linux/drivers/video/fbdev/acornfb.c

1144 lines
28 KiB
C
Raw Normal View History

/*
* linux/drivers/video/acornfb.c
*
* Copyright (C) 1998-2001 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Frame buffer code for Acorn platforms
*
* NOTE: Most of the modes with X!=640 will disappear shortly.
* NOTE: Startup setting of HS & VS polarity not supported.
* (do we need to support it if we're coming up in 640x480?)
*
* FIXME: (things broken by the "new improved" FBCON API)
* - Blanking 8bpp displays with VIDC
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ctype.h>
2008-07-23 21:28:13 -07:00
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/fb.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/gfp.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <asm/pgtable.h>
#include "acornfb.h"
/*
* Default resolution.
* NOTE that it has to be supported in the table towards
* the end of this file.
*/
#define DEFAULT_XRES 640
#define DEFAULT_YRES 480
#define DEFAULT_BPP 4
/*
* define this to debug the video mode selection
*/
#undef DEBUG_MODE_SELECTION
/*
* Translation from RISC OS monitor types to actual
* HSYNC and VSYNC frequency ranges. These are
* probably not right, but they're the best info I
* have. Allow 1% either way on the nominal for TVs.
*/
#define NR_MONTYPES 6
static struct fb_monspecs monspecs[NR_MONTYPES] = {
{ /* TV */
.hfmin = 15469,
.hfmax = 15781,
.vfmin = 49,
.vfmax = 51,
}, { /* Multi Freq */
.hfmin = 0,
.hfmax = 99999,
.vfmin = 0,
.vfmax = 199,
}, { /* Hi-res mono */
.hfmin = 58608,
.hfmax = 58608,
.vfmin = 64,
.vfmax = 64,
}, { /* VGA */
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 60,
.vfmax = 60,
}, { /* SVGA */
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 56,
.vfmax = 75,
}, {
.hfmin = 30000,
.hfmax = 70000,
.vfmin = 60,
.vfmax = 60,
}
};
static struct fb_info fb_info;
static struct acornfb_par current_par;
static struct vidc_timing current_vidc;
extern unsigned int vram_size; /* set by setup.c */
#ifdef HAS_VIDC20
#include <mach/acornfb.h>
#define MAX_SIZE 2*1024*1024
/* VIDC20 has a different set of rules from the VIDC:
* hcr : must be multiple of 4
* hswr : must be even
* hdsr : must be even
* hder : must be even
* vcr : >= 2, (interlace, must be odd)
* vswr : >= 1
* vdsr : >= 1
* vder : >= vdsr
*/
static void acornfb_set_timing(struct fb_info *info)
{
struct fb_var_screeninfo *var = &info->var;
struct vidc_timing vidc;
u_int vcr, fsize;
u_int ext_ctl, dat_ctl;
u_int words_per_line;
memset(&vidc, 0, sizeof(vidc));
vidc.h_sync_width = var->hsync_len - 8;
vidc.h_border_start = vidc.h_sync_width + var->left_margin + 8 - 12;
vidc.h_display_start = vidc.h_border_start + 12 - 18;
vidc.h_display_end = vidc.h_display_start + var->xres;
vidc.h_border_end = vidc.h_display_end + 18 - 12;
vidc.h_cycle = vidc.h_border_end + var->right_margin + 12 - 8;
vidc.h_interlace = vidc.h_cycle / 2;
vidc.v_sync_width = var->vsync_len - 1;
vidc.v_border_start = vidc.v_sync_width + var->upper_margin;
vidc.v_display_start = vidc.v_border_start;
vidc.v_display_end = vidc.v_display_start + var->yres;
vidc.v_border_end = vidc.v_display_end;
vidc.control = acornfb_default_control();
vcr = var->vsync_len + var->upper_margin + var->yres +
var->lower_margin;
if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED) {
vidc.v_cycle = (vcr - 3) / 2;
vidc.control |= VIDC20_CTRL_INT;
} else
vidc.v_cycle = vcr - 2;
switch (var->bits_per_pixel) {
case 1: vidc.control |= VIDC20_CTRL_1BPP; break;
