2015-05-05 17:06:08 +03:00
/*
* Copyright 2015 Linaro .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation .
*/
# include <linux/sched.h>
# include <linux/device.h>
# include <linux/dmaengine.h>
# include <linux/dma-mapping.h>
# include <linux/dmapool.h>
# include <linux/init.h>
# include <linux/interrupt.h>
# include <linux/kernel.h>
# include <linux/module.h>
# include <linux/platform_device.h>
# include <linux/slab.h>
# include <linux/spinlock.h>
# include <linux/of_device.h>
# include <linux/of.h>
# include <linux/clk.h>
# include <linux/of_dma.h>
# include "virt-dma.h"
# define DRIVER_NAME "zx-dma"
# define DMA_ALIGN 4
# define DMA_MAX_SIZE (0x10000 - PAGE_SIZE)
# define LLI_BLOCK_SIZE (4 * PAGE_SIZE)
# define REG_ZX_SRC_ADDR 0x00
# define REG_ZX_DST_ADDR 0x04
# define REG_ZX_TX_X_COUNT 0x08
# define REG_ZX_TX_ZY_COUNT 0x0c
# define REG_ZX_SRC_ZY_STEP 0x10
# define REG_ZX_DST_ZY_STEP 0x14
# define REG_ZX_LLI_ADDR 0x1c
# define REG_ZX_CTRL 0x20
# define REG_ZX_TC_IRQ 0x800
# define REG_ZX_SRC_ERR_IRQ 0x804
# define REG_ZX_DST_ERR_IRQ 0x808
# define REG_ZX_CFG_ERR_IRQ 0x80c
# define REG_ZX_TC_IRQ_RAW 0x810
# define REG_ZX_SRC_ERR_IRQ_RAW 0x814
# define REG_ZX_DST_ERR_IRQ_RAW 0x818
# define REG_ZX_CFG_ERR_IRQ_RAW 0x81c
# define REG_ZX_STATUS 0x820
# define REG_ZX_DMA_GRP_PRIO 0x824
# define REG_ZX_DMA_ARB 0x828
# define ZX_FORCE_CLOSE BIT(31)
# define ZX_DST_BURST_WIDTH(x) (((x) & 0x7) << 13)
# define ZX_MAX_BURST_LEN 16
# define ZX_SRC_BURST_LEN(x) (((x) & 0xf) << 9)
# define ZX_SRC_BURST_WIDTH(x) (((x) & 0x7) << 6)
# define ZX_IRQ_ENABLE_ALL (3 << 4)
# define ZX_DST_FIFO_MODE BIT(3)
# define ZX_SRC_FIFO_MODE BIT(2)
# define ZX_SOFT_REQ BIT(1)
# define ZX_CH_ENABLE BIT(0)
# define ZX_DMA_BUSWIDTHS \
( BIT ( DMA_SLAVE_BUSWIDTH_UNDEFINED ) | \
BIT ( DMA_SLAVE_BUSWIDTH_1_BYTE ) | \
BIT ( DMA_SLAVE_BUSWIDTH_2_BYTES ) | \
BIT ( DMA_SLAVE_BUSWIDTH_4_BYTES ) | \
BIT ( DMA_SLAVE_BUSWIDTH_8_BYTES ) )
enum zx_dma_burst_width {
ZX_DMA_WIDTH_8BIT = 0 ,
ZX_DMA_WIDTH_16BIT = 1 ,
ZX_DMA_WIDTH_32BIT = 2 ,
ZX_DMA_WIDTH_64BIT = 3 ,
} ;
struct zx_desc_hw {
u32 saddr ;
u32 daddr ;
u32 src_x ;
u32 src_zy ;
u32 src_zy_step ;
u32 dst_zy_step ;
u32 reserved1 ;
u32 lli ;
u32 ctr ;
u32 reserved [ 7 ] ; /* pack as hardware registers region size */
} __aligned ( 32 ) ;
struct zx_dma_desc_sw {
struct virt_dma_desc vd ;
dma_addr_t desc_hw_lli ;
size_t desc_num ;
size_t size ;
struct zx_desc_hw * desc_hw ;
} ;
struct zx_dma_phy ;
struct zx_dma_chan {
struct dma_slave_config slave_cfg ;
int id ; /* Request phy chan id */
u32 ccfg ;
2015-07-21 06:01:06 +03:00
u32 cyclic ;
2015-05-05 17:06:08 +03:00
struct virt_dma_chan vc ;
struct zx_dma_phy * phy ;
struct list_head node ;
dma_addr_t dev_addr ;
enum dma_status status ;
} ;
struct zx_dma_phy {
u32 idx ;
void __iomem * base ;
struct zx_dma_chan * vchan ;
struct zx_dma_desc_sw * ds_run ;
struct zx_dma_desc_sw * ds_done ;
} ;
struct zx_dma_dev {
struct dma_device slave ;
void __iomem * base ;
spinlock_t lock ; /* lock for ch and phy */
struct list_head chan_pending ;
struct zx_dma_phy * phy ;
struct zx_dma_chan * chans ;
struct clk * clk ;
struct dma_pool * pool ;
u32 dma_channels ;
u32 dma_requests ;
2015-05-18 13:03:13 +03:00
int irq ;
2015-05-05 17:06:08 +03:00
} ;
# define to_zx_dma(dmadev) container_of(dmadev, struct zx_dma_dev, slave)
static struct zx_dma_chan * to_zx_chan ( struct dma_chan * chan )
