2012-05-21 06:29:48 +04:00
Kernel driver NCT6775
=====================
2019-04-17 12:46:27 +03:00
.. note ::
This driver supersedes the NCT6775F and NCT6776F support in the W83627EHF
driver.
2012-05-21 06:29:48 +04:00
Supported chips:
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
* Nuvoton NCT6102D/NCT6104D/NCT6106D
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Prefix: 'nct6106'
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Datasheet: Available from the Nuvoton web site
2019-04-17 12:46:27 +03:00
2013-04-02 19:53:19 +04:00
* Nuvoton NCT5572D/NCT6771F/NCT6772F/NCT6775F/W83677HG-I
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Prefix: 'nct6775'
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
* Nuvoton NCT5573D/NCT5577D/NCT6776D/NCT6776F
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Prefix: 'nct6776'
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2013-04-02 19:53:19 +04:00
* Nuvoton NCT5532D/NCT6779D
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Prefix: 'nct6779'
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
* Nuvoton NCT6791D
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Prefix: 'nct6791'
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2014-11-17 17:43:55 +03:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2014-11-16 20:50:04 +03:00
* Nuvoton NCT6792D
2019-04-17 12:46:27 +03:00
2014-11-16 20:50:04 +03:00
Prefix: 'nct6792'
2019-04-17 12:46:27 +03:00
2014-11-16 20:50:04 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2014-11-16 20:50:04 +03:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2015-08-31 05:45:19 +03:00
* Nuvoton NCT6793D
2019-04-17 12:46:27 +03:00
2015-08-31 05:45:19 +03:00
Prefix: 'nct6793'
2019-04-17 12:46:27 +03:00
2015-08-31 05:45:19 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2015-08-31 05:45:19 +03:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
* Nuvoton NCT6795D
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Prefix: 'nct6795'
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Datasheet: Available from Nuvoton upon request
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
* Nuvoton NCT6796D
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Prefix: 'nct6796'
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Addresses scanned: ISA address retrieved from Super I/O registers
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
Datasheet: Available from Nuvoton upon request
2012-05-21 06:29:48 +04:00
2019-04-17 12:46:27 +03:00
2012-05-21 06:29:48 +04:00
Authors:
2019-04-17 12:46:27 +03:00
Guenter Roeck <linux@roeck-us.net>
2012-05-21 06:29:48 +04:00
Description
-----------
This driver implements support for the Nuvoton NCT6775F, NCT6776F, and NCT6779D
2013-04-02 19:53:19 +04:00
and compatible super I/O chips.
2012-05-21 06:29:48 +04:00
The chips support up to 25 temperature monitoring sources. Up to 6 of those are
direct temperature sensor inputs, the others are special sources such as PECI,
PCH, and SMBUS. Depending on the chip type, 2 to 6 of the temperature sources
can be monitored and compared against minimum, maximum, and critical
temperatures. The driver reports up to 10 of the temperatures to the user.
There are 4 to 5 fan rotation speed sensors, 8 to 15 analog voltage sensors,
one VID, alarms with beep warnings (control unimplemented), and some automatic
fan regulation strategies (plus manual fan control mode).
The temperature sensor sources on all chips are configurable. The configured
source for each of the temperature sensors is provided in tempX_label.
Temperatures are measured in degrees Celsius and measurement resolution is
either 1 degC or 0.5 degC, depending on the temperature source and
configuration. An alarm is triggered when the temperature gets higher than
the high limit; it stays on until the temperature falls below the hysteresis
value. Alarms are only supported for temp1 to temp6, depending on the chip type.
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
triggered if the rotation speed has dropped below a programmable limit. On
NCT6775F, fan readings can be divided by a programmable divider (1, 2, 4, 8,
16, 32, 64 or 128) to give the readings more range or accuracy; the other chips
do not have a fan speed divider. The driver sets the most suitable fan divisor
2012-12-04 19:56:24 +04:00
itself; specifically, it increases the divider value each time a fan speed
reading returns an invalid value, and it reduces it if the fan speed reading
is lower than optimal. Some fans might not be present because they share pins
2012-05-21 06:29:48 +04:00
with other functions.
Voltage sensors (also known as IN sensors) report their values in millivolts.
An alarm is triggered if the voltage has crossed a programmable minimum
or maximum limit.
The driver supports automatic fan control mode known as Thermal Cruise.
In this mode, the chip attempts to keep the measured temperature in a
predefined temperature range. If the temperature goes out of range, fan
is driven slower/faster to reach the predefined range again.
The mode works for fan1-fan5.
2012-12-04 20:30:54 +04:00
sysfs attributes
----------------
2019-04-17 12:46:27 +03:00
pwm[1-7]
- this file stores PWM duty cycle or DC value (fan speed) in range:
2012-12-04 20:30:54 +04:00
0 (lowest speed) to 255 (full)
2019-04-17 12:46:27 +03:00
pwm[1-7]_ enable
- this file controls mode of fan/temperature control:
2012-12-04 20:30:54 +04:00
* 0 Fan control disabled (fans set to maximum speed)
* 1 Manual mode, write to pwm[0-5] any value 0-255
* 2 "Thermal Cruise" mode
* 3 "Fan Speed Cruise" mode
* 4 "Smart Fan III" mode (NCT6775F only)
* 5 "Smart Fan IV" mode
2019-04-17 12:46:27 +03:00
pwm[1-7]_ mode
- controls if output is PWM or DC level
* 0 DC output
* 1 PWM output
2012-12-04 20:30:54 +04:00
2012-12-04 21:04:52 +04:00
Common fan control attributes
-----------------------------
2019-04-17 12:46:27 +03:00
pwm[1-7]_ temp_sel
Temperature source. Value is temperature sensor index.