case 2: vidc.control |= VIDC20_CTRL_2BPP; break;
case 4: vidc.control |= VIDC20_CTRL_4BPP; break;
default:
case 8: vidc.control |= VIDC20_CTRL_8BPP; break;
case 16: vidc.control |= VIDC20_CTRL_16BPP; break;
case 32: vidc.control |= VIDC20_CTRL_32BPP; break;
}
acornfb_vidc20_find_rates(&vidc, var);
fsize = var->vsync_len + var->upper_margin + var->lower_margin - 1;
if (memcmp(&current_vidc, &vidc, sizeof(vidc))) {
current_vidc = vidc;
vidc_writel(VIDC20_CTRL| vidc.control);
vidc_writel(0xd0000000 | vidc.pll_ctl);
vidc_writel(0x80000000 | vidc.h_cycle);
vidc_writel(0x81000000 | vidc.h_sync_width);
vidc_writel(0x82000000 | vidc.h_border_start);
vidc_writel(0x83000000 | vidc.h_display_start);
vidc_writel(0x84000000 | vidc.h_display_end);
vidc_writel(0x85000000 | vidc.h_border_end);
vidc_writel(0x86000000);
vidc_writel(0x87000000 | vidc.h_interlace);
vidc_writel(0x90000000 | vidc.v_cycle);
vidc_writel(0x91000000 | vidc.v_sync_width);
vidc_writel(0x92000000 | vidc.v_border_start);
vidc_writel(0x93000000 | vidc.v_display_start);
vidc_writel(0x94000000 | vidc.v_display_end);
vidc_writel(0x95000000 | vidc.v_border_end);
vidc_writel(0x96000000);
vidc_writel(0x97000000);
}
iomd_writel(fsize, IOMD_FSIZE);
ext_ctl = acornfb_default_econtrol();
if (var->sync & FB_SYNC_COMP_HIGH_ACT) /* should be FB_SYNC_COMP */
ext_ctl |= VIDC20_ECTL_HS_NCSYNC | VIDC20_ECTL_VS_NCSYNC;
else {
if (var->sync & FB_SYNC_HOR_HIGH_ACT)
ext_ctl |= VIDC20_ECTL_HS_HSYNC;
else
ext_ctl |= VIDC20_ECTL_HS_NHSYNC;
if (var->sync & FB_SYNC_VERT_HIGH_ACT)
ext_ctl |= VIDC20_ECTL_VS_VSYNC;
else
ext_ctl |= VIDC20_ECTL_VS_NVSYNC;
}
vidc_writel(VIDC20_ECTL | ext_ctl);
words_per_line = var->xres * var->bits_per_pixel / 32;
if (current_par.using_vram && info->fix.smem_len == 2048*1024)
words_per_line /= 2;
/* RiscPC doesn't use the VIDC's VRAM control. */
dat_ctl = VIDC20_DCTL_VRAM_DIS | VIDC20_DCTL_SNA | words_per_line;
/* The data bus width is dependent on both the type
* and amount of video memory.
* DRAM 32bit low
* 1MB VRAM 32bit
* 2MB VRAM 64bit
*/
if (current_par.using_vram && current_par.vram_half_sam == 2048)
dat_ctl |= VIDC20_DCTL_BUS_D63_0;
else
dat_ctl |= VIDC20_DCTL_BUS_D31_0;
vidc_writel(VIDC20_DCTL | dat_ctl);
#ifdef DEBUG_MODE_SELECTION
printk(KERN_DEBUG "VIDC registers for %dx%dx%d:\n", var->xres,
var->yres, var->bits_per_pixel);
printk(KERN_DEBUG " H-cycle : %d\n", vidc.h_cycle);
printk(KERN_DEBUG " H-sync-width : %d\n", vidc.h_sync_width);
printk(KERN_DEBUG " H-border-start : %d\n", vidc.h_border_start);
printk(KERN_DEBUG " H-display-start : %d\n", vidc.h_display_start);
printk(KERN_DEBUG " H-display-end : %d\n", vidc.h_display_end);
printk(KERN_DEBUG " H-border-end : %d\n", vidc.h_border_end);
printk(KERN_DEBUG " H-interlace : %d\n", vidc.h_interlace);
printk(KERN_DEBUG " V-cycle : %d\n", vidc.v_cycle);
printk(KERN_DEBUG " V-sync-width : %d\n", vidc.v_sync_width);
printk(KERN_DEBUG " V-border-start : %d\n", vidc.v_border_start);
printk(KERN_DEBUG " V-display-start : %d\n", vidc.v_display_start);
printk(KERN_DEBUG " V-display-end : %d\n", vidc.v_display_end);
printk(KERN_DEBUG " V-border-end : %d\n", vidc.v_border_end);
printk(KERN_DEBUG " Ext Ctrl (C) : 0x%08X\n", ext_ctl);
printk(KERN_DEBUG " PLL Ctrl (D) : 0x%08X\n", vidc.pll_ctl);
printk(KERN_DEBUG " Ctrl (E) : 0x%08X\n", vidc.control);
printk(KERN_DEBUG " Data Ctrl (F) : 0x%08X\n", dat_ctl);
printk(KERN_DEBUG " Fsize : 0x%08X\n", fsize);
#endif
}
/*
* We have to take note of the VIDC20's 16-bit palette here.
