2005-11-07 08:08:17 +03:00
/*
* Windfarm PowerMac thermal control . SMU based 1 CPU desktop control loops
*
* ( c ) Copyright 2005 Benjamin Herrenschmidt , IBM Corp .
* < benh @ kernel . crashing . org >
*
* Released under the term of the GNU GPL v2 .
*
* The algorithm used is the PID control algorithm , used the same
* way the published Darwin code does , using the same values that
* are present in the Darwin 8.2 snapshot property lists ( note however
* that none of the code has been re - used , it ' s a complete re - implementation
*
* The various control loops found in Darwin config file are :
*
* PowerMac9 , 1
* = = = = = = = = = = =
*
* Has 3 control loops : CPU fans is similar to PowerMac8 , 1 ( though it doesn ' t
* try to play with other control loops fans ) . Drive bay is rather basic PID
* with one sensor and one fan . Slots area is a bit different as the Darwin
* driver is supposed to be capable of working in a special " AGP " mode which
* involves the presence of an AGP sensor and an AGP fan ( possibly on the
* AGP card itself ) . I can ' t deal with that special mode as I don ' t have
* access to those additional sensor / fans for now ( though ultimately , it would
* be possible to add sensor objects for them ) so I ' m only implementing the
* basic PCI slot control loop
*/
# include <linux/types.h>
# include <linux/errno.h>
# include <linux/kernel.h>
# include <linux/delay.h>
# include <linux/slab.h>
# include <linux/init.h>
# include <linux/spinlock.h>
# include <linux/wait.h>
# include <linux/kmod.h>
# include <linux/device.h>
# include <linux/platform_device.h>
# include <asm/prom.h>
# include <asm/machdep.h>
# include <asm/io.h>
# include <asm/system.h>
# include <asm/sections.h>
# include <asm/smu.h>
# include "windfarm.h"
# include "windfarm_pid.h"
# define VERSION "0.4"
# undef DEBUG
# ifdef DEBUG
# define DBG(args...) printk(args)
# else
# define DBG(args...) do { } while(0)
# endif
/* define this to force CPU overtemp to 74 degree, useful for testing
* the overtemp code
*/
# undef HACKED_OVERTEMP
static struct device * wf_smu_dev ;
/* Controls & sensors */
static struct wf_sensor * sensor_cpu_power ;
static struct wf_sensor * sensor_cpu_temp ;
static struct wf_sensor * sensor_hd_temp ;
static struct wf_sensor * sensor_slots_power ;
static struct wf_control * fan_cpu_main ;
static struct wf_control * fan_cpu_second ;
static struct wf_control * fan_cpu_third ;
static struct wf_control * fan_hd ;
static struct wf_control * fan_slots ;
static struct wf_control * cpufreq_clamp ;
/* Set to kick the control loop into life */
static int wf_smu_all_controls_ok , wf_smu_all_sensors_ok , wf_smu_started ;
/* Failure handling.. could be nicer */
# define FAILURE_FAN 0x01
# define FAILURE_SENSOR 0x02
# define FAILURE_OVERTEMP 0x04
static unsigned int wf_smu_failure_state ;
static int wf_smu_readjust , wf_smu_skipping ;
/*
* * * * * * * CPU Fans Control Loop * * * * * *
*
*/
# define WF_SMU_CPU_FANS_INTERVAL 1
# define WF_SMU_CPU_FANS_MAX_HISTORY 16
/* State data used by the cpu fans control loop
*/
struct wf_smu_cpu_fans_state {
int ticks ;
s32 cpu_setpoint ;
struct wf_cpu_pid_state pid ;
} ;
static struct wf_smu_cpu_fans_state * wf_smu_cpu_fans ;
/*
* * * * * * * Drive Fan Control Loop * * * * * *
*
*/
struct wf_smu_drive_fans_state {
int ticks ;
