retval = -ENOMEM;
goto err_allocate_pqn;
}
switch (type) {
case KFD_QUEUE_TYPE_SDMA:
case KFD_QUEUE_TYPE_SDMA_XGMI:
/* SDMA queues are always allocated statically no matter
* which scheduler mode is used. We also do not need to
* check whether a SDMA queue can be allocated here, because
* allocate_sdma_queue() in create_queue() has the
* corresponding check logic.
*/
retval = init_user_queue(pqm, dev, &q, properties, f, *qid);
if (retval != 0)
goto err_create_queue;
pqn->q = q;
pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
restore_mqd, restore_ctl_stack);
print_queue(q);
break;
case KFD_QUEUE_TYPE_COMPUTE:
/* check if there is over subscription */
if ((dev->dqm->sched_policy ==
KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION) &&
((dev->dqm->processes_count >= dev->vm_info.vmid_num_kfd) ||
(dev->dqm->active_queue_count >= get_cp_queues_num(dev->dqm)))) {
pr_debug("Over-subscription is not allowed when amdkfd.sched_policy == 1\n");
retval = -EPERM;
goto err_create_queue;
}
retval = init_user_queue(pqm, dev, &q, properties, f, *qid);
if (retval != 0)
goto err_create_queue;
pqn->q = q;
pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
restore_mqd, restore_ctl_stack);
print_queue(q);
break;
case KFD_QUEUE_TYPE_DIQ:
kq = kernel_queue_init(dev, KFD_QUEUE_TYPE_DIQ);
if (!kq) {
retval = -ENOMEM;
goto err_create_queue;
}
kq->queue->properties.queue_id = *qid;
pqn->kq = kq;
pqn->q = NULL;
retval = dev->dqm->ops.create_kernel_queue(dev->dqm,
kq, &pdd->qpd);
break;
default:
WARN(1, "Invalid queue type %d", type);
retval = -EINVAL;
}
if (retval != 0) {
pr_err("Pasid 0x%x DQM create queue type %d failed. ret %d\n",
pqm->process->pasid, type, retval);
goto err_create_queue;
}
if (q && p_doorbell_offset_in_process)
/* Return the doorbell offset within the doorbell page
* to the caller so it can be passed up to user mode
* (in bytes).
* There are always 1024 doorbells per process, so in case
* of 8-byte doorbells, there are two doorbell pages per
* process.
*/
*p_doorbell_offset_in_process =
(q->properties.doorbell_off * sizeof(uint32_t)) &
(kfd_doorbell_process_slice(dev) - 1);
pr_debug("PQM After DQM create queue\n");
list_add(&pqn->process_queue_list, &pqm->queues);
if (q) {
pr_debug("PQM done creating queue\n");
kfd_procfs_add_queue(q);
print_queue_properties(&q->properties);
}
return retval;
err_create_queue:
uninit_queue(q);
if (kq)
kernel_queue_uninit(kq, false);
kfree(pqn);
err_allocate_pqn:
/* check if queues list is empty unregister process from device */
clear_bit(*qid, pqm->queue_slot_bitmap);
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dev->dqm->ops.unregister_process(dev->dqm, &pdd->qpd);
return retval;
}
int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid)
{
struct process_queue_node *pqn;
struct kfd_process_device *pdd;
struct device_queue_manager *dqm;
struct kfd_dev *dev;
int retval;
dqm = NULL;
retval = 0;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_err("Queue id does not match any known queue\n");
return -EINVAL;
}
dev = NULL;
if (pqn->kq)
dev = pqn->kq->dev;
if (pqn->q)
dev = pqn->q->device;
if (WARN_ON(!dev))
return -ENODEV;
pdd = kfd_get_process_device_data(dev, pqm->process);
if (!pdd) {
pr_err("Process device data doesn't exist\n");
return -1;
}
if (pqn->kq) {
/* destroy kernel queue (DIQ) */
dqm = pqn->kq->dev->dqm;
dqm->ops.destroy_kernel_queue(dqm, pqn->kq, &pdd->qpd);
kernel_queue_uninit(pqn->kq, false);
}
if (pqn->q) {
dqm = pqn->q->device->dqm;
retval = dqm->ops.destroy_queue(dqm, &pdd->qpd, pqn->q);
if (retval) {
pr_err("Pasid 0x%x destroy queue %d failed, ret %d\n",
pqm->process->pasid,
pqn->q->properties.queue_id, retval);
if (retval != -ETIME)
goto err_destroy_queue;
}
if (pqn->q->gws) {
amdgpu_amdkfd_remove_gws_from_process(pqm->process->kgd_process_info,
pqn->q->gws);