* The VIDC20 looks up a 16 bit pixel as follows:
*
* bits 111111
* 5432109876543210
* red ++++++++ (8 bits, 7 to 0)
* green ++++++++ (8 bits, 11 to 4)
* blue ++++++++ (8 bits, 15 to 8)
*
* We use a pixel which looks like:
*
* bits 111111
* 5432109876543210
* red +++++ (5 bits, 4 to 0)
* green +++++ (5 bits, 9 to 5)
* blue +++++ (5 bits, 14 to 10)
*/
static int
acornfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
union palette pal;
if (regno >= current_par.palette_size)
return 1;
if (regno < 16 && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
u32 pseudo_val;
pseudo_val = regno << info->var.red.offset;
pseudo_val |= regno << info->var.green.offset;
pseudo_val |= regno << info->var.blue.offset;
((u32 *)info->pseudo_palette)[regno] = pseudo_val;
}
pal.p = 0;
pal.vidc20.red = red >> 8;
pal.vidc20.green = green >> 8;
pal.vidc20.blue = blue >> 8;
current_par.palette[regno] = pal;
if (info->var.bits_per_pixel == 16) {
int i;
pal.p = 0;
vidc_writel(0x10000000);
for (i = 0; i < 256; i += 1) {
pal.vidc20.red = current_par.palette[ i & 31].vidc20.red;
pal.vidc20.green = current_par.palette[(i >> 1) & 31].vidc20.green;
pal.vidc20.blue = current_par.palette[(i >> 2) & 31].vidc20.blue;
vidc_writel(pal.p);
/* Palette register pointer auto-increments */
}
} else {
vidc_writel(0x10000000 | regno);
vidc_writel(pal.p);
}
return 0;
}
#endif
/*
* Before selecting the timing parameters, adjust
* the resolution to fit the rules.
*/
static int
acornfb_adjust_timing(struct fb_info *info, struct fb_var_screeninfo *var, u_int fontht)
{
u_int font_line_len, sam_size, min_size, size, nr_y;
/* xres must be even */
var->xres = (var->xres + 1) & ~1;
/*
* We don't allow xres_virtual to differ from xres
*/
var->xres_virtual = var->xres;
var->xoffset = 0;
if (current_par.using_vram)
sam_size = current_par.vram_half_sam * 2;
else
sam_size = 16;
/*
* Now, find a value for yres_virtual which allows
* us to do ywrap scrolling. The value of
* yres_virtual must be such that the end of the
* displayable frame buffer must be aligned with
* the start of a font line.
*/
font_line_len = var->xres * var->bits_per_pixel * fontht / 8;
min_size = var->xres * var->yres * var->bits_per_pixel / 8;
/*
* If minimum screen size is greater than that we have
* available, reject it.