s32 setpoint ;
struct wf_pid_state pid ;
} ;
static struct wf_smu_drive_fans_state * wf_smu_drive_fans ;
/*
* * * * * * * Slots Fan Control Loop * * * * * *
*
*/
struct wf_smu_slots_fans_state {
int ticks ;
s32 setpoint ;
struct wf_pid_state pid ;
} ;
static struct wf_smu_slots_fans_state * wf_smu_slots_fans ;
/*
* * * * * * Implementation * * * * *
*
*/
static void wf_smu_create_cpu_fans ( void )
{
struct wf_cpu_pid_param pid_param ;
struct smu_sdbp_header * hdr ;
struct smu_sdbp_cpupiddata * piddata ;
struct smu_sdbp_fvt * fvt ;
s32 tmax , tdelta , maxpow , powadj ;
/* First, locate the PID params in SMU SBD */
hdr = smu_get_sdb_partition ( SMU_SDB_CPUPIDDATA_ID , NULL ) ;
if ( hdr = = 0 ) {
printk ( KERN_WARNING " windfarm: CPU PID fan config not found "
" max fan speed \n " ) ;
goto fail ;
}
piddata = ( struct smu_sdbp_cpupiddata * ) & hdr [ 1 ] ;
/* Get the FVT params for operating point 0 (the only supported one
* for now ) in order to get tmax
*/
hdr = smu_get_sdb_partition ( SMU_SDB_FVT_ID , NULL ) ;
if ( hdr ) {
fvt = ( struct smu_sdbp_fvt * ) & hdr [ 1 ] ;
tmax = ( ( s32 ) fvt - > maxtemp ) < < 16 ;
} else
tmax = 0x5e0000 ; /* 94 degree default */
/* Alloc & initialize state */
wf_smu_cpu_fans = kmalloc ( sizeof ( struct wf_smu_cpu_fans_state ) ,
GFP_KERNEL ) ;
if ( wf_smu_cpu_fans = = NULL )
goto fail ;
wf_smu_cpu_fans - > ticks = 1 ;
/* Fill PID params */
pid_param . interval = WF_SMU_CPU_FANS_INTERVAL ;
pid_param . history_len = piddata - > history_len ;
if ( pid_param . history_len > WF_CPU_PID_MAX_HISTORY ) {
printk ( KERN_WARNING " windfarm: History size overflow on "
" CPU control loop (%d) \n " , piddata - > history_len ) ;
pid_param . history_len = WF_CPU_PID_MAX_HISTORY ;
}
pid_param . gd = piddata - > gd ;
pid_param . gp = piddata - > gp ;
pid_param . gr = piddata - > gr / pid_param . history_len ;
tdelta = ( ( s32 ) piddata - > target_temp_delta ) < < 16 ;
maxpow = ( ( s32 ) piddata - > max_power ) < < 16 ;
powadj = ( ( s32 ) piddata - > power_adj ) < < 16 ;
pid_param . tmax = tmax ;
pid_param . ttarget = tmax - tdelta ;
pid_param . pmaxadj = maxpow - powadj ;
pid_param . min = fan_cpu_main - > ops - > get_min ( fan_cpu_main ) ;
pid_param . max = fan_cpu_main - > ops - > get_max ( fan_cpu_main ) ;
wf_cpu_pid_init ( & wf_smu_cpu_fans - > pid , & pid_param ) ;
DBG ( " wf: CPU Fan control initialized. \n " ) ;
DBG ( " ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM \n " ,
FIX32TOPRINT ( pid_param . ttarget ) , FIX32TOPRINT ( pid_param . tmax ) ,
pid_param . min , pid_param . max ) ;
return ;
fail :
printk ( KERN_WARNING " windfarm: CPU fan config not found \n "
" for this machine model, max fan speed \n " ) ;
if ( cpufreq_clamp )
wf_control_set_max ( cpufreq_clamp ) ;
if ( fan_cpu_main )
wf_control_set_max ( fan_cpu_main ) ;
}
static void wf_smu_cpu_fans_tick ( struct wf_smu_cpu_fans_state * st )
{
s32 new_setpoint , temp , power ;
int rc ;
if ( - - st - > ticks ! = 0 ) {
if ( wf_smu_readjust )
goto readjust ;
return ;
}
st - > ticks = WF_SMU_CPU_FANS_INTERVAL ;
rc = sensor_cpu_temp - > ops - > get_value ( sensor_cpu_temp , & temp ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: CPU temp sensor error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_SENSOR ;
return ;
}