{
return container_of ( chan , struct zx_dma_chan , vc . chan ) ;
}
static void zx_dma_terminate_chan ( struct zx_dma_phy * phy , struct zx_dma_dev * d )
{
u32 val = 0 ;
val = readl_relaxed ( phy - > base + REG_ZX_CTRL ) ;
val & = ~ ZX_CH_ENABLE ;
2015-08-05 08:23:27 +03:00
val | = ZX_FORCE_CLOSE ;
2015-05-05 17:06:08 +03:00
writel_relaxed ( val , phy - > base + REG_ZX_CTRL ) ;
val = 0x1 < < phy - > idx ;
writel_relaxed ( val , d - > base + REG_ZX_TC_IRQ_RAW ) ;
writel_relaxed ( val , d - > base + REG_ZX_SRC_ERR_IRQ_RAW ) ;
writel_relaxed ( val , d - > base + REG_ZX_DST_ERR_IRQ_RAW ) ;
writel_relaxed ( val , d - > base + REG_ZX_CFG_ERR_IRQ_RAW ) ;
}
static void zx_dma_set_desc ( struct zx_dma_phy * phy , struct zx_desc_hw * hw )
{
writel_relaxed ( hw - > saddr , phy - > base + REG_ZX_SRC_ADDR ) ;
writel_relaxed ( hw - > daddr , phy - > base + REG_ZX_DST_ADDR ) ;
writel_relaxed ( hw - > src_x , phy - > base + REG_ZX_TX_X_COUNT ) ;
writel_relaxed ( 0 , phy - > base + REG_ZX_TX_ZY_COUNT ) ;
writel_relaxed ( 0 , phy - > base + REG_ZX_SRC_ZY_STEP ) ;
writel_relaxed ( 0 , phy - > base + REG_ZX_DST_ZY_STEP ) ;
writel_relaxed ( hw - > lli , phy - > base + REG_ZX_LLI_ADDR ) ;
writel_relaxed ( hw - > ctr , phy - > base + REG_ZX_CTRL ) ;
}
static u32 zx_dma_get_curr_lli ( struct zx_dma_phy * phy )
{
return readl_relaxed ( phy - > base + REG_ZX_LLI_ADDR ) ;
}
static u32 zx_dma_get_chan_stat ( struct zx_dma_dev * d )
{
return readl_relaxed ( d - > base + REG_ZX_STATUS ) ;
}
static void zx_dma_init_state ( struct zx_dma_dev * d )
{
/* set same priority */
writel_relaxed ( 0x0 , d - > base + REG_ZX_DMA_ARB ) ;
/* clear all irq */
writel_relaxed ( 0xffffffff , d - > base + REG_ZX_TC_IRQ_RAW ) ;
writel_relaxed ( 0xffffffff , d - > base + REG_ZX_SRC_ERR_IRQ_RAW ) ;
writel_relaxed ( 0xffffffff , d - > base + REG_ZX_DST_ERR_IRQ_RAW ) ;
writel_relaxed ( 0xffffffff , d - > base + REG_ZX_CFG_ERR_IRQ_RAW ) ;
}
static int zx_dma_start_txd ( struct zx_dma_chan * c )
{
struct zx_dma_dev * d = to_zx_dma ( c - > vc . chan . device ) ;
struct virt_dma_desc * vd = vchan_next_desc ( & c - > vc ) ;
if ( ! c - > phy )
return - EAGAIN ;
if ( BIT ( c - > phy - > idx ) & zx_dma_get_chan_stat ( d ) )
return - EAGAIN ;
if ( vd ) {
struct zx_dma_desc_sw * ds =
container_of ( vd , struct zx_dma_desc_sw , vd ) ;
/*
* fetch and remove request from vc - > desc_issued
* so vc - > desc_issued only contains desc pending
*/
list_del ( & ds - > vd . node ) ;
c - > phy - > ds_run = ds ;
c - > phy - > ds_done = NULL ;
/* start dma */
zx_dma_set_desc ( c - > phy , ds - > desc_hw ) ;
return 0 ;
}
c - > phy - > ds_done = NULL ;
c - > phy - > ds_run = NULL ;
return - EAGAIN ;
}
static void zx_dma_task ( struct zx_dma_dev * d )
{
struct zx_dma_phy * p ;
struct zx_dma_chan * c , * cn ;
unsigned pch , pch_alloc = 0 ;
unsigned long flags ;
/* check new dma request of running channel in vc->desc_issued */
list_for_each_entry_safe ( c , cn , & d - > slave . channels ,
vc . chan . device_node ) {
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
p = c - > phy ;
if ( p & & p - > ds_done & & zx_dma_start_txd ( c ) ) {
/* No current txd associated with this channel */
dev_dbg ( d - > slave . dev , " pchan %u: free \n " , p - > idx ) ;
/* Mark this channel free */
c - > phy = NULL ;
p - > vchan = NULL ;
}
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
}