*/
if (min_size > info->fix.smem_len)
return -EINVAL;
/* Find int 'y', such that y * fll == s * sam < maxsize
* y = s * sam / fll; s = maxsize / sam
*/
for (size = info->fix.smem_len;
nr_y = size / font_line_len, min_size <= size;
size -= sam_size) {
if (nr_y * font_line_len == size)
break;
}
nr_y *= fontht;
if (var->accel_flags & FB_ACCELF_TEXT) {
if (min_size > size) {
/*
* failed, use ypan
*/
size = info->fix.smem_len;
var->yres_virtual = size / (font_line_len / fontht);
} else
var->yres_virtual = nr_y;
} else if (var->yres_virtual > nr_y)
var->yres_virtual = nr_y;
current_par.screen_end = info->fix.smem_start + size;
/*
* Fix yres & yoffset if needed.
*/
if (var->yres > var->yres_virtual)
var->yres = var->yres_virtual;
if (var->vmode & FB_VMODE_YWRAP) {
if (var->yoffset > var->yres_virtual)
var->yoffset = var->yres_virtual;
} else {
if (var->yoffset + var->yres > var->yres_virtual)
var->yoffset = var->yres_virtual - var->yres;
}
/* hsync_len must be even */
var->hsync_len = (var->hsync_len + 1) & ~1;
#if defined(HAS_VIDC20)
/* left_margin must be even */
if (var->left_margin & 1) {
var->left_margin += 1;
var->right_margin -= 1;
}
/* right_margin must be even */
if (var->right_margin & 1)
var->right_margin += 1;
#endif
if (var->vsync_len < 1)
var->vsync_len = 1;
return 0;
}
static int
acornfb_validate_timing(struct fb_var_screeninfo *var,
struct fb_monspecs *monspecs)
{
unsigned long hs, vs;
/*
* hs(Hz) = 10^12 / (pixclock * xtotal)
* vs(Hz) = hs(Hz) / ytotal
*
* No need to do long long divisions or anything
* like that if you factor it correctly
*/
hs = 1953125000 / var->pixclock;
hs = hs * 512 /
(var->xres + var->left_margin + var->right_margin + var->hsync_len);
vs = hs /
(var->yres + var->upper_margin + var->lower_margin + var->vsync_len);
return (vs >= monspecs->vfmin && vs <= monspecs->vfmax &&
hs >= monspecs->hfmin && hs <= monspecs->hfmax) ? 0 : -EINVAL;
}
static inline void
acornfb_update_dma(struct fb_info *info, struct fb_var_screeninfo *var)
{
u_int off = var->yoffset * info->fix.line_length;
#if defined(HAS_MEMC)
memc_write(VDMA_INIT, off >> 2);
#elif defined(HAS_IOMD)
iomd_writel(info->fix.smem_start + off, IOMD_VIDINIT);
#endif
}
static int
acornfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
u_int fontht;
int err;
/*
* FIXME: Find the font height
*/
fontht = 8;
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
switch (var->bits_per_pixel) {
case 1: case 2: case 4: case 8:
var->red.offset = 0;
var->red.length = var->bits_per_pixel;
var->green = var->red;
var->blue = var->red;
var->transp.offset = 0;
var->transp.length = 0;
break;
#ifdef HAS_VIDC20
case 16:
var->red.offset = 0;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.offset = 10;
var->blue.length = 5;
var->transp.offset = 15;
var->transp.length = 1;
break;
case 32:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 16;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 4;
break;
#endif
default:
return -EINVAL;
}
/*
* Check to see if the pixel rate is valid.
*/
if (!acornfb_valid_pixrate(var))
return -EINVAL;
/*
* Validate and adjust the resolution to
* match the video generator hardware.
*/
err = acornfb_adjust_timing(info, var, fontht);
if (err)
return err;
/*
* Validate the timing against the
* monitor hardware.
