kexec: split crashkernel reservation code out from crash_core.c
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 08:12:41 +03:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* crash . c - kernel crash support code .
* Copyright ( C ) 2002 - 2004 Eric Biederman < ebiederm @ xmission . com >
*/
# include <linux/buildid.h>
# include <linux/init.h>
# include <linux/utsname.h>
# include <linux/vmalloc.h>
# include <linux/sizes.h>
# include <linux/kexec.h>
# include <linux/memory.h>
# include <linux/cpuhotplug.h>
# include <linux/memblock.h>
# include <linux/kexec.h>
# include <linux/kmemleak.h>
# include <asm/page.h>
# include <asm/sections.h>
# include <crypto/sha1.h>
# include "kallsyms_internal.h"
# include "kexec_internal.h"
/* Location of the reserved area for the crash kernel */
struct resource crashk_res = {
. name = " Crash kernel " ,
. start = 0 ,
. end = 0 ,
. flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM ,
. desc = IORES_DESC_CRASH_KERNEL
} ;
struct resource crashk_low_res = {
. name = " Crash kernel " ,
. start = 0 ,
. end = 0 ,
. flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM ,
. desc = IORES_DESC_CRASH_KERNEL
} ;
/*
* parsing the " crashkernel " commandline
*
* this code is intended to be called from architecture specific code
*/
/*
* This function parses command lines in the format
*
* crashkernel = ramsize - range : size [ , . . . ] [ @ offset ]
*
* The function returns 0 on success and - EINVAL on failure .
*/
static int __init parse_crashkernel_mem ( char * cmdline ,
unsigned long long system_ram ,
unsigned long long * crash_size ,
unsigned long long * crash_base )
{
char * cur = cmdline , * tmp ;
unsigned long long total_mem = system_ram ;
/*
* Firmware sometimes reserves some memory regions for its own use ,
* so the system memory size is less than the actual physical memory
* size . Work around this by rounding up the total size to 128 M ,
* which is enough for most test cases .
*/
total_mem = roundup ( total_mem , SZ_128M ) ;
/* for each entry of the comma-separated list */
do {
unsigned long long start , end = ULLONG_MAX , size ;
/* get the start of the range */
start = memparse ( cur , & tmp ) ;
if ( cur = = tmp ) {
pr_warn ( " crashkernel: Memory value expected \n " ) ;
return - EINVAL ;
}
cur = tmp ;
if ( * cur ! = ' - ' ) {
pr_warn ( " crashkernel: '-' expected \n " ) ;
return - EINVAL ;
}
cur + + ;
/* if no ':' is here, than we read the end */
if ( * cur ! = ' : ' ) {
end = memparse ( cur , & tmp ) ;
if ( cur = = tmp ) {
pr_warn ( " crashkernel: Memory value expected \n " ) ;
return - EINVAL ;
}
cur = tmp ;
if ( end < = start ) {
pr_warn ( " crashkernel: end <= start \n " ) ;
return - EINVAL ;
}
}
if ( * cur ! = ' : ' ) {
pr_warn ( " crashkernel: ':' expected \n " ) ;
return - EINVAL ;
}
cur + + ;
size = memparse ( cur , & tmp ) ;
if ( cur = = tmp ) {
pr_warn ( " Memory value expected \n " ) ;
return - EINVAL ;
}
cur = tmp ;
if ( size > = total_mem ) {
pr_warn ( " crashkernel: invalid size \n " ) ;
return - EINVAL ;
}
/* match ? */
if ( total_mem > = start & & total_mem < end ) {
* crash_size = size ;
break ;
}
} while ( * cur + + = = ' , ' ) ;
if ( * crash_size > 0 ) {
while ( * cur & & * cur ! = ' ' & & * cur ! = ' @ ' )
cur + + ;
if ( * cur = = ' @ ' ) {
cur + + ;
* crash_base = memparse ( cur , & tmp ) ;
if ( cur = = tmp ) {
pr_warn ( " Memory value expected after '@' \n " ) ;
return - EINVAL ;
}
}
} else
pr_info ( " crashkernel size resulted in zero bytes \n " ) ;
return 0 ;
}
/*
* That function parses " simple " ( old ) crashkernel command lines like
*
* crashkernel = size [ @ offset ]
*
* It returns 0 on success and - EINVAL on failure .
*/
static int __init parse_crashkernel_simple ( char * cmdline ,
unsigned long long * crash_size ,
unsigned long long * crash_base )
{
char * cur = cmdline ;
* crash_size = memparse ( cmdline , & cur ) ;
if ( cmdline = = cur ) {
pr_warn ( " crashkernel: memory value expected \n " ) ;
return - EINVAL ;
}
if ( * cur = = ' @ ' )
* crash_base = memparse ( cur + 1 , & cur ) ;
else if ( * cur ! = ' ' & & * cur ! = ' \0 ' ) {
pr_warn ( " crashkernel: unrecognized char: %c \n " , * cur ) ;
return - EINVAL ;
}
return 0 ;
}
# define SUFFIX_HIGH 0
# define SUFFIX_LOW 1
# define SUFFIX_NULL 2
static __initdata char * suffix_tbl [ ] = {
[ SUFFIX_HIGH ] = " ,high " ,
[ SUFFIX_LOW ] = " ,low " ,
[ SUFFIX_NULL ] = NULL ,
} ;
/*
* That function parses " suffix " crashkernel command lines like
*
* crashkernel = size , [ high | low ]
*
* It returns 0 on success and - EINVAL on failure .