/* check new channel request in d->chan_pending */
spin_lock_irqsave ( & d - > lock , flags ) ;
while ( ! list_empty ( & d - > chan_pending ) ) {
c = list_first_entry ( & d - > chan_pending ,
struct zx_dma_chan , node ) ;
p = & d - > phy [ c - > id ] ;
if ( ! p - > vchan ) {
/* remove from d->chan_pending */
list_del_init ( & c - > node ) ;
pch_alloc | = 1 < < c - > id ;
/* Mark this channel allocated */
p - > vchan = c ;
c - > phy = p ;
} else {
dev_dbg ( d - > slave . dev , " pchan %u: busy! \n " , c - > id ) ;
}
}
spin_unlock_irqrestore ( & d - > lock , flags ) ;
for ( pch = 0 ; pch < d - > dma_channels ; pch + + ) {
if ( pch_alloc & ( 1 < < pch ) ) {
p = & d - > phy [ pch ] ;
c = p - > vchan ;
if ( c ) {
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
zx_dma_start_txd ( c ) ;
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
}
}
}
}
static irqreturn_t zx_dma_int_handler ( int irq , void * dev_id )
{
struct zx_dma_dev * d = ( struct zx_dma_dev * ) dev_id ;
struct zx_dma_phy * p ;
struct zx_dma_chan * c ;
u32 tc = readl_relaxed ( d - > base + REG_ZX_TC_IRQ ) ;
u32 serr = readl_relaxed ( d - > base + REG_ZX_SRC_ERR_IRQ ) ;
u32 derr = readl_relaxed ( d - > base + REG_ZX_DST_ERR_IRQ ) ;
u32 cfg = readl_relaxed ( d - > base + REG_ZX_CFG_ERR_IRQ ) ;
2015-07-21 06:01:06 +03:00
u32 i , irq_chan = 0 , task = 0 ;
2015-05-05 17:06:08 +03:00
while ( tc ) {
i = __ffs ( tc ) ;
tc & = ~ BIT ( i ) ;
p = & d - > phy [ i ] ;
c = p - > vchan ;
if ( c ) {
unsigned long flags ;
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
2015-07-21 06:01:06 +03:00
if ( c - > cyclic ) {
vchan_cyclic_callback ( & p - > ds_run - > vd ) ;
} else {
vchan_cookie_complete ( & p - > ds_run - > vd ) ;
p - > ds_done = p - > ds_run ;
task = 1 ;
}
2015-05-05 17:06:08 +03:00
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
2015-07-21 06:01:06 +03:00
irq_chan | = BIT ( i ) ;
2015-05-05 17:06:08 +03:00
}
}
if ( serr | | derr | | cfg )
dev_warn ( d - > slave . dev , " DMA ERR src 0x%x, dst 0x%x, cfg 0x%x \n " ,
serr , derr , cfg ) ;
writel_relaxed ( irq_chan , d - > base + REG_ZX_TC_IRQ_RAW ) ;
writel_relaxed ( serr , d - > base + REG_ZX_SRC_ERR_IRQ_RAW ) ;
writel_relaxed ( derr , d - > base + REG_ZX_DST_ERR_IRQ_RAW ) ;
writel_relaxed ( cfg , d - > base + REG_ZX_CFG_ERR_IRQ_RAW ) ;
2015-07-21 06:01:06 +03:00
if ( task )
2015-05-05 17:06:08 +03:00
zx_dma_task ( d ) ;
2015-07-21 06:01:06 +03:00
return IRQ_HANDLED ;
2015-05-05 17:06:08 +03:00
}
static void zx_dma_free_chan_resources ( struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_dev * d = to_zx_dma ( chan - > device ) ;
unsigned long flags ;
spin_lock_irqsave ( & d - > lock , flags ) ;
list_del_init ( & c - > node ) ;
spin_unlock_irqrestore ( & d - > lock , flags ) ;
vchan_free_chan_resources ( & c - > vc ) ;
c - > ccfg = 0 ;
}
static enum dma_status zx_dma_tx_status ( struct dma_chan * chan ,
dma_cookie_t cookie ,
struct dma_tx_state * state )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_phy * p ;
struct virt_dma_desc * vd ;
unsigned long flags ;
enum dma_status ret ;
size_t bytes = 0 ;
ret = dma_cookie_status ( & c - > vc . chan , cookie , state ) ;
if ( ret = = DMA_COMPLETE | | ! state )
return ret ;
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
p = c - > phy ;
ret = c - > status ;
/*
* If the cookie is on our issue queue , then the residue is
* its total size .