*/
return acornfb_validate_timing(var, &info->monspecs);
}
static int acornfb_set_par(struct fb_info *info)
{
switch (info->var.bits_per_pixel) {
case 1:
current_par.palette_size = 2;
info->fix.visual = FB_VISUAL_MONO10;
break;
case 2:
current_par.palette_size = 4;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
case 4:
current_par.palette_size = 16;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
case 8:
current_par.palette_size = VIDC_PALETTE_SIZE;
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
break;
#ifdef HAS_VIDC20
case 16:
current_par.palette_size = 32;
info->fix.visual = FB_VISUAL_DIRECTCOLOR;
break;
case 32:
current_par.palette_size = VIDC_PALETTE_SIZE;
info->fix.visual = FB_VISUAL_DIRECTCOLOR;
break;
#endif
default:
BUG();
}
info->fix.line_length = (info->var.xres * info->var.bits_per_pixel) / 8;
#if defined(HAS_MEMC)
{
unsigned long size = info->fix.smem_len - VDMA_XFERSIZE;
memc_write(VDMA_START, 0);
memc_write(VDMA_END, size >> 2);
}
#elif defined(HAS_IOMD)
{
unsigned long start, size;
u_int control;
start = info->fix.smem_start;
size = current_par.screen_end;
if (current_par.using_vram) {
size -= current_par.vram_half_sam;
control = DMA_CR_E | (current_par.vram_half_sam / 256);
} else {
size -= 16;
control = DMA_CR_E | DMA_CR_D | 16;
}
iomd_writel(start, IOMD_VIDSTART);
iomd_writel(size, IOMD_VIDEND);
iomd_writel(control, IOMD_VIDCR);
}
#endif
acornfb_update_dma(info, &info->var);
acornfb_set_timing(info);
return 0;
}
static int
acornfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
{
u_int y_bottom = var->yoffset;
if (!(var->vmode & FB_VMODE_YWRAP))
y_bottom += info->var.yres;
if (y_bottom > info->var.yres_virtual)
return -EINVAL;
acornfb_update_dma(info, var);
return 0;
}
static struct fb_ops acornfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = acornfb_check_var,
.fb_set_par = acornfb_set_par,
.fb_setcolreg = acornfb_setcolreg,
.fb_pan_display = acornfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
/*
* Everything after here is initialisation!!!
*/
static struct fb_videomode modedb[] = {
{ /* 320x256 @ 50Hz */
NULL, 50, 320, 256, 125000, 92, 62, 35, 19, 38, 2,
FB_SYNC_COMP_HIGH_ACT,
FB_VMODE_NONINTERLACED
}, { /* 640x250 @ 50Hz, 15.6 kHz hsync */
NULL, 50, 640, 250, 62500, 185, 123, 38, 21, 76, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x256 @ 50Hz, 15.6 kHz hsync */
NULL, 50, 640, 256, 62500, 185, 123, 35, 18, 76, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x512 @ 50Hz, 26.8 kHz hsync */
NULL, 50, 640, 512, 41667, 113, 87, 18, 1, 56, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x250 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 250, 39722, 48, 16, 109, 88, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x256 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 256, 39722, 48, 16, 106, 85, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x352 @ 70Hz, 31.5 kHz hsync */
NULL, 70, 640, 352, 39722, 48, 16, 58, 37, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 640x480 @ 60Hz, 31.5 kHz hsync */
NULL, 60, 640, 480, 39722, 48, 16, 32, 11, 96, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 800x600 @ 56Hz, 35.2 kHz hsync */
NULL, 56, 800, 600, 27778, 101, 23, 22, 1, 100, 2,
0,
FB_VMODE_NONINTERLACED
}, { /* 896x352 @ 60Hz, 21.8 kHz hsync */
NULL, 60, 896, 352, 41667, 59, 27, 9, 0, 118, 3,
0,
FB_VMODE_NONINTERLACED
}, { /* 1024x 768 @ 60Hz, 48.4 kHz hsync */
NULL, 60, 1024, 768, 15385, 160, 24, 29, 3, 136, 6,
0,
FB_VMODE_NONINTERLACED
}, { /* 1280x1024 @ 60Hz, 63.8 kHz hsync */
