linux/drivers/mtd/tests/pagetest.c

462 lines
10 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2006-2008 Nokia Corporation
*
* Test page read and write on MTD device.
*
* Author: Adrian Hunter <ext-adrian.hunter@nokia.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <asm/div64.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/err.h>
#include <linux/mtd/mtd.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/random.h>
#include "mtd_test.h"
static int dev = -EINVAL;
module_param(dev, int, S_IRUGO);
MODULE_PARM_DESC(dev, "MTD device number to use");
static struct mtd_info *mtd;
static unsigned char *twopages;
static unsigned char *writebuf;
static unsigned char *boundary;
static unsigned char *bbt;
static int pgsize;
static int bufsize;
static int ebcnt;
static int pgcnt;
static int errcnt;
static struct rnd_state rnd_state;
static int write_eraseblock(int ebnum)
{
loff_t addr = (loff_t)ebnum * mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize);
cond_resched();
return mtdtest_write(mtd, addr, mtd->erasesize, writebuf);
}
static int verify_eraseblock(int ebnum)
{
uint32_t j;
int err = 0, i;
loff_t addr0, addrn;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
addr0 = 0;
for (i = 0; i < ebcnt && bbt[i]; ++i)
addr0 += mtd->erasesize;
addrn = mtd->size;
for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i)
addrn -= mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize);
for (j = 0; j < pgcnt - 1; ++j, addr += pgsize) {
/* Do a read to set the internal dataRAMs to different data */
err = mtdtest_read(mtd, addr0, bufsize, twopages);
if (err)
return err;
err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages);
if (err)
return err;
memset(twopages, 0, bufsize);
err = mtdtest_read(mtd, addr, bufsize, twopages);
if (err)
break;
if (memcmp(twopages, writebuf + (j * pgsize), bufsize)) {
pr_err("error: verify failed at %#llx\n",
(long long)addr);
errcnt += 1;
}
}
/* Check boundary between eraseblocks */
if (addr <= addrn - pgsize - pgsize && !bbt[ebnum + 1]) {
struct rnd_state old_state = rnd_state;
/* Do a read to set the internal dataRAMs to different data */
err = mtdtest_read(mtd, addr0, bufsize, twopages);
if (err)
return err;
err = mtdtest_read(mtd, addrn - bufsize, bufsize, twopages);
if (err)
return err;
memset(twopages, 0, bufsize);
err = mtdtest_read(mtd, addr, bufsize, twopages);
if (err)
return err;
memcpy(boundary, writebuf + mtd->erasesize - pgsize, pgsize);
prandom_bytes_state(&rnd_state, boundary + pgsize, pgsize);
if (memcmp(twopages, boundary, bufsize)) {
pr_err("error: verify failed at %#llx\n",
(long long)addr);
errcnt += 1;
}
rnd_state = old_state;
}
return err;
}
static int crosstest(void)
{
int err = 0, i;
loff_t addr, addr0, addrn;
unsigned char *pp1, *pp2, *pp3, *pp4;
pr_info("crosstest\n");
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 00:03:40 +03:00
pp1 = kcalloc(pgsize, 4, GFP_KERNEL);
if (!pp1)
return -ENOMEM;
pp2 = pp1 + pgsize;
pp3 = pp2 + pgsize;
pp4 = pp3 + pgsize;
addr0 = 0;
for (i = 0; i < ebcnt && bbt[i]; ++i)
addr0 += mtd->erasesize;
addrn = mtd->size;
for (i = 0; i < ebcnt && bbt[ebcnt - i - 1]; ++i)
addrn -= mtd->erasesize;
/* Read 2nd-to-last page to pp1 */
addr = addrn - pgsize - pgsize;
err = mtdtest_read(mtd, addr, pgsize, pp1);