*/
vd = vchan_find_desc ( & c - > vc , cookie ) ;
if ( vd ) {
bytes = container_of ( vd , struct zx_dma_desc_sw , vd ) - > size ;
} else if ( ( ! p ) | | ( ! p - > ds_run ) ) {
bytes = 0 ;
} else {
struct zx_dma_desc_sw * ds = p - > ds_run ;
u32 clli = 0 , index = 0 ;
bytes = 0 ;
clli = zx_dma_get_curr_lli ( p ) ;
index = ( clli - ds - > desc_hw_lli ) / sizeof ( struct zx_desc_hw ) ;
for ( ; index < ds - > desc_num ; index + + ) {
bytes + = ds - > desc_hw [ index ] . src_x ;
/* end of lli */
if ( ! ds - > desc_hw [ index ] . lli )
break ;
}
}
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
dma_set_residue ( state , bytes ) ;
return ret ;
}
static void zx_dma_issue_pending ( struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_dev * d = to_zx_dma ( chan - > device ) ;
unsigned long flags ;
int issue = 0 ;
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
/* add request to vc->desc_issued */
if ( vchan_issue_pending ( & c - > vc ) ) {
spin_lock ( & d - > lock ) ;
if ( ! c - > phy & & list_empty ( & c - > node ) ) {
/* if new channel, add chan_pending */
list_add_tail ( & c - > node , & d - > chan_pending ) ;
issue = 1 ;
dev_dbg ( d - > slave . dev , " vchan %p: issued \n " , & c - > vc ) ;
}
spin_unlock ( & d - > lock ) ;
} else {
dev_dbg ( d - > slave . dev , " vchan %p: nothing to issue \n " , & c - > vc ) ;
}
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
if ( issue )
zx_dma_task ( d ) ;
}
static void zx_dma_fill_desc ( struct zx_dma_desc_sw * ds , dma_addr_t dst ,
dma_addr_t src , size_t len , u32 num , u32 ccfg )
{
if ( ( num + 1 ) < ds - > desc_num )
ds - > desc_hw [ num ] . lli = ds - > desc_hw_lli + ( num + 1 ) *
sizeof ( struct zx_desc_hw ) ;
ds - > desc_hw [ num ] . saddr = src ;
ds - > desc_hw [ num ] . daddr = dst ;
ds - > desc_hw [ num ] . src_x = len ;
ds - > desc_hw [ num ] . ctr = ccfg ;
}
static struct zx_dma_desc_sw * zx_alloc_desc_resource ( int num ,
struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_desc_sw * ds ;
struct zx_dma_dev * d = to_zx_dma ( chan - > device ) ;
int lli_limit = LLI_BLOCK_SIZE / sizeof ( struct zx_desc_hw ) ;
if ( num > lli_limit ) {
dev_dbg ( chan - > device - > dev , " vch %p: sg num %d exceed max %d \n " ,
& c - > vc , num , lli_limit ) ;
return NULL ;
}
ds = kzalloc ( sizeof ( * ds ) , GFP_ATOMIC ) ;
if ( ! ds )
return NULL ;
ds - > desc_hw = dma_pool_alloc ( d - > pool , GFP_NOWAIT , & ds - > desc_hw_lli ) ;
if ( ! ds - > desc_hw ) {
dev_dbg ( chan - > device - > dev , " vch %p: dma alloc fail \n " , & c - > vc ) ;
kfree ( ds ) ;
return NULL ;
}
memset ( ds - > desc_hw , sizeof ( struct zx_desc_hw ) * num , 0 ) ;
ds - > desc_num = num ;
return ds ;
}
static enum zx_dma_burst_width zx_dma_burst_width ( enum dma_slave_buswidth width )
{
switch ( width ) {
case DMA_SLAVE_BUSWIDTH_1_BYTE :
case DMA_SLAVE_BUSWIDTH_2_BYTES :
case DMA_SLAVE_BUSWIDTH_4_BYTES :
case DMA_SLAVE_BUSWIDTH_8_BYTES :
return ffs ( width ) - 1 ;
default :
return ZX_DMA_WIDTH_32BIT ;
}
}
static int zx_pre_config ( struct zx_dma_chan * c , enum dma_transfer_direction dir )
{
struct dma_slave_config * cfg = & c - > slave_cfg ;
enum zx_dma_burst_width src_width ;
enum zx_dma_burst_width dst_width ;
u32 maxburst = 0 ;
switch ( dir ) {
case DMA_MEM_TO_MEM :
c - > ccfg = ZX_CH_ENABLE | ZX_SOFT_REQ
| ZX_SRC_BURST_LEN ( ZX_MAX_BURST_LEN - 1 )
| ZX_SRC_BURST_WIDTH ( ZX_DMA_WIDTH_32BIT )
| ZX_DST_BURST_WIDTH ( ZX_DMA_WIDTH_32BIT ) ;
break ;
case DMA_MEM_TO_DEV :
c - > dev_addr = cfg - > dst_addr ;
/* dst len is calculated from src width, len and dst width.