rc = sensor_cpu_power - > ops - > get_value ( sensor_cpu_power , & power ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: CPU power sensor error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_SENSOR ;
return ;
}
DBG ( " wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d \n " ,
FIX32TOPRINT ( temp ) , FIX32TOPRINT ( power ) ) ;
# ifdef HACKED_OVERTEMP
if ( temp > 0x4a0000 )
wf_smu_failure_state | = FAILURE_OVERTEMP ;
# else
if ( temp > st - > pid . param . tmax )
wf_smu_failure_state | = FAILURE_OVERTEMP ;
# endif
new_setpoint = wf_cpu_pid_run ( & st - > pid , power , temp ) ;
DBG ( " wf_smu: new_setpoint: %d RPM \n " , ( int ) new_setpoint ) ;
if ( st - > cpu_setpoint = = new_setpoint )
return ;
st - > cpu_setpoint = new_setpoint ;
readjust :
if ( fan_cpu_main & & wf_smu_failure_state = = 0 ) {
rc = fan_cpu_main - > ops - > set_value ( fan_cpu_main ,
st - > cpu_setpoint ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: CPU main fan "
" error %d \n " , rc ) ;
wf_smu_failure_state | = FAILURE_FAN ;
}
}
if ( fan_cpu_second & & wf_smu_failure_state = = 0 ) {
rc = fan_cpu_second - > ops - > set_value ( fan_cpu_second ,
st - > cpu_setpoint ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: CPU second fan "
" error %d \n " , rc ) ;
wf_smu_failure_state | = FAILURE_FAN ;
}
}
if ( fan_cpu_third & & wf_smu_failure_state = = 0 ) {
rc = fan_cpu_main - > ops - > set_value ( fan_cpu_third ,
st - > cpu_setpoint ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: CPU third fan "
" error %d \n " , rc ) ;
wf_smu_failure_state | = FAILURE_FAN ;
}
}
}
static void wf_smu_create_drive_fans ( void )
{
struct wf_pid_param param = {
. interval = 5 ,
. history_len = 2 ,
. gd = 0x01e00000 ,
. gp = 0x00500000 ,
. gr = 0x00000000 ,
. itarget = 0x00200000 ,
} ;
/* Alloc & initialize state */
wf_smu_drive_fans = kmalloc ( sizeof ( struct wf_smu_drive_fans_state ) ,
GFP_KERNEL ) ;
if ( wf_smu_drive_fans = = NULL ) {
printk ( KERN_WARNING " windfarm: Memory allocation error "
" max fan speed \n " ) ;
goto fail ;
}
wf_smu_drive_fans - > ticks = 1 ;
/* Fill PID params */
param . additive = ( fan_hd - > type = = WF_CONTROL_RPM_FAN ) ;
param . min = fan_hd - > ops - > get_min ( fan_hd ) ;
param . max = fan_hd - > ops - > get_max ( fan_hd ) ;
wf_pid_init ( & wf_smu_drive_fans - > pid , & param ) ;
DBG ( " wf: Drive Fan control initialized. \n " ) ;
DBG ( " itarged=%d.%03d, min=%d RPM, max=%d RPM \n " ,
FIX32TOPRINT ( param . itarget ) , param . min , param . max ) ;
return ;
fail :
if ( fan_hd )
wf_control_set_max ( fan_hd ) ;
}
static void wf_smu_drive_fans_tick ( struct wf_smu_drive_fans_state * st )
{
s32 new_setpoint , temp ;
int rc ;
if ( - - st - > ticks ! = 0 ) {
if ( wf_smu_readjust )
goto readjust ;
return ;
}
st - > ticks = st - > pid . param . interval ;
rc = sensor_hd_temp - > ops - > get_value ( sensor_hd_temp , & temp ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: HD temp sensor error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_SENSOR ;
return ;
}
DBG ( " wf_smu: Drive Fans tick ! HD temp: %d.%03d \n " ,
FIX32TOPRINT ( temp ) ) ;
if ( temp > ( st - > pid . param . itarget + 0x50000 ) )
wf_smu_failure_state | = FAILURE_OVERTEMP ;
new_setpoint = wf_pid_run ( & st - > pid , temp ) ;
DBG ( " wf_smu: new_setpoint: %d \n " , ( int ) new_setpoint ) ;
if ( st - > setpoint = = new_setpoint )