pdd->qpd.num_gws = 0;
}
if (dev->shared_resources.enable_mes)
amdgpu_amdkfd_free_gtt_mem(dev->adev,
pqn->q->gang_ctx_bo);
kfd_procfs_del_queue(pqn->q);
uninit_queue(pqn->q);
}
list_del(&pqn->process_queue_list);
kfree(pqn);
clear_bit(qid, pqm->queue_slot_bitmap);
if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list))
dqm->ops.unregister_process(dqm, &pdd->qpd);
err_destroy_queue:
return retval;
}
int pqm_update_queue_properties(struct process_queue_manager *pqm,
unsigned int qid, struct queue_properties *p)
{
int retval;
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("No queue %d exists for update operation\n", qid);
return -EFAULT;
}
pqn->q->properties.queue_address = p->queue_address;
pqn->q->properties.queue_size = p->queue_size;
pqn->q->properties.queue_percent = p->queue_percent;
pqn->q->properties.priority = p->priority;
retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, NULL);
if (retval != 0)
return retval;
return 0;
}
int pqm_update_mqd(struct process_queue_manager *pqm,
unsigned int qid, struct mqd_update_info *minfo)
{
int retval;
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("No queue %d exists for update operation\n", qid);
return -EFAULT;
}
retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
pqn->q, minfo);
if (retval != 0)
return retval;
return 0;
}
struct kernel_queue *pqm_get_kernel_queue(
struct process_queue_manager *pqm,
unsigned int qid)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (pqn && pqn->kq)
return pqn->kq;
return NULL;
}
struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
unsigned int qid)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
return pqn ? pqn->q : NULL;
}
int pqm_get_wave_state(struct process_queue_manager *pqm,
unsigned int qid,
void __user *ctl_stack,
u32 *ctl_stack_used_size,
u32 *save_area_used_size)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n",
qid);
return -EFAULT;
}
return pqn->q->device->dqm->ops.get_wave_state(pqn->q->device->dqm,
pqn->q,
ctl_stack,
ctl_stack_used_size,
save_area_used_size);
}
static int get_queue_data_sizes(struct kfd_process_device *pdd,
struct queue *q,
uint32_t *mqd_size,
uint32_t *ctl_stack_size)
{
int ret;
ret = pqm_get_queue_checkpoint_info(&pdd->process->pqm,
q->properties.queue_id,
mqd_size,
ctl_stack_size);
if (ret)
pr_err("Failed to get queue dump info (%d)\n", ret);
return ret;
}
int kfd_process_get_queue_info(struct kfd_process *p,
uint32_t *num_queues,
uint64_t *priv_data_sizes)
{
uint32_t extra_data_sizes = 0;
struct queue *q;
int i;
int ret;
*num_queues = 0;
/* Run over all PDDs of the process */
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
list_for_each_entry(q, &pdd->qpd.queues_list, list) {
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA ||
q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
uint32_t mqd_size, ctl_stack_size;
*num_queues = *num_queues + 1;
ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
if (ret)
return ret;
extra_data_sizes += mqd_size + ctl_stack_size;
} else {
pr_err("Unsupported queue type (%d)\n", q->properties.type);
return -EOPNOTSUPP;
}
}
}
*priv_data_sizes = extra_data_sizes +
(*num_queues * sizeof(struct kfd_criu_queue_priv_data));
return 0;
}
static int pqm_checkpoint_mqd(struct process_queue_manager *pqm,
unsigned int qid,
void *mqd,
void *ctl_stack)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n", qid);
return -EFAULT;
}
if (!pqn->q->device->dqm->ops.checkpoint_mqd) {
pr_err("amdkfd: queue dumping not supported on this device\n");
return -EOPNOTSUPP;
}
return pqn->q->device->dqm->ops.checkpoint_mqd(pqn->q->device->dqm,
pqn->q, mqd, ctl_stack);
}
static int criu_checkpoint_queue(struct kfd_process_device *pdd,
struct queue *q,
struct kfd_criu_queue_priv_data *q_data)
{
uint8_t *mqd, *ctl_stack;
int ret;
mqd = (void *)(q_data + 1);
ctl_stack = mqd + q_data->mqd_size;
