linux/include/net/dsa.h

577 lines
15 KiB
C
Raw Normal View History

net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 13:44:02 +00:00
/*
* include/net/dsa.h - Driver for Distributed Switch Architecture switch chips
dsa: add switch chip cascading support The initial version of the DSA driver only supported a single switch chip per network interface, while DSA-capable switch chips can be interconnected to form a tree of switch chips. This patch adds support for multiple switch chips on a network interface. An example topology for a 16-port device with an embedded CPU is as follows: +-----+ +--------+ +--------+ | |eth0 10| switch |9 10| switch | | CPU +----------+ +-------+ | | | | chip 0 | | chip 1 | +-----+ +---++---+ +---++---+ || || || || ||1000baseT ||1000baseT ||ports 1-8 ||ports 9-16 This requires a couple of interdependent changes in the DSA layer: - The dsa platform driver data needs to be extended: there is still only one netdevice per DSA driver instance (eth0 in the example above), but each of the switch chips in the tree needs its own mii_bus device pointer, MII management bus address, and port name array. (include/net/dsa.h) The existing in-tree dsa users need some small changes to deal with this. (arch/arm) - The DSA and Ethertype DSA tagging modules need to be extended to use the DSA device ID field on receive and demultiplex the packet accordingly, and fill in the DSA device ID field on transmit according to which switch chip the packet is heading to. (net/dsa/tag_{dsa,edsa}.c) - The concept of "CPU port", which is the switch chip port that the CPU is connected to (port 10 on switch chip 0 in the example), needs to be extended with the concept of "upstream port", which is the port on the switch chip that will bring us one hop closer to the CPU (port 10 for both switch chips in the example above). - The dsa platform data needs to specify which ports on which switch chips are links to other switch chips, so that we can enable DSA tagging mode on them. (For inter-switch links, we always use non-EtherType DSA tagging, since it has lower overhead. The CPU link uses dsa or edsa tagging depending on what the 'root' switch chip supports.) This is done by specifying "dsa" for the given port in the port array. - The dsa platform data needs to be extended with information on via which port to reach any given switch chip from any given switch chip. This info is specified via the per-switch chip data struct ->rtable[] array, which gives the nexthop ports for each of the other switches in the tree. For the example topology above, the dsa platform data would look something like this: static struct dsa_chip_data sw[2] = { { .mii_bus = &foo, .sw_addr = 1, .port_names[0] = "p1", .port_names[1] = "p2", .port_names[2] = "p3", .port_names[3] = "p4", .port_names[4] = "p5", .port_names[5] = "p6", .port_names[6] = "p7", .port_names[7] = "p8", .port_names[9] = "dsa", .port_names[10] = "cpu", .rtable = (s8 []){ -1, 9, }, }, { .mii_bus = &foo, .sw_addr = 2, .port_names[0] = "p9", .port_names[1] = "p10", .port_names[2] = "p11", .port_names[3] = "p12", .port_names[4] = "p13", .port_names[5] = "p14", .port_names[6] = "p15", .port_names[7] = "p16", .port_names[10] = "dsa", .rtable = (s8 []){ 10, -1, }, }, }, static struct dsa_platform_data pd = { .netdev = &foo, .nr_switches = 2, .sw = sw, }; Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Gary Thomas <gary@mlbassoc.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-03-20 09:52:09 +00:00
* Copyright (c) 2008-2009 Marvell Semiconductor
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 13:44:02 +00:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#ifndef __LINUX_NET_DSA_H
#define __LINUX_NET_DSA_H
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/notifier.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/of.h>
#include <linux/ethtool.h>
#include <linux/net_tstamp.h>
#include <linux/phy.h>
#include <linux/platform_data/dsa.h>
#include <net/devlink.h>
#include <net/switchdev.h>
struct tc_action;
struct phy_device;
struct fixed_phy_status;
struct phylink_link_state;
enum dsa_tag_protocol {
DSA_TAG_PROTO_NONE = 0,
DSA_TAG_PROTO_BRCM,
DSA_TAG_PROTO_BRCM_PREPEND,
DSA_TAG_PROTO_DSA,
DSA_TAG_PROTO_EDSA,
DSA_TAG_PROTO_GSWIP,
DSA_TAG_PROTO_KSZ9477,
DSA_TAG_PROTO_LAN9303,
DSA_TAG_PROTO_MTK,
DSA_TAG_PROTO_QCA,
DSA_TAG_PROTO_TRAILER,
DSA_TAG_LAST, /* MUST BE LAST */
};
struct packet_type;
struct dsa_switch;
struct dsa_device_ops {
struct sk_buff *(*xmit)(struct sk_buff *skb, struct net_device *dev);
struct sk_buff *(*rcv)(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt);
int (*flow_dissect)(const struct sk_buff *skb, __be16 *proto,
int *offset);
unsigned int overhead;
};
struct dsa_switch_tree {
struct list_head list;
/* Notifier chain for switch-wide events */
struct raw_notifier_head nh;
/* Tree identifier */
unsigned int index;
/* Number of switches attached to this tree */
struct kref refcount;
/* Has this tree been applied to the hardware? */
bool setup;
/*
* Configuration data for the platform device that owns
* this dsa switch tree instance.