* We need make sure dst len not exceed MAX LEN .
2015-08-05 08:23:26 +03:00
* Trailing single transaction that does not fill a full
* burst also require identical src / dst data width .
2015-05-05 17:06:08 +03:00
*/
dst_width = zx_dma_burst_width ( cfg - > dst_addr_width ) ;
2015-08-05 08:23:26 +03:00
maxburst = cfg - > dst_maxburst ;
2015-05-05 17:06:08 +03:00
maxburst = maxburst < ZX_MAX_BURST_LEN ?
maxburst : ZX_MAX_BURST_LEN ;
c - > ccfg = ZX_DST_FIFO_MODE | ZX_CH_ENABLE
| ZX_SRC_BURST_LEN ( maxburst - 1 )
2015-08-05 08:23:26 +03:00
| ZX_SRC_BURST_WIDTH ( dst_width )
2015-05-05 17:06:08 +03:00
| ZX_DST_BURST_WIDTH ( dst_width ) ;
break ;
case DMA_DEV_TO_MEM :
c - > dev_addr = cfg - > src_addr ;
src_width = zx_dma_burst_width ( cfg - > src_addr_width ) ;
maxburst = cfg - > src_maxburst ;
maxburst = maxburst < ZX_MAX_BURST_LEN ?
maxburst : ZX_MAX_BURST_LEN ;
c - > ccfg = ZX_SRC_FIFO_MODE | ZX_CH_ENABLE
| ZX_SRC_BURST_LEN ( maxburst - 1 )
| ZX_SRC_BURST_WIDTH ( src_width )
2015-08-05 08:23:26 +03:00
| ZX_DST_BURST_WIDTH ( src_width ) ;
2015-05-05 17:06:08 +03:00
break ;
default :
return - EINVAL ;
}
return 0 ;
}
static struct dma_async_tx_descriptor * zx_dma_prep_memcpy (
struct dma_chan * chan , dma_addr_t dst , dma_addr_t src ,
size_t len , unsigned long flags )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_desc_sw * ds ;
size_t copy = 0 ;
int num = 0 ;
if ( ! len )
return NULL ;
if ( zx_pre_config ( c , DMA_MEM_TO_MEM ) )
return NULL ;
num = DIV_ROUND_UP ( len , DMA_MAX_SIZE ) ;
ds = zx_alloc_desc_resource ( num , chan ) ;
if ( ! ds )
return NULL ;
ds - > size = len ;
num = 0 ;
do {
copy = min_t ( size_t , len , DMA_MAX_SIZE ) ;
zx_dma_fill_desc ( ds , dst , src , copy , num + + , c - > ccfg ) ;
src + = copy ;
dst + = copy ;
len - = copy ;
} while ( len ) ;
2015-07-21 06:01:06 +03:00
c - > cyclic = 0 ;
2015-05-05 17:06:08 +03:00
ds - > desc_hw [ num - 1 ] . lli = 0 ; /* end of link */
ds - > desc_hw [ num - 1 ] . ctr | = ZX_IRQ_ENABLE_ALL ;
return vchan_tx_prep ( & c - > vc , & ds - > vd , flags ) ;
}
static struct dma_async_tx_descriptor * zx_dma_prep_slave_sg (
struct dma_chan * chan , struct scatterlist * sgl , unsigned int sglen ,
enum dma_transfer_direction dir , unsigned long flags , void * context )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_desc_sw * ds ;
size_t len , avail , total = 0 ;
struct scatterlist * sg ;
dma_addr_t addr , src = 0 , dst = 0 ;
int num = sglen , i ;
if ( ! sgl )
return NULL ;
if ( zx_pre_config ( c , dir ) )
return NULL ;
for_each_sg ( sgl , sg , sglen , i ) {
avail = sg_dma_len ( sg ) ;
if ( avail > DMA_MAX_SIZE )
num + = DIV_ROUND_UP ( avail , DMA_MAX_SIZE ) - 1 ;
}
ds = zx_alloc_desc_resource ( num , chan ) ;
if ( ! ds )
return NULL ;
2015-07-21 06:01:06 +03:00
c - > cyclic = 0 ;
2015-05-05 17:06:08 +03:00
num = 0 ;
for_each_sg ( sgl , sg , sglen , i ) {
addr = sg_dma_address ( sg ) ;
avail = sg_dma_len ( sg ) ;
total + = avail ;
do {
len = min_t ( size_t , avail , DMA_MAX_SIZE ) ;
if ( dir = = DMA_MEM_TO_DEV ) {
src = addr ;
dst = c - > dev_addr ;
} else if ( dir = = DMA_DEV_TO_MEM ) {
src = c - > dev_addr ;
dst = addr ;
}
zx_dma_fill_desc ( ds , dst , src , len , num + + , c - > ccfg ) ;
addr + = len ;
avail - = len ;
} while ( avail ) ;
}
ds - > desc_hw [ num - 1 ] . lli = 0 ; /* end of link */