q_data->gpu_id = pdd->user_gpu_id;
q_data->type = q->properties.type;
q_data->format = q->properties.format;
q_data->q_id = q->properties.queue_id;
q_data->q_address = q->properties.queue_address;
q_data->q_size = q->properties.queue_size;
q_data->priority = q->properties.priority;
q_data->q_percent = q->properties.queue_percent;
q_data->read_ptr_addr = (uint64_t)q->properties.read_ptr;
q_data->write_ptr_addr = (uint64_t)q->properties.write_ptr;
q_data->doorbell_id = q->doorbell_id;
q_data->sdma_id = q->sdma_id;
q_data->eop_ring_buffer_address =
q->properties.eop_ring_buffer_address;
q_data->eop_ring_buffer_size = q->properties.eop_ring_buffer_size;
q_data->ctx_save_restore_area_address =
q->properties.ctx_save_restore_area_address;
q_data->ctx_save_restore_area_size =
q->properties.ctx_save_restore_area_size;
q_data->gws = !!q->gws;
ret = pqm_checkpoint_mqd(&pdd->process->pqm, q->properties.queue_id, mqd, ctl_stack);
if (ret) {
pr_err("Failed checkpoint queue_mqd (%d)\n", ret);
return ret;
}
pr_debug("Dumping Queue: gpu_id:%x queue_id:%u\n", q_data->gpu_id, q_data->q_id);
return ret;
}
static int criu_checkpoint_queues_device(struct kfd_process_device *pdd,
uint8_t __user *user_priv,
unsigned int *q_index,
uint64_t *queues_priv_data_offset)
{
unsigned int q_private_data_size = 0;
uint8_t *q_private_data = NULL; /* Local buffer to store individual queue private data */
struct queue *q;
int ret = 0;
list_for_each_entry(q, &pdd->qpd.queues_list, list) {
struct kfd_criu_queue_priv_data *q_data;
uint64_t q_data_size;
uint32_t mqd_size;
uint32_t ctl_stack_size;
if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE &&
q->properties.type != KFD_QUEUE_TYPE_SDMA &&
q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI) {
pr_err("Unsupported queue type (%d)\n", q->properties.type);
ret = -EOPNOTSUPP;
break;
}
ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
if (ret)
break;
q_data_size = sizeof(*q_data) + mqd_size + ctl_stack_size;
/* Increase local buffer space if needed */
if (q_private_data_size < q_data_size) {
kfree(q_private_data);
q_private_data = kzalloc(q_data_size, GFP_KERNEL);
if (!q_private_data) {
ret = -ENOMEM;
break;
}
q_private_data_size = q_data_size;
}
q_data = (struct kfd_criu_queue_priv_data *)q_private_data;
/* data stored in this order: priv_data, mqd, ctl_stack */
q_data->mqd_size = mqd_size;
q_data->ctl_stack_size = ctl_stack_size;
ret = criu_checkpoint_queue(pdd, q, q_data);
if (ret)
break;
q_data->object_type = KFD_CRIU_OBJECT_TYPE_QUEUE;
ret = copy_to_user(user_priv + *queues_priv_data_offset,
q_data, q_data_size);
if (ret) {
ret = -EFAULT;
break;
}
*queues_priv_data_offset += q_data_size;
*q_index = *q_index + 1;
}
kfree(q_private_data);
return ret;
}
int kfd_criu_checkpoint_queues(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_data_offset)
{
int ret = 0, pdd_index, q_index = 0;
for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
struct kfd_process_device *pdd = p->pdds[pdd_index];
/*
* criu_checkpoint_queues_device will copy data to user and update q_index and
* queues_priv_data_offset
*/
ret = criu_checkpoint_queues_device(pdd, user_priv_data, &q_index,
priv_data_offset);
if (ret)
break;
}
return ret;
}
static void set_queue_properties_from_criu(struct queue_properties *qp,
struct kfd_criu_queue_priv_data *q_data)
{
qp->is_interop = false;
qp->queue_percent = q_data->q_percent;
qp->priority = q_data->priority;
qp->queue_address = q_data->q_address;
qp->queue_size = q_data->q_size;
qp->read_ptr = (uint32_t *) q_data->read_ptr_addr;
qp->write_ptr = (uint32_t *) q_data->write_ptr_addr;
qp->eop_ring_buffer_address = q_data->eop_ring_buffer_address;
qp->eop_ring_buffer_size = q_data->eop_ring_buffer_size;
qp->ctx_save_restore_area_address = q_data->ctx_save_restore_area_address;