NULL, 60, 1280, 1024, 9090, 186, 96, 38, 1, 160, 3,
0,
FB_VMODE_NONINTERLACED
}
};
static struct fb_videomode acornfb_default_mode = {
.name = NULL,
.refresh = 60,
.xres = 640,
.yres = 480,
.pixclock = 39722,
.left_margin = 56,
.right_margin = 16,
.upper_margin = 34,
.lower_margin = 9,
.hsync_len = 88,
.vsync_len = 2,
.sync = 0,
.vmode = FB_VMODE_NONINTERLACED
};
static void acornfb_init_fbinfo(void)
{
static int first = 1;
if (!first)
return;
first = 0;
fb_info.fbops = &acornfb_ops;
fb_info.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
fb_info.pseudo_palette = current_par.pseudo_palette;
strcpy(fb_info.fix.id, "Acorn");
fb_info.fix.type = FB_TYPE_PACKED_PIXELS;
fb_info.fix.type_aux = 0;
fb_info.fix.xpanstep = 0;
fb_info.fix.ypanstep = 1;
fb_info.fix.ywrapstep = 1;
fb_info.fix.line_length = 0;
fb_info.fix.accel = FB_ACCEL_NONE;
/*
* setup initial parameters
*/
memset(&fb_info.var, 0, sizeof(fb_info.var));
#if defined(HAS_VIDC20)
fb_info.var.red.length = 8;
fb_info.var.transp.length = 4;
#endif
fb_info.var.green = fb_info.var.red;
fb_info.var.blue = fb_info.var.red;
fb_info.var.nonstd = 0;
fb_info.var.activate = FB_ACTIVATE_NOW;
fb_info.var.height = -1;
fb_info.var.width = -1;
fb_info.var.vmode = FB_VMODE_NONINTERLACED;
fb_info.var.accel_flags = FB_ACCELF_TEXT;
current_par.dram_size = 0;
current_par.montype = -1;
current_par.dpms = 0;
}
/*
* setup acornfb options:
*
* mon:hmin-hmax:vmin-vmax:dpms:width:height
* Set monitor parameters:
* hmin = horizontal minimum frequency (Hz)
* hmax = horizontal maximum frequency (Hz) (optional)
* vmin = vertical minimum frequency (Hz)
* vmax = vertical maximum frequency (Hz) (optional)
* dpms = DPMS supported? (optional)
* width = width of picture in mm. (optional)
* height = height of picture in mm. (optional)
*
* montype:type
* Set RISC-OS style monitor type:
* 0 (or tv) - TV frequency
* 1 (or multi) - Multi frequency
* 2 (or hires) - Hi-res monochrome
* 3 (or vga) - VGA
* 4 (or svga) - SVGA
* auto, or option missing
* - try hardware detect
*
* dram:size
* Set the amount of DRAM to use for the frame buffer
* (even if you have VRAM).
* size can optionally be followed by 'M' or 'K' for
* MB or KB respectively.
*/
static void acornfb_parse_mon(char *opt)
{
char *p = opt;
current_par.montype = -2;
fb_info.monspecs.hfmin = simple_strtoul(p, &p, 0);
if (*p == '-')
fb_info.monspecs.hfmax = simple_strtoul(p + 1, &p, 0);
else
fb_info.monspecs.hfmax = fb_info.monspecs.hfmin;
if (*p != ':')
goto bad;
fb_info.monspecs.vfmin = simple_strtoul(p + 1, &p, 0);
if (*p == '-')
fb_info.monspecs.vfmax = simple_strtoul(p + 1, &p, 0);
else
fb_info.monspecs.vfmax = fb_info.monspecs.vfmin;
if (*p != ':')
goto check_values;
fb_info.monspecs.dpms = simple_strtoul(p + 1, &p, 0);
if (*p != ':')
goto check_values;
fb_info.var.width = simple_strtoul(p + 1, &p, 0);
if (*p != ':')
goto check_values;
fb_info.var.height = simple_strtoul(p + 1, NULL, 0);
check_values:
if (fb_info.monspecs.hfmax < fb_info.monspecs.hfmin ||
fb_info.monspecs.vfmax < fb_info.monspecs.vfmin)
goto bad;
return;
bad:
printk(KERN_ERR "Acornfb: bad monitor settings: %s\n", opt);
current_par.montype = -1;
}
static void acornfb_parse_montype(char *opt)
{
current_par.montype = -2;
if (strncmp(opt, "tv", 2) == 0) {
opt += 2;
current_par.montype = 0;
} else if (strncmp(opt, "multi", 5) == 0) {
opt += 5;
current_par.montype = 1;
} else if (strncmp(opt, "hires", 5) == 0) {
opt += 5;
current_par.montype = 2;
} else if (strncmp(opt, "vga", 3) == 0) {
opt += 3;
current_par.montype = 3;
} else if (strncmp(opt, "svga", 4) == 0) {