*/
static int __init parse_crashkernel_suffix ( char * cmdline ,
unsigned long long * crash_size ,
const char * suffix )
{
char * cur = cmdline ;
* crash_size = memparse ( cmdline , & cur ) ;
if ( cmdline = = cur ) {
pr_warn ( " crashkernel: memory value expected \n " ) ;
return - EINVAL ;
}
/* check with suffix */
if ( strncmp ( cur , suffix , strlen ( suffix ) ) ) {
pr_warn ( " crashkernel: unrecognized char: %c \n " , * cur ) ;
return - EINVAL ;
}
cur + = strlen ( suffix ) ;
if ( * cur ! = ' ' & & * cur ! = ' \0 ' ) {
pr_warn ( " crashkernel: unrecognized char: %c \n " , * cur ) ;
return - EINVAL ;
}
return 0 ;
}
static __init char * get_last_crashkernel ( char * cmdline ,
const char * name ,
const char * suffix )
{
char * p = cmdline , * ck_cmdline = NULL ;
/* find crashkernel and use the last one if there are more */
p = strstr ( p , name ) ;
while ( p ) {
char * end_p = strchr ( p , ' ' ) ;
char * q ;
if ( ! end_p )
end_p = p + strlen ( p ) ;
if ( ! suffix ) {
int i ;
/* skip the one with any known suffix */
for ( i = 0 ; suffix_tbl [ i ] ; i + + ) {
q = end_p - strlen ( suffix_tbl [ i ] ) ;
if ( ! strncmp ( q , suffix_tbl [ i ] ,
strlen ( suffix_tbl [ i ] ) ) )
goto next ;
}
ck_cmdline = p ;
} else {
q = end_p - strlen ( suffix ) ;
if ( ! strncmp ( q , suffix , strlen ( suffix ) ) )
ck_cmdline = p ;
}
next :
p = strstr ( p + 1 , name ) ;
}
return ck_cmdline ;
}
static int __init __parse_crashkernel ( char * cmdline ,
unsigned long long system_ram ,
unsigned long long * crash_size ,
unsigned long long * crash_base ,
const char * suffix )
{
char * first_colon , * first_space ;
char * ck_cmdline ;
char * name = " crashkernel= " ;
BUG_ON ( ! crash_size | | ! crash_base ) ;
* crash_size = 0 ;
* crash_base = 0 ;
ck_cmdline = get_last_crashkernel ( cmdline , name , suffix ) ;
if ( ! ck_cmdline )
return - ENOENT ;
ck_cmdline + = strlen ( name ) ;
if ( suffix )
return parse_crashkernel_suffix ( ck_cmdline , crash_size ,
suffix ) ;
/*
* if the commandline contains a ' : ' , then that ' s the extended
* syntax - - if not , it must be the classic syntax
*/
first_colon = strchr ( ck_cmdline , ' : ' ) ;
first_space = strchr ( ck_cmdline , ' ' ) ;
if ( first_colon & & ( ! first_space | | first_colon < first_space ) )
return parse_crashkernel_mem ( ck_cmdline , system_ram ,
crash_size , crash_base ) ;
return parse_crashkernel_simple ( ck_cmdline , crash_size , crash_base ) ;
}
/*
* That function is the entry point for command line parsing and should be
* called from the arch - specific code .
*
* If crashkernel = , high | low is supported on architecture , non - NULL values
* should be passed to parameters ' low_size ' and ' high ' .
*/
int __init parse_crashkernel ( char * cmdline ,
unsigned long long system_ram ,
unsigned long long * crash_size ,
unsigned long long * crash_base ,
unsigned long long * low_size ,
bool * high )
{
int ret ;
/* crashkernel=X[@offset] */
ret = __parse_crashkernel ( cmdline , system_ram , crash_size ,
crash_base , NULL ) ;
# ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
/*
* If non - NULL ' high ' passed in and no normal crashkernel
* setting detected , try parsing crashkernel = , high | low .
*/
if ( high & & ret = = - ENOENT ) {
ret = __parse_crashkernel ( cmdline , 0 , crash_size ,
crash_base , suffix_tbl [ SUFFIX_HIGH ] ) ;
if ( ret | | ! * crash_size )
return - EINVAL ;
/*
* crashkernel = Y , low can be specified or not , but invalid value
* is not allowed .
*/
ret = __parse_crashkernel ( cmdline , 0 , low_size ,
crash_base , suffix_tbl [ SUFFIX_LOW ] ) ;
if ( ret = = - ENOENT ) {
* low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE ;
ret = 0 ;
} else if ( ret ) {
return ret ;
}
* high = true ;
}
# endif
if ( ! * crash_size )
ret = - EINVAL ;
return ret ;
}
/*
* Add a dummy early_param handler to mark crashkernel = as a known command line
* parameter and suppress incorrect warnings in init / main . c .