if (err) {
kfree(pp1);
return err;
}
/* Read 3rd-to-last page to pp1 */
addr = addrn - pgsize - pgsize - pgsize;
err = mtdtest_read(mtd, addr, pgsize, pp1);
if (err) {
kfree(pp1);
return err;
}
/* Read first page to pp2 */
addr = addr0;
pr_info("reading page at %#llx\n", (long long)addr);
err = mtdtest_read(mtd, addr, pgsize, pp2);
if (err) {
kfree(pp1);
return err;
}
/* Read last page to pp3 */
addr = addrn - pgsize;
pr_info("reading page at %#llx\n", (long long)addr);
err = mtdtest_read(mtd, addr, pgsize, pp3);
if (err) {
kfree(pp1);
return err;
}
/* Read first page again to pp4 */
addr = addr0;
pr_info("reading page at %#llx\n", (long long)addr);
err = mtdtest_read(mtd, addr, pgsize, pp4);
if (err) {
kfree(pp1);
return err;
}
/* pp2 and pp4 should be the same */
pr_info("verifying pages read at %#llx match\n",
(long long)addr0);
if (memcmp(pp2, pp4, pgsize)) {
pr_err("verify failed!\n");
errcnt += 1;
} else if (!err)
pr_info("crosstest ok\n");
kfree(pp1);
return err;
}
static int erasecrosstest(void)
{
int err = 0, i, ebnum, ebnum2;
loff_t addr0;
char *readbuf = twopages;
pr_info("erasecrosstest\n");
ebnum = 0;
addr0 = 0;
for (i = 0; i < ebcnt && bbt[i]; ++i) {
addr0 += mtd->erasesize;
ebnum += 1;
}
ebnum2 = ebcnt - 1;
while (ebnum2 && bbt[ebnum2])
ebnum2 -= 1;
pr_info("erasing block %d\n", ebnum);
err = mtdtest_erase_eraseblock(mtd, ebnum);
if (err)
return err;
pr_info("writing 1st page of block %d\n", ebnum);
prandom_bytes_state(&rnd_state, writebuf, pgsize);
strcpy(writebuf, "There is no data like this!");
err = mtdtest_write(mtd, addr0, pgsize, writebuf);
if (err)
return err;
pr_info("reading 1st page of block %d\n", ebnum);
memset(readbuf, 0, pgsize);
err = mtdtest_read(mtd, addr0, pgsize, readbuf);
if (err)
return err;
pr_info("verifying 1st page of block %d\n", ebnum);
if (memcmp(writebuf, readbuf, pgsize)) {
pr_err("verify failed!\n");
errcnt += 1;
return -1;
}
pr_info("erasing block %d\n", ebnum);
err = mtdtest_erase_eraseblock(mtd, ebnum);
if (err)
return err;
pr_info("writing 1st page of block %d\n", ebnum);
prandom_bytes_state(&rnd_state, writebuf, pgsize);
strcpy(writebuf, "There is no data like this!");
err = mtdtest_write(mtd, addr0, pgsize, writebuf);
if (err)
return err;
pr_info("erasing block %d\n", ebnum2);
err = mtdtest_erase_eraseblock(mtd, ebnum2);
if (err)
return err;
pr_info("reading 1st page of block %d\n", ebnum);
memset(readbuf, 0, pgsize);
err = mtdtest_read(mtd, addr0, pgsize, readbuf);
if (err)
return err;
pr_info("verifying 1st page of block %d\n", ebnum);
if (memcmp(writebuf, readbuf, pgsize)) {
pr_err("verify failed!\n");
errcnt += 1;
return -1;
}
if (!err)
pr_info("erasecrosstest ok\n");
return err;
}
static int erasetest(void)
{
int err = 0, i, ebnum, ok = 1;
loff_t addr0;
pr_info("erasetest\n");
ebnum = 0;
addr0 = 0;
for (i = 0; i < ebcnt && bbt[i]; ++i) {
addr0 += mtd->erasesize;
ebnum += 1;
}
pr_info("erasing block %d\n", ebnum);
err = mtdtest_erase_eraseblock(mtd, ebnum);
if (err)
return err;
pr_info("writing 1st page of block %d\n", ebnum);
prandom_bytes_state(&rnd_state, writebuf, pgsize);
err = mtdtest_write(mtd, addr0, pgsize, writebuf);
if (err)
return err;
pr_info("erasing block %d\n", ebnum);
err = mtdtest_erase_eraseblock(mtd, ebnum);
if (err)
return err;