2012-12-04 21:04:52 +04:00
For example, select '1' for temp1_input.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ weight_temp_sel
2012-12-04 21:08:29 +04:00
Secondary temperature source. Value is temperature
sensor index. For example, select '1' for temp1_input.
Set to 0 to disable secondary temperature control.
If secondary temperature functionality is enabled, it is controlled with the
following attributes.
2018-02-22 00:09:39 +03:00
pwm[1-7]_ weight_duty_step
2012-12-04 21:08:29 +04:00
Duty step size.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ weight_temp_step
2012-12-04 21:08:29 +04:00
Temperature step size. With each step over
temp_step_base, the value of weight_duty_step is added
to the current pwm value.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ weight_temp_step_base
2012-12-04 21:08:29 +04:00
Temperature at which secondary temperature control kicks
in.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ weight_temp_step_tol
2012-12-04 21:08:29 +04:00
Temperature step tolerance.
2012-12-04 21:04:52 +04:00
Thermal Cruise mode (2)
-----------------------
If the temperature is in the range defined by:
2019-04-17 12:46:27 +03:00
pwm[1-7]_ target_temp
Target temperature, unit millidegree Celsius
2012-12-04 21:04:52 +04:00
(range 0 - 127000)
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ temp_tolerance
2012-12-04 21:04:52 +04:00
Target temperature tolerance, unit millidegree Celsius
2019-04-17 12:46:27 +03:00
There are no changes to fan speed. Once the temperature leaves the interval, fan
2012-12-04 21:04:52 +04:00
speed increases (if temperature is higher that desired) or decreases (if
temperature is lower than desired), using the following limits and time
intervals.
2019-04-17 12:46:27 +03:00
pwm[1-7]_ start
fan pwm start value (range 1 - 255), to start fan
2012-12-04 21:04:52 +04:00
when the temperature is above defined range.
2019-04-17 12:46:27 +03:00
pwm[1-7]_ floor
lowest fan pwm (range 0 - 255) if temperature is below
2012-12-04 21:04:52 +04:00
the defined range. If set to 0, the fan is expected to
stop if the temperature is below the defined range.
2019-04-17 12:46:27 +03:00
pwm[1-7]_ step_up_time
milliseconds before fan speed is increased
pwm[1-7]_ step_down_time
milliseconds before fan speed is decreased
pwm[1-7]_ stop_time
how many milliseconds must elapse to switch
2012-12-04 21:04:52 +04:00
corresponding fan off (when the temperature was below
defined range).
Speed Cruise mode (3)
---------------------
This modes tries to keep the fan speed constant.
2019-04-17 12:46:27 +03:00
fan[1-7]_ target
Target fan speed
2018-02-22 00:09:39 +03:00
fan[1-7]_ tolerance
2012-12-04 21:04:52 +04:00
Target speed tolerance
Untested; use at your own risk.
Smart Fan IV mode (5)
---------------------
This mode offers multiple slopes to control the fan speed. The slopes can be
controlled by setting the pwm and temperature attributes. When the temperature
rises, the chip will calculate the DC/PWM output based on the current slope.
There are up to seven data points depending on the chip type. Subsequent data
points should be set to higher temperatures and higher pwm values to achieve
higher fan speeds with increasing temperature. The last data point reflects
critical temperature mode, in which the fans should run at full speed.
2018-02-22 00:09:39 +03:00
pwm[1-7]_ auto_point[1-7]_ pwm
2012-12-04 21:04:52 +04:00
pwm value to be set if temperature reaches matching
temperature range.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ auto_point[1-7]_ temp
2012-12-04 21:04:52 +04:00
Temperature over which the matching pwm is enabled.
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ temp_tolerance
2012-12-04 21:04:52 +04:00
Temperature tolerance, unit millidegree Celsius
2019-04-17 12:46:27 +03:00
2018-02-22 00:09:39 +03:00
pwm[1-7]_ crit_temp_tolerance
2012-12-04 21:04:52 +04:00
Temperature tolerance for critical temperature,
unit millidegree Celsius
2019-04-17 12:46:27 +03:00
pwm[1-7]_ step_up_time
milliseconds before fan speed is increased
pwm[1-7]_ step_down_time
milliseconds before fan speed is decreased
2012-12-04 21:04:52 +04:00
2012-05-21 06:29:48 +04:00
Usage Notes
-----------
On various ASUS boards with NCT6776F, it appears that CPUTIN is not really
connected to anything and floats, or that it is connected to some non-standard
temperature measurement device. As a result, the temperature reported on CPUTIN
will not reflect a usable value. It often reports unreasonably high
temperatures, and in some cases the reported temperature declines if the actual
temperature increases (similar to the raw PECI temperature value - see PECI
specification for details). CPUTIN should therefore be be ignored on ASUS
boards. The CPU temperature on ASUS boards is reported from PECI 0.