ds - > desc_hw [ num - 1 ] . ctr | = ZX_IRQ_ENABLE_ALL ;
ds - > size = total ;
return vchan_tx_prep ( & c - > vc , & ds - > vd , flags ) ;
}
2015-07-21 06:01:06 +03:00
static struct dma_async_tx_descriptor * zx_dma_prep_dma_cyclic (
struct dma_chan * chan , dma_addr_t dma_addr , size_t buf_len ,
size_t period_len , enum dma_transfer_direction dir ,
unsigned long flags )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_desc_sw * ds ;
dma_addr_t src = 0 , dst = 0 ;
int num_periods = buf_len / period_len ;
int buf = 0 , num = 0 ;
if ( period_len > DMA_MAX_SIZE ) {
dev_err ( chan - > device - > dev , " maximum period size exceeded \n " ) ;
return NULL ;
}
if ( zx_pre_config ( c , dir ) )
return NULL ;
ds = zx_alloc_desc_resource ( num_periods , chan ) ;
if ( ! ds )
return NULL ;
c - > cyclic = 1 ;
while ( buf < buf_len ) {
if ( dir = = DMA_MEM_TO_DEV ) {
src = dma_addr ;
dst = c - > dev_addr ;
} else if ( dir = = DMA_DEV_TO_MEM ) {
src = c - > dev_addr ;
dst = dma_addr ;
}
zx_dma_fill_desc ( ds , dst , src , period_len , num + + ,
c - > ccfg | ZX_IRQ_ENABLE_ALL ) ;
dma_addr + = period_len ;
buf + = period_len ;
}
ds - > desc_hw [ num - 1 ] . lli = ds - > desc_hw_lli ;
ds - > size = buf_len ;
return vchan_tx_prep ( & c - > vc , & ds - > vd , flags ) ;
}
2015-05-05 17:06:08 +03:00
static int zx_dma_config ( struct dma_chan * chan ,
struct dma_slave_config * cfg )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
if ( ! cfg )
return - EINVAL ;
memcpy ( & c - > slave_cfg , cfg , sizeof ( * cfg ) ) ;
return 0 ;
}
static int zx_dma_terminate_all ( struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
struct zx_dma_dev * d = to_zx_dma ( chan - > device ) ;
struct zx_dma_phy * p = c - > phy ;
unsigned long flags ;
LIST_HEAD ( head ) ;
dev_dbg ( d - > slave . dev , " vchan %p: terminate all \n " , & c - > vc ) ;
/* Prevent this channel being scheduled */
spin_lock ( & d - > lock ) ;
list_del_init ( & c - > node ) ;
spin_unlock ( & d - > lock ) ;
/* Clear the tx descriptor lists */
spin_lock_irqsave ( & c - > vc . lock , flags ) ;
vchan_get_all_descriptors ( & c - > vc , & head ) ;
if ( p ) {
/* vchan is assigned to a pchan - stop the channel */
zx_dma_terminate_chan ( p , d ) ;
c - > phy = NULL ;
p - > vchan = NULL ;
p - > ds_run = NULL ;
p - > ds_done = NULL ;
}
spin_unlock_irqrestore ( & c - > vc . lock , flags ) ;
vchan_dma_desc_free_list ( & c - > vc , & head ) ;
return 0 ;
}
2015-07-21 06:01:06 +03:00
static int zx_dma_transfer_pause ( struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
u32 val = 0 ;
val = readl_relaxed ( c - > phy - > base + REG_ZX_CTRL ) ;
val & = ~ ZX_CH_ENABLE ;
writel_relaxed ( val , c - > phy - > base + REG_ZX_CTRL ) ;
return 0 ;
}
static int zx_dma_transfer_resume ( struct dma_chan * chan )
{
struct zx_dma_chan * c = to_zx_chan ( chan ) ;
u32 val = 0 ;
val = readl_relaxed ( c - > phy - > base + REG_ZX_CTRL ) ;
val | = ZX_CH_ENABLE ;
writel_relaxed ( val , c - > phy - > base + REG_ZX_CTRL ) ;
return 0 ;
}
2015-05-05 17:06:08 +03:00
static void zx_dma_free_desc ( struct virt_dma_desc * vd )
{
struct zx_dma_desc_sw * ds =
container_of ( vd , struct zx_dma_desc_sw , vd ) ;
struct zx_dma_dev * d = to_zx_dma ( vd - > tx . chan - > device ) ;
dma_pool_free ( d - > pool , ds - > desc_hw , ds - > desc_hw_lli ) ;
kfree ( ds ) ;