opt += 4;
current_par.montype = 4;
} else if (strncmp(opt, "auto", 4) == 0) {
opt += 4;
current_par.montype = -1;
} else if (isdigit(*opt))
current_par.montype = simple_strtoul(opt, &opt, 0);
if (current_par.montype == -2 ||
current_par.montype > NR_MONTYPES) {
printk(KERN_ERR "acornfb: unknown monitor type: %s\n",
opt);
current_par.montype = -1;
} else
if (opt && *opt) {
if (strcmp(opt, ",dpms") == 0)
current_par.dpms = 1;
else
printk(KERN_ERR
"acornfb: unknown monitor option: %s\n",
opt);
}
}
static void acornfb_parse_dram(char *opt)
{
unsigned int size;
size = simple_strtoul(opt, &opt, 0);
if (opt) {
switch (*opt) {
case 'M':
case 'm':
size *= 1024;
case 'K':
case 'k':
size *= 1024;
default:
break;
}
}
current_par.dram_size = size;
}
static struct options {
char *name;
void (*parse)(char *opt);
} opt_table[] = {
{ "mon", acornfb_parse_mon },
{ "montype", acornfb_parse_montype },
{ "dram", acornfb_parse_dram },
{ NULL, NULL }
};
static int acornfb_setup(char *options)
{
struct options *optp;
char *opt;
if (!options || !*options)
return 0;
acornfb_init_fbinfo();
while ((opt = strsep(&options, ",")) != NULL) {
if (!*opt)
continue;
for (optp = opt_table; optp->name; optp++) {
int optlen;
optlen = strlen(optp->name);
if (strncmp(opt, optp->name, optlen) == 0 &&
opt[optlen] == ':') {
optp->parse(opt + optlen + 1);
break;
}
}
if (!optp->name)
printk(KERN_ERR "acornfb: unknown parameter: %s\n",
opt);
}
return 0;
}
/*
* Detect type of monitor connected
* For now, we just assume SVGA
*/
static int acornfb_detect_monitortype(void)
{
return 4;
}
/*
* This enables the unused memory to be freed on older Acorn machines.
* We are freeing memory on behalf of the architecture initialisation
* code here.
*/
static inline void
free_unused_pages(unsigned int virtual_start, unsigned int virtual_end)
{
int mb_freed = 0;
/*
* Align addresses
*/
virtual_start = PAGE_ALIGN(virtual_start);
virtual_end = PAGE_ALIGN(virtual_end);
while (virtual_start < virtual_end) {
struct page *page;
/*
* Clear page reserved bit,
* set count to 1, and free
* the page.
*/
page = virt_to_page(virtual_start);
__free_reserved_page(page);
virtual_start += PAGE_SIZE;
mb_freed += PAGE_SIZE / 1024;
}
printk("acornfb: freed %dK memory\n", mb_freed);
}
static int acornfb_probe(struct platform_device *dev)
{
unsigned long size;
u_int h_sync, v_sync;
int rc, i;
char *option = NULL;
if (fb_get_options("acornfb", &option))
return -ENODEV;
acornfb_setup(option);
acornfb_init_fbinfo();
current_par.dev = &dev->dev;
if (current_par.montype == -1)
current_par.montype = acornfb_detect_monitortype();
if (current_par.montype == -1 || current_par.montype > NR_MONTYPES)
current_par.montype = 4;
if (current_par.montype >= 0) {
fb_info.monspecs = monspecs[current_par.montype];
fb_info.monspecs.dpms = current_par.dpms;
}
/*
* Try to select a suitable default mode
*/
for (i = 0; i < ARRAY_SIZE(modedb); i++) {
unsigned long hs;
hs = modedb[i].refresh *
(modedb[i].yres + modedb[i].upper_margin +
modedb[i].lower_margin + modedb[i].vsync_len);
if (modedb[i].xres == DEFAULT_XRES &&
modedb[i].yres == DEFAULT_YRES &&
modedb[i].refresh >= fb_info.monspecs.vfmin &&
modedb[i].refresh <= fb_info.monspecs.vfmax &&
hs >= fb_info.monspecs.hfmin &&
hs <= fb_info.monspecs.hfmax) {
acornfb_default_mode = modedb[i];
break;
}
}
fb_info.screen_base = (char *)SCREEN_BASE;
fb_info.fix.smem_start = SCREEN_START;
current_par.using_vram = 0;
/*
* If vram_size is set, we are using VRAM in
* a Risc PC. However, if the user has specified
* an amount of DRAM then use that instead.