return ;
st - > setpoint = new_setpoint ;
readjust :
if ( fan_hd & & wf_smu_failure_state = = 0 ) {
rc = fan_hd - > ops - > set_value ( fan_hd , st - > setpoint ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: HD fan error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_FAN ;
}
}
}
static void wf_smu_create_slots_fans ( void )
{
struct wf_pid_param param = {
. interval = 1 ,
. history_len = 8 ,
. gd = 0x00000000 ,
. gp = 0x00000000 ,
. gr = 0x00020000 ,
. itarget = 0x00000000
} ;
/* Alloc & initialize state */
wf_smu_slots_fans = kmalloc ( sizeof ( struct wf_smu_slots_fans_state ) ,
GFP_KERNEL ) ;
if ( wf_smu_slots_fans = = NULL ) {
printk ( KERN_WARNING " windfarm: Memory allocation error "
" max fan speed \n " ) ;
goto fail ;
}
wf_smu_slots_fans - > ticks = 1 ;
/* Fill PID params */
param . additive = ( fan_slots - > type = = WF_CONTROL_RPM_FAN ) ;
param . min = fan_slots - > ops - > get_min ( fan_slots ) ;
param . max = fan_slots - > ops - > get_max ( fan_slots ) ;
wf_pid_init ( & wf_smu_slots_fans - > pid , & param ) ;
DBG ( " wf: Slots Fan control initialized. \n " ) ;
DBG ( " itarged=%d.%03d, min=%d RPM, max=%d RPM \n " ,
FIX32TOPRINT ( param . itarget ) , param . min , param . max ) ;
return ;
fail :
if ( fan_slots )
wf_control_set_max ( fan_slots ) ;
}
static void wf_smu_slots_fans_tick ( struct wf_smu_slots_fans_state * st )
{
s32 new_setpoint , power ;
int rc ;
if ( - - st - > ticks ! = 0 ) {
if ( wf_smu_readjust )
goto readjust ;
return ;
}
st - > ticks = st - > pid . param . interval ;
rc = sensor_slots_power - > ops - > get_value ( sensor_slots_power , & power ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: Slots power sensor error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_SENSOR ;
return ;
}
DBG ( " wf_smu: Slots Fans tick ! Slots power: %d.%03d \n " ,
FIX32TOPRINT ( power ) ) ;
#if 0 /* Check what makes a good overtemp condition */
if ( power > ( st - > pid . param . itarget + 0x50000 ) )
wf_smu_failure_state | = FAILURE_OVERTEMP ;
# endif
new_setpoint = wf_pid_run ( & st - > pid , power ) ;
DBG ( " wf_smu: new_setpoint: %d \n " , ( int ) new_setpoint ) ;
if ( st - > setpoint = = new_setpoint )
return ;
st - > setpoint = new_setpoint ;
readjust :
if ( fan_slots & & wf_smu_failure_state = = 0 ) {
rc = fan_slots - > ops - > set_value ( fan_slots , st - > setpoint ) ;
if ( rc ) {
printk ( KERN_WARNING " windfarm: Slots fan error %d \n " ,
rc ) ;
wf_smu_failure_state | = FAILURE_FAN ;
}
}
}
/*
* * * * * * * Setup / Init / Misc . . . * * * * * *
*
*/
static void wf_smu_tick ( void )
{
unsigned int last_failure = wf_smu_failure_state ;
unsigned int new_failure ;
if ( ! wf_smu_started ) {
DBG ( " wf: creating control loops ! \n " ) ;
wf_smu_create_drive_fans ( ) ;
wf_smu_create_slots_fans ( ) ;
wf_smu_create_cpu_fans ( ) ;
wf_smu_started = 1 ;
}
/* Skipping ticks */
if ( wf_smu_skipping & & - - wf_smu_skipping )
return ;
wf_smu_failure_state = 0 ;
if ( wf_smu_drive_fans )
wf_smu_drive_fans_tick ( wf_smu_drive_fans ) ;
if ( wf_smu_slots_fans )
wf_smu_slots_fans_tick ( wf_smu_slots_fans ) ;
if ( wf_smu_cpu_fans )
wf_smu_cpu_fans_tick ( wf_smu_cpu_fans ) ;
wf_smu_readjust = 0 ;
new_failure = wf_smu_failure_state & ~ last_failure ;
/* If entering failure mode, clamp cpufreq and ramp all
* fans to full speed .