pr_info("reading 1st page of block %d\n", ebnum);
err = mtdtest_read(mtd, addr0, pgsize, twopages);
if (err)
return err;
pr_info("verifying 1st page of block %d is all 0xff\n",
ebnum);
for (i = 0; i < pgsize; ++i)
if (twopages[i] != 0xff) {
pr_err("verifying all 0xff failed at %d\n",
i);
errcnt += 1;
ok = 0;
break;
}
if (ok && !err)
pr_info("erasetest ok\n");
return err;
}
static int __init mtd_pagetest_init(void)
{
int err = 0;
uint64_t tmp;
uint32_t i;
printk(KERN_INFO "\n");
printk(KERN_INFO "=================================================\n");
if (dev < 0) {
pr_info("Please specify a valid mtd-device via module parameter\n");
pr_crit("CAREFUL: This test wipes all data on the specified MTD device!\n");
return -EINVAL;
}
pr_info("MTD device: %d\n", dev);
mtd = get_mtd_device(NULL, dev);
if (IS_ERR(mtd)) {
err = PTR_ERR(mtd);
pr_err("error: cannot get MTD device\n");
return err;
}
if (!mtd_type_is_nand(mtd)) {
pr_info("this test requires NAND flash\n");
goto out;
}
tmp = mtd->size;
do_div(tmp, mtd->erasesize);
ebcnt = tmp;
pgcnt = mtd->erasesize / mtd->writesize;
pgsize = mtd->writesize;
pr_info("MTD device size %llu, eraseblock size %u, "
"page size %u, count of eraseblocks %u, pages per "
"eraseblock %u, OOB size %u\n",
(unsigned long long)mtd->size, mtd->erasesize,
pgsize, ebcnt, pgcnt, mtd->oobsize);
err = -ENOMEM;
bufsize = pgsize * 2;
writebuf = kmalloc(mtd->erasesize, GFP_KERNEL);
if (!writebuf)
goto out;
twopages = kmalloc(bufsize, GFP_KERNEL);
if (!twopages)
goto out;
boundary = kmalloc(bufsize, GFP_KERNEL);
if (!boundary)
goto out;
bbt = kzalloc(ebcnt, GFP_KERNEL);
if (!bbt)
goto out;
err = mtdtest_scan_for_bad_eraseblocks(mtd, bbt, 0, ebcnt);
if (err)
goto out;
/* Erase all eraseblocks */
pr_info("erasing whole device\n");
err = mtdtest_erase_good_eraseblocks(mtd, bbt, 0, ebcnt);
if (err)
goto out;
pr_info("erased %u eraseblocks\n", ebcnt);
/* Write all eraseblocks */
prandom_seed_state(&rnd_state, 1);
pr_info("writing whole device\n");
for (i = 0; i < ebcnt; ++i) {
if (bbt[i])
continue;
err = write_eraseblock(i);
if (err)
goto out;
if (i % 256 == 0)
pr_info("written up to eraseblock %u\n", i);
err = mtdtest_relax();
if (err)
goto out;
}
pr_info("written %u eraseblocks\n", i);
/* Check all eraseblocks */
prandom_seed_state(&rnd_state, 1);
pr_info("verifying all eraseblocks\n");
for (i = 0; i < ebcnt; ++i) {
if (bbt[i])
continue;
err = verify_eraseblock(i);
if (err)
goto out;
if (i % 256 == 0)
pr_info("verified up to eraseblock %u\n", i);
err = mtdtest_relax();
if (err)
goto out;
}
pr_info("verified %u eraseblocks\n", i);
err = crosstest();
if (err)
goto out;
if (ebcnt > 1) {
err = erasecrosstest();
if (err)
goto out;
} else {
pr_info("skipping erasecrosstest, 2 erase blocks needed\n");
}
err = erasetest();
if (err)
goto out;
pr_info("finished with %d errors\n", errcnt);
out:
kfree(bbt);
kfree(boundary);
kfree(twopages);
kfree(writebuf);
put_mtd_device(mtd);
if (err)
pr_info("error %d occurred\n", err);
printk(KERN_INFO "=================================================\n");
return err;
}
module_init(mtd_pagetest_init);
static void __exit mtd_pagetest_exit(void)
{
return;
}
module_exit(mtd_pagetest_exit);
MODULE_DESCRIPTION("NAND page test");
MODULE_AUTHOR("Adrian Hunter");
MODULE_LICENSE("GPL");