*/
static int __init parse_crashkernel_dummy ( char * arg )
{
return 0 ;
}
early_param ( " crashkernel " , parse_crashkernel_dummy ) ;
# ifdef CONFIG_ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
static int __init reserve_crashkernel_low ( unsigned long long low_size )
{
# ifdef CONFIG_64BIT
unsigned long long low_base ;
low_base = memblock_phys_alloc_range ( low_size , CRASH_ALIGN , 0 , CRASH_ADDR_LOW_MAX ) ;
if ( ! low_base ) {
pr_err ( " cannot allocate crashkernel low memory (size:0x%llx). \n " , low_size ) ;
return - ENOMEM ;
}
pr_info ( " crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB) \n " ,
low_base , low_base + low_size , low_size > > 20 ) ;
crashk_low_res . start = low_base ;
crashk_low_res . end = low_base + low_size - 1 ;
2024-03-25 04:50:50 +03:00
# ifdef HAVE_ARCH_ADD_CRASH_RES_TO_IOMEM_EARLY
kexec: split crashkernel reservation code out from crash_core.c
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 08:12:41 +03:00
insert_resource ( & iomem_resource , & crashk_low_res ) ;
2024-03-25 04:50:50 +03:00
# endif
kexec: split crashkernel reservation code out from crash_core.c
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 08:12:41 +03:00
# endif
return 0 ;
}
void __init reserve_crashkernel_generic ( char * cmdline ,
unsigned long long crash_size ,
unsigned long long crash_base ,
unsigned long long crash_low_size ,
bool high )
{
unsigned long long search_end = CRASH_ADDR_LOW_MAX , search_base = 0 ;
bool fixed_base = false ;
/* User specifies base address explicitly. */
if ( crash_base ) {
fixed_base = true ;
search_base = crash_base ;
search_end = crash_base + crash_size ;
} else if ( high ) {
search_base = CRASH_ADDR_LOW_MAX ;
search_end = CRASH_ADDR_HIGH_MAX ;
}
retry :
crash_base = memblock_phys_alloc_range ( crash_size , CRASH_ALIGN ,
search_base , search_end ) ;
if ( ! crash_base ) {
/*
* For crashkernel = size [ KMG ] @ offset [ KMG ] , print out failure
* message if can ' t reserve the specified region .
*/
if ( fixed_base ) {
pr_warn ( " crashkernel reservation failed - memory is in use. \n " ) ;
return ;
}
/*
* For crashkernel = size [ KMG ] , if the first attempt was for
* low memory , fall back to high memory , the minimum required
* low memory will be reserved later .
*/
if ( ! high & & search_end = = CRASH_ADDR_LOW_MAX ) {
search_end = CRASH_ADDR_HIGH_MAX ;
search_base = CRASH_ADDR_LOW_MAX ;
crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE ;
goto retry ;
}
/*
* For crashkernel = size [ KMG ] , high , if the first attempt was
* for high memory , fall back to low memory .
*/
if ( high & & search_end = = CRASH_ADDR_HIGH_MAX ) {
search_end = CRASH_ADDR_LOW_MAX ;
search_base = 0 ;
goto retry ;
}
pr_warn ( " cannot allocate crashkernel (size:0x%llx) \n " ,
crash_size ) ;
return ;
}
if ( ( crash_base > = CRASH_ADDR_LOW_MAX ) & &
crash_low_size & & reserve_crashkernel_low ( crash_low_size ) ) {
memblock_phys_free ( crash_base , crash_size ) ;
return ;
}
pr_info ( " crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB) \n " ,
crash_base , crash_base + crash_size , crash_size > > 20 ) ;
/*
* The crashkernel memory will be removed from the kernel linear
* map . Inform kmemleak so that it won ' t try to access it .
*/
kmemleak_ignore_phys ( crash_base ) ;
if ( crashk_low_res . end )
kmemleak_ignore_phys ( crashk_low_res . start ) ;
crashk_res . start = crash_base ;
crashk_res . end = crash_base + crash_size - 1 ;
2024-03-25 04:50:50 +03:00
# ifdef HAVE_ARCH_ADD_CRASH_RES_TO_IOMEM_EARLY
insert_resource ( & iomem_resource , & crashk_res ) ;
# endif
kexec: split crashkernel reservation code out from crash_core.c
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 08:12:41 +03:00
}
2024-03-25 04:50:50 +03:00
# ifndef HAVE_ARCH_ADD_CRASH_RES_TO_IOMEM_EARLY
kexec: split crashkernel reservation code out from crash_core.c
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-24 08:12:41 +03:00
static __init int insert_crashkernel_resources ( void )
{
if ( crashk_res . start < crashk_res . end )
insert_resource ( & iomem_resource , & crashk_res ) ;
if ( crashk_low_res . start < crashk_low_res . end )
insert_resource ( & iomem_resource , & crashk_low_res ) ;
return 0 ;
}
early_initcall ( insert_crashkernel_resources ) ;
# endif
2024-03-25 04:50:50 +03:00
# endif