*/
if ( wf_smu_failure_state & & ! last_failure ) {
if ( cpufreq_clamp )
wf_control_set_max ( cpufreq_clamp ) ;
if ( fan_cpu_main )
wf_control_set_max ( fan_cpu_main ) ;
if ( fan_cpu_second )
wf_control_set_max ( fan_cpu_second ) ;
if ( fan_cpu_third )
wf_control_set_max ( fan_cpu_third ) ;
if ( fan_hd )
wf_control_set_max ( fan_hd ) ;
if ( fan_slots )
wf_control_set_max ( fan_slots ) ;
}
/* If leaving failure mode, unclamp cpufreq and readjust
* all fans on next iteration
*/
if ( ! wf_smu_failure_state & & last_failure ) {
if ( cpufreq_clamp )
wf_control_set_min ( cpufreq_clamp ) ;
wf_smu_readjust = 1 ;
}
/* Overtemp condition detected, notify and start skipping a couple
* ticks to let the temperature go down
*/
if ( new_failure & FAILURE_OVERTEMP ) {
wf_set_overtemp ( ) ;
wf_smu_skipping = 2 ;
}
/* We only clear the overtemp condition if overtemp is cleared
* _and_ no other failure is present . Since a sensor error will
* clear the overtemp condition ( can ' t measure temperature ) at
* the control loop levels , but we don ' t want to keep it clear
* here in this case
*/
if ( new_failure = = 0 & & last_failure & FAILURE_OVERTEMP )
wf_clear_overtemp ( ) ;
}
static void wf_smu_new_control ( struct wf_control * ct )
{
if ( wf_smu_all_controls_ok )
return ;
if ( fan_cpu_main = = NULL & & ! strcmp ( ct - > name , " cpu-rear-fan-0 " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_control ( ct ) = = 0 )
2005-11-07 08:08:17 +03:00
fan_cpu_main = ct ;
}
if ( fan_cpu_second = = NULL & & ! strcmp ( ct - > name , " cpu-rear-fan-1 " ) ) {
if ( wf_get_control ( ct ) = = 0 )
fan_cpu_second = ct ;
}
if ( fan_cpu_third = = NULL & & ! strcmp ( ct - > name , " cpu-front-fan-0 " ) ) {
if ( wf_get_control ( ct ) = = 0 )
fan_cpu_third = ct ;
}
if ( cpufreq_clamp = = NULL & & ! strcmp ( ct - > name , " cpufreq-clamp " ) ) {
if ( wf_get_control ( ct ) = = 0 )
cpufreq_clamp = ct ;
}
if ( fan_hd = = NULL & & ! strcmp ( ct - > name , " drive-bay-fan " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_control ( ct ) = = 0 )
2005-11-07 08:08:17 +03:00
fan_hd = ct ;
}
if ( fan_slots = = NULL & & ! strcmp ( ct - > name , " slots-fan " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_control ( ct ) = = 0 )
2005-11-07 08:08:17 +03:00
fan_slots = ct ;
}
if ( fan_cpu_main & & ( fan_cpu_second | | fan_cpu_third ) & & fan_hd & &
fan_slots & & cpufreq_clamp )
wf_smu_all_controls_ok = 1 ;
}
static void wf_smu_new_sensor ( struct wf_sensor * sr )
{
if ( wf_smu_all_sensors_ok )
return ;
if ( sensor_cpu_power = = NULL & & ! strcmp ( sr - > name , " cpu-power " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_sensor ( sr ) = = 0 )
2005-11-07 08:08:17 +03:00
sensor_cpu_power = sr ;
}
if ( sensor_cpu_temp = = NULL & & ! strcmp ( sr - > name , " cpu-temp " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_sensor ( sr ) = = 0 )
2005-11-07 08:08:17 +03:00
sensor_cpu_temp = sr ;
}
if ( sensor_hd_temp = = NULL & & ! strcmp ( sr - > name , " hd-temp " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_sensor ( sr ) = = 0 )
2005-11-07 08:08:17 +03:00
sensor_hd_temp = sr ;
}
if ( sensor_slots_power = = NULL & & ! strcmp ( sr - > name , " slots-power " ) ) {
2006-02-08 08:42:51 +03:00
if ( wf_get_sensor ( sr ) = = 0 )
2005-11-07 08:08:17 +03:00
sensor_slots_power = sr ;
}
if ( sensor_cpu_power & & sensor_cpu_temp & &
sensor_hd_temp & & sensor_slots_power )
wf_smu_all_sensors_ok = 1 ;
}
static int wf_smu_notify ( struct notifier_block * self ,
unsigned long event , void * data )
{
switch ( event ) {
case WF_EVENT_NEW_CONTROL :
DBG ( " wf: new control %s detected \n " ,
( ( struct wf_control * ) data ) - > name ) ;
wf_smu_new_control ( data ) ;
wf_smu_readjust = 1 ;
break ;
case WF_EVENT_NEW_SENSOR :
DBG ( " wf: new sensor %s detected \n " ,
( ( struct wf_sensor * ) data ) - > name ) ;
wf_smu_new_sensor ( data ) ;
break ;
case WF_EVENT_TICK :
if ( wf_smu_all_controls_ok & & wf_smu_all_sensors_ok )
wf_smu_tick ( ) ;
}
return 0 ;
}
static struct notifier_block wf_smu_events = {
. notifier_call = wf_smu_notify ,
} ;
static int wf_init_pm ( void )
{
printk ( KERN_INFO " windfarm: Initializing for Desktop G5 model \n " ) ;
return 0 ;
}
static int wf_smu_probe ( struct device * ddev )
{
wf_smu_dev = ddev ;
wf_register_client ( & wf_smu_events ) ;
return 0 ;
}
static int wf_smu_remove ( struct device * ddev )
{
wf_unregister_client ( & wf_smu_events ) ;
/* XXX We don't have yet a guarantee that our callback isn't
* in progress when returning from wf_unregister_client , so
* we add an arbitrary delay . I ' ll have to fix that in the core
*/
msleep ( 1000 ) ;
/* Release all sensors */
/* One more crappy race: I don't think we have any guarantee here
* that the attribute callback won ' t race with the sensor beeing
* disposed of , and I ' m not 100 % certain what best way to deal
* with that except by adding locks all over . . . I ' ll do that
* eventually but heh , who ever rmmod this module anyway ?