}
static const struct of_device_id zx6702_dma_dt_ids [ ] = {
{ . compatible = " zte,zx296702-dma " , } ,
{ }
} ;
MODULE_DEVICE_TABLE ( of , zx6702_dma_dt_ids ) ;
static struct dma_chan * zx_of_dma_simple_xlate ( struct of_phandle_args * dma_spec ,
struct of_dma * ofdma )
{
struct zx_dma_dev * d = ofdma - > of_dma_data ;
unsigned int request = dma_spec - > args [ 0 ] ;
struct dma_chan * chan ;
struct zx_dma_chan * c ;
if ( request > d - > dma_requests )
return NULL ;
chan = dma_get_any_slave_channel ( & d - > slave ) ;
if ( ! chan ) {
dev_err ( d - > slave . dev , " get channel fail in %s. \n " , __func__ ) ;
return NULL ;
}
c = to_zx_chan ( chan ) ;
c - > id = request ;
dev_info ( d - > slave . dev , " zx_dma: pchan %u: alloc vchan %p \n " ,
c - > id , & c - > vc ) ;
return chan ;
}
static int zx_dma_probe ( struct platform_device * op )
{
struct zx_dma_dev * d ;
struct resource * iores ;
2015-05-18 13:03:13 +03:00
int i , ret = 0 ;
2015-05-05 17:06:08 +03:00
iores = platform_get_resource ( op , IORESOURCE_MEM , 0 ) ;
if ( ! iores )
return - EINVAL ;
d = devm_kzalloc ( & op - > dev , sizeof ( * d ) , GFP_KERNEL ) ;
if ( ! d )
return - ENOMEM ;
d - > base = devm_ioremap_resource ( & op - > dev , iores ) ;
if ( IS_ERR ( d - > base ) )
return PTR_ERR ( d - > base ) ;
of_property_read_u32 ( ( & op - > dev ) - > of_node ,
" dma-channels " , & d - > dma_channels ) ;
of_property_read_u32 ( ( & op - > dev ) - > of_node ,
" dma-requests " , & d - > dma_requests ) ;
if ( ! d - > dma_requests | | ! d - > dma_channels )
return - EINVAL ;
d - > clk = devm_clk_get ( & op - > dev , NULL ) ;
if ( IS_ERR ( d - > clk ) ) {
dev_err ( & op - > dev , " no dma clk \n " ) ;
return PTR_ERR ( d - > clk ) ;
}
2015-05-18 13:03:13 +03:00
d - > irq = platform_get_irq ( op , 0 ) ;
ret = devm_request_irq ( & op - > dev , d - > irq , zx_dma_int_handler ,
2015-05-05 17:06:08 +03:00
0 , DRIVER_NAME , d ) ;
if ( ret )
return ret ;
/* A DMA memory pool for LLIs, align on 32-byte boundary */
d - > pool = dmam_pool_create ( DRIVER_NAME , & op - > dev ,
LLI_BLOCK_SIZE , 32 , 0 ) ;
if ( ! d - > pool )
return - ENOMEM ;
/* init phy channel */
d - > phy = devm_kzalloc ( & op - > dev ,
d - > dma_channels * sizeof ( struct zx_dma_phy ) , GFP_KERNEL ) ;
if ( ! d - > phy )
return - ENOMEM ;
for ( i = 0 ; i < d - > dma_channels ; i + + ) {
struct zx_dma_phy * p = & d - > phy [ i ] ;
p - > idx = i ;
p - > base = d - > base + i * 0x40 ;
}
INIT_LIST_HEAD ( & d - > slave . channels ) ;
dma_cap_set ( DMA_SLAVE , d - > slave . cap_mask ) ;
dma_cap_set ( DMA_MEMCPY , d - > slave . cap_mask ) ;
dma_cap_set ( DMA_PRIVATE , d - > slave . cap_mask ) ;
d - > slave . dev = & op - > dev ;
d - > slave . device_free_chan_resources = zx_dma_free_chan_resources ;
d - > slave . device_tx_status = zx_dma_tx_status ;
d - > slave . device_prep_dma_memcpy = zx_dma_prep_memcpy ;
d - > slave . device_prep_slave_sg = zx_dma_prep_slave_sg ;
2015-07-21 06:01:06 +03:00
d - > slave . device_prep_dma_cyclic = zx_dma_prep_dma_cyclic ;
2015-05-05 17:06:08 +03:00
d - > slave . device_issue_pending = zx_dma_issue_pending ;
d - > slave . device_config = zx_dma_config ;
d - > slave . device_terminate_all = zx_dma_terminate_all ;
2015-07-21 06:01:06 +03:00
d - > slave . device_pause = zx_dma_transfer_pause ;