qp->ctx_save_restore_area_size = q_data->ctx_save_restore_area_size;
qp->ctl_stack_size = q_data->ctl_stack_size;
qp->type = q_data->type;
qp->format = q_data->format;
}
int kfd_criu_restore_queue(struct kfd_process *p,
uint8_t __user *user_priv_ptr,
uint64_t *priv_data_offset,
uint64_t max_priv_data_size)
{
uint8_t *mqd, *ctl_stack, *q_extra_data = NULL;
struct kfd_criu_queue_priv_data *q_data;
struct kfd_process_device *pdd;
uint64_t q_extra_data_size;
struct queue_properties qp;
unsigned int queue_id;
int ret = 0;
if (*priv_data_offset + sizeof(*q_data) > max_priv_data_size)
return -EINVAL;
q_data = kmalloc(sizeof(*q_data), GFP_KERNEL);
if (!q_data)
return -ENOMEM;
ret = copy_from_user(q_data, user_priv_ptr + *priv_data_offset, sizeof(*q_data));
if (ret) {
ret = -EFAULT;
goto exit;
}
*priv_data_offset += sizeof(*q_data);
q_extra_data_size = (uint64_t)q_data->ctl_stack_size + q_data->mqd_size;
if (*priv_data_offset + q_extra_data_size > max_priv_data_size) {
ret = -EINVAL;
goto exit;
}
q_extra_data = kmalloc(q_extra_data_size, GFP_KERNEL);
if (!q_extra_data) {
ret = -ENOMEM;
goto exit;
}
ret = copy_from_user(q_extra_data, user_priv_ptr + *priv_data_offset, q_extra_data_size);
if (ret) {
ret = -EFAULT;
goto exit;
}
*priv_data_offset += q_extra_data_size;
pdd = kfd_process_device_data_by_id(p, q_data->gpu_id);
if (!pdd) {
pr_err("Failed to get pdd\n");
ret = -EINVAL;
goto exit;
}
/* data stored in this order: mqd, ctl_stack */
mqd = q_extra_data;
ctl_stack = mqd + q_data->mqd_size;
memset(&qp, 0, sizeof(qp));
set_queue_properties_from_criu(&qp, q_data);
print_queue_properties(&qp);
ret = pqm_create_queue(&p->pqm, pdd->dev, NULL, &qp, &queue_id, q_data, mqd, ctl_stack,
NULL);
if (ret) {
pr_err("Failed to create new queue err:%d\n", ret);
goto exit;
}
if (q_data->gws)
ret = pqm_set_gws(&p->pqm, q_data->q_id, pdd->dev->gws);
exit:
if (ret)
pr_err("Failed to restore queue (%d)\n", ret);
else
pr_debug("Queue id %d was restored successfully\n", queue_id);
kfree(q_data);
return ret;
}
int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
unsigned int qid,
uint32_t *mqd_size,
uint32_t *ctl_stack_size)
{
struct process_queue_node *pqn;
pqn = get_queue_by_qid(pqm, qid);
if (!pqn) {
pr_debug("amdkfd: No queue %d exists for operation\n", qid);
return -EFAULT;
}
if (!pqn->q->device->dqm->ops.get_queue_checkpoint_info) {
pr_err("amdkfd: queue dumping not supported on this device\n");
return -EOPNOTSUPP;
}
pqn->q->device->dqm->ops.get_queue_checkpoint_info(pqn->q->device->dqm,
pqn->q, mqd_size,
ctl_stack_size);
return 0;
}
#if defined(CONFIG_DEBUG_FS)
int pqm_debugfs_mqds(struct seq_file *m, void *data)
{
struct process_queue_manager *pqm = data;
struct process_queue_node *pqn;
struct queue *q;
enum KFD_MQD_TYPE mqd_type;
struct mqd_manager *mqd_mgr;
int r = 0;
list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
if (pqn->q) {
q = pqn->q;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_SDMA:
case KFD_QUEUE_TYPE_SDMA_XGMI:
seq_printf(m, " SDMA queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_SDMA;
break;
case KFD_QUEUE_TYPE_COMPUTE:
seq_printf(m, " Compute queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_CP;
break;
default:
seq_printf(m,
" Bad user queue type %d on device %x\n",
q->properties.type, q->device->id);
continue;
}
mqd_mgr = q->device->dqm->mqd_mgrs[mqd_type];
} else if (pqn->kq) {
q = pqn->kq->queue;
mqd_mgr = pqn->kq->mqd_mgr;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_DIQ:
seq_printf(m, " DIQ on device %x\n",
pqn->kq->dev->id);
break;
default:
seq_printf(m,
" Bad kernel queue type %d on device %x\n",
q->properties.type,
pqn->kq->dev->id);
continue;
}
} else {
seq_printf(m,
" Weird: Queue node with neither kernel nor user queue\n");
continue;
}
r = mqd_mgr->debugfs_show_mqd(m, q->mqd);
if (r != 0)
break;
}
return r;
}
#endif