*/
2006-02-08 08:42:51 +03:00
if ( sensor_cpu_power )
2005-11-07 08:08:17 +03:00
wf_put_sensor ( sensor_cpu_power ) ;
2006-02-08 08:42:51 +03:00
if ( sensor_cpu_temp )
2005-11-07 08:08:17 +03:00
wf_put_sensor ( sensor_cpu_temp ) ;
2006-02-08 08:42:51 +03:00
if ( sensor_hd_temp )
2005-11-07 08:08:17 +03:00
wf_put_sensor ( sensor_hd_temp ) ;
2006-02-08 08:42:51 +03:00
if ( sensor_slots_power )
2005-11-07 08:08:17 +03:00
wf_put_sensor ( sensor_slots_power ) ;
/* Release all controls */
2006-02-08 08:42:51 +03:00
if ( fan_cpu_main )
2005-11-07 08:08:17 +03:00
wf_put_control ( fan_cpu_main ) ;
if ( fan_cpu_second )
wf_put_control ( fan_cpu_second ) ;
if ( fan_cpu_third )
wf_put_control ( fan_cpu_third ) ;
2006-02-08 08:42:51 +03:00
if ( fan_hd )
2005-11-07 08:08:17 +03:00
wf_put_control ( fan_hd ) ;
2006-02-08 08:42:51 +03:00
if ( fan_slots )
2005-11-07 08:08:17 +03:00
wf_put_control ( fan_slots ) ;
if ( cpufreq_clamp )
wf_put_control ( cpufreq_clamp ) ;
/* Destroy control loops state structures */
if ( wf_smu_slots_fans )
kfree ( wf_smu_cpu_fans ) ;
if ( wf_smu_drive_fans )
kfree ( wf_smu_cpu_fans ) ;
if ( wf_smu_cpu_fans )
kfree ( wf_smu_cpu_fans ) ;
wf_smu_dev = NULL ;
return 0 ;
}
static struct device_driver wf_smu_driver = {
. name = " windfarm " ,
. bus = & platform_bus_type ,
. probe = wf_smu_probe ,
. remove = wf_smu_remove ,
} ;
static int __init wf_smu_init ( void )
{
int rc = - ENODEV ;
if ( machine_is_compatible ( " PowerMac9,1 " ) )
rc = wf_init_pm ( ) ;
if ( rc = = 0 ) {
# ifdef MODULE
request_module ( " windfarm_smu_controls " ) ;
request_module ( " windfarm_smu_sensors " ) ;
request_module ( " windfarm_lm75_sensor " ) ;
# endif /* MODULE */
driver_register ( & wf_smu_driver ) ;
}
return rc ;
}
static void __exit wf_smu_exit ( void )
{
driver_unregister ( & wf_smu_driver ) ;
}
module_init ( wf_smu_init ) ;
module_exit ( wf_smu_exit ) ;
MODULE_AUTHOR ( " Benjamin Herrenschmidt <benh@kernel.crashing.org> " ) ;
MODULE_DESCRIPTION ( " Thermal control logic for PowerMac9,1 " ) ;
MODULE_LICENSE ( " GPL " ) ;