d - > slave . device_resume = zx_dma_transfer_resume ;
2015-05-05 17:06:08 +03:00
d - > slave . copy_align = DMA_ALIGN ;
d - > slave . src_addr_widths = ZX_DMA_BUSWIDTHS ;
d - > slave . dst_addr_widths = ZX_DMA_BUSWIDTHS ;
d - > slave . directions = BIT ( DMA_MEM_TO_MEM ) | BIT ( DMA_MEM_TO_DEV )
| BIT ( DMA_DEV_TO_MEM ) ;
d - > slave . residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT ;
/* init virtual channel */
d - > chans = devm_kzalloc ( & op - > dev ,
d - > dma_requests * sizeof ( struct zx_dma_chan ) , GFP_KERNEL ) ;
if ( ! d - > chans )
return - ENOMEM ;
for ( i = 0 ; i < d - > dma_requests ; i + + ) {
struct zx_dma_chan * c = & d - > chans [ i ] ;
c - > status = DMA_IN_PROGRESS ;
INIT_LIST_HEAD ( & c - > node ) ;
c - > vc . desc_free = zx_dma_free_desc ;
vchan_init ( & c - > vc , & d - > slave ) ;
}
/* Enable clock before accessing registers */
ret = clk_prepare_enable ( d - > clk ) ;
if ( ret < 0 ) {
dev_err ( & op - > dev , " clk_prepare_enable failed: %d \n " , ret ) ;
goto zx_dma_out ;
}
zx_dma_init_state ( d ) ;
spin_lock_init ( & d - > lock ) ;
INIT_LIST_HEAD ( & d - > chan_pending ) ;
platform_set_drvdata ( op , d ) ;
ret = dma_async_device_register ( & d - > slave ) ;
if ( ret )
goto clk_dis ;
ret = of_dma_controller_register ( ( & op - > dev ) - > of_node ,
zx_of_dma_simple_xlate , d ) ;
if ( ret )
goto of_dma_register_fail ;
dev_info ( & op - > dev , " initialized \n " ) ;
return 0 ;
of_dma_register_fail :
dma_async_device_unregister ( & d - > slave ) ;
clk_dis :
clk_disable_unprepare ( d - > clk ) ;
zx_dma_out :
return ret ;
}
static int zx_dma_remove ( struct platform_device * op )
{
struct zx_dma_chan * c , * cn ;
struct zx_dma_dev * d = platform_get_drvdata ( op ) ;
2015-05-18 13:03:13 +03:00
/* explictly free the irq */
devm_free_irq ( & op - > dev , d - > irq , d ) ;
2015-05-05 17:06:08 +03:00
dma_async_device_unregister ( & d - > slave ) ;
of_dma_controller_free ( ( & op - > dev ) - > of_node ) ;
list_for_each_entry_safe ( c , cn , & d - > slave . channels ,
vc . chan . device_node ) {
list_del ( & c - > vc . chan . device_node ) ;
}
clk_disable_unprepare ( d - > clk ) ;
dmam_pool_destroy ( d - > pool ) ;
return 0 ;
}
# ifdef CONFIG_PM_SLEEP
static int zx_dma_suspend_dev ( struct device * dev )
{
struct zx_dma_dev * d = dev_get_drvdata ( dev ) ;
u32 stat = 0 ;
stat = zx_dma_get_chan_stat ( d ) ;
if ( stat ) {
dev_warn ( d - > slave . dev ,
" chan %d is running fail to suspend \n " , stat ) ;
return - 1 ;
}
clk_disable_unprepare ( d - > clk ) ;
return 0 ;
}
static int zx_dma_resume_dev ( struct device * dev )
{
struct zx_dma_dev * d = dev_get_drvdata ( dev ) ;
int ret = 0 ;
ret = clk_prepare_enable ( d - > clk ) ;
if ( ret < 0 ) {
dev_err ( d - > slave . dev , " clk_prepare_enable failed: %d \n " , ret ) ;
return ret ;
}
zx_dma_init_state ( d ) ;
return 0 ;
}
# endif
static SIMPLE_DEV_PM_OPS ( zx_dma_pmops , zx_dma_suspend_dev , zx_dma_resume_dev ) ;
static struct platform_driver zx_pdma_driver = {
. driver = {
. name = DRIVER_NAME ,
. pm = & zx_dma_pmops ,
. of_match_table = zx6702_dma_dt_ids ,
} ,
. probe = zx_dma_probe ,
. remove = zx_dma_remove ,
} ;
module_platform_driver ( zx_pdma_driver ) ;
MODULE_DESCRIPTION ( " ZTE ZX296702 DMA Driver " ) ;
MODULE_AUTHOR ( " Jun Nie jun.nie@linaro.org " ) ;
MODULE_LICENSE ( " GPL v2 " ) ;