*/
if (vram_size && !current_par.dram_size) {
size = vram_size;
current_par.vram_half_sam = vram_size / 1024;
current_par.using_vram = 1;
} else if (current_par.dram_size)
size = current_par.dram_size;
else
size = MAX_SIZE;
/*
* Limit maximum screen size.
*/
if (size > MAX_SIZE)
size = MAX_SIZE;
size = PAGE_ALIGN(size);
#if defined(HAS_VIDC20)
if (!current_par.using_vram) {
dma_addr_t handle;
void *base;
/*
* RiscPC needs to allocate the DRAM memory
* for the framebuffer if we are not using
* VRAM.
*/
base = dma_alloc_writecombine(current_par.dev, size, &handle,
GFP_KERNEL);
if (base == NULL) {
printk(KERN_ERR "acornfb: unable to allocate screen "
"memory\n");
return -ENOMEM;
}
fb_info.screen_base = base;
fb_info.fix.smem_start = handle;
}
#endif
fb_info.fix.smem_len = size;
current_par.palette_size = VIDC_PALETTE_SIZE;
/*
* Lookup the timing for this resolution. If we can't
* find it, then we can't restore it if we change
* the resolution, so we disable this feature.
*/
do {
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb,
ARRAY_SIZE(modedb),
&acornfb_default_mode, DEFAULT_BPP);
/*
* If we found an exact match, all ok.
*/
if (rc == 1)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0,
&acornfb_default_mode, DEFAULT_BPP);
/*
* If we found an exact match, all ok.
*/
if (rc == 1)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, modedb,
ARRAY_SIZE(modedb),
&acornfb_default_mode, DEFAULT_BPP);
if (rc)
break;
rc = fb_find_mode(&fb_info.var, &fb_info, NULL, NULL, 0,
&acornfb_default_mode, DEFAULT_BPP);
} while (0);
/*
* If we didn't find an exact match, try the
* generic database.
*/
if (rc == 0) {
printk("Acornfb: no valid mode found\n");
return -EINVAL;
}
h_sync = 1953125000 / fb_info.var.pixclock;
h_sync = h_sync * 512 / (fb_info.var.xres + fb_info.var.left_margin +
fb_info.var.right_margin + fb_info.var.hsync_len);
v_sync = h_sync / (fb_info.var.yres + fb_info.var.upper_margin +
fb_info.var.lower_margin + fb_info.var.vsync_len);
printk(KERN_INFO "Acornfb: %dkB %cRAM, %s, using %dx%d, "
"%d.%03dkHz, %dHz\n",
fb_info.fix.smem_len / 1024,
current_par.using_vram ? 'V' : 'D',
VIDC_NAME, fb_info.var.xres, fb_info.var.yres,
h_sync / 1000, h_sync % 1000, v_sync);
printk(KERN_INFO "Acornfb: Monitor: %d.%03d-%d.%03dkHz, %d-%dHz%s\n",
fb_info.monspecs.hfmin / 1000, fb_info.monspecs.hfmin % 1000,
fb_info.monspecs.hfmax / 1000, fb_info.monspecs.hfmax % 1000,
fb_info.monspecs.vfmin, fb_info.monspecs.vfmax,
fb_info.monspecs.dpms ? ", DPMS" : "");
if (fb_set_var(&fb_info, &fb_info.var))
printk(KERN_ERR "Acornfb: unable to set display parameters\n");
if (register_framebuffer(&fb_info) < 0)
return -EINVAL;
return 0;
}
static struct platform_driver acornfb_driver = {
.probe = acornfb_probe,
.driver = {
.name = "acornfb",
},
};
static int __init acornfb_init(void)
{
return platform_driver_register(&acornfb_driver);
}
module_init(acornfb_init);
MODULE_AUTHOR("Russell King");
MODULE_DESCRIPTION("VIDC 1/1a/20 framebuffer driver");
MODULE_LICENSE("GPL");