*/
struct dsa_platform_data *pd;
/*
* The switch port to which the CPU is attached.
*/
struct dsa_port *cpu_dp;
/*
* Data for the individual switch chips.
*/
struct dsa_switch *ds[DSA_MAX_SWITCHES];
};
/* TC matchall action types, only mirroring for now */
enum dsa_port_mall_action_type {
DSA_PORT_MALL_MIRROR,
};
/* TC mirroring entry */
struct dsa_mall_mirror_tc_entry {
u8 to_local_port;
bool ingress;
};
/* TC matchall entry */
struct dsa_mall_tc_entry {
struct list_head list;
unsigned long cookie;
enum dsa_port_mall_action_type type;
union {
struct dsa_mall_mirror_tc_entry mirror;
};
};
struct dsa_port {
/* A CPU port is physically connected to a master device.
* A user port exposed to userspace has a slave device.
*/
union {
struct net_device *master;
struct net_device *slave;
};
/* CPU port tagging operations used by master or slave devices */
const struct dsa_device_ops *tag_ops;
/* Copies for faster access in master receive hot path */
struct dsa_switch_tree *dst;
struct sk_buff *(*rcv)(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt);
enum {
DSA_PORT_TYPE_UNUSED = 0,
DSA_PORT_TYPE_CPU,
DSA_PORT_TYPE_DSA,
DSA_PORT_TYPE_USER,
} type;
struct dsa_switch *ds;
unsigned int index;
const char *name;
const struct dsa_port *cpu_dp;
struct device_node *dn;
unsigned int ageing_time;
u8 stp_state;
struct net_device *bridge_dev;
struct devlink_port devlink_port;
struct phylink *pl;
/*
* Original copy of the master netdev ethtool_ops
*/
const struct ethtool_ops *orig_ethtool_ops;
/*
* Original copy of the master netdev net_device_ops
*/
const struct net_device_ops *orig_ndo_ops;
};
struct dsa_switch {
struct device *dev;
/*
* Parent switch tree, and switch index.
*/
struct dsa_switch_tree *dst;
unsigned int index;
/* Listener for switch fabric events */
struct notifier_block nb;
/*
* Give the switch driver somewhere to hang its private data
* structure.
*/
void *priv;
/*
* Configuration data for this switch.
*/
struct dsa_chip_data *cd;
/*
* The switch operations.
*/
const struct dsa_switch_ops *ops;
/*
* An array of which element [a] indicates which port on this
* switch should be used to send packets to that are destined
* for switch a. Can be NULL if there is only one switch chip.
*/
s8 rtable[DSA_MAX_SWITCHES];
/*
* Slave mii_bus and devices for the individual ports.
*/
u32 phys_mii_mask;
struct mii_bus *slave_mii_bus;
/* Ageing Time limits in msecs */
unsigned int ageing_time_min;
unsigned int ageing_time_max;
/* devlink used to represent this switch device */
struct devlink *devlink;
/* Number of switch port queues */
unsigned int num_tx_queues;
unsigned long *bitmap;
unsigned long _bitmap;
/* Dynamically allocated ports, keep last */
size_t num_ports;
struct dsa_port ports[];
};
static inline const struct dsa_port *dsa_to_port(struct dsa_switch *ds, int p)
{
return &ds->ports[p];
}
static inline bool dsa_is_unused_port(struct dsa_switch *ds, int p)
{
return dsa_to_port(ds, p)->type == DSA_PORT_TYPE_UNUSED;
}
static inline bool dsa_is_cpu_port(struct dsa_switch *ds, int p)
{
return dsa_to_port(ds, p)->type == DSA_PORT_TYPE_CPU;
}
static inline bool dsa_is_dsa_port(struct dsa_switch *ds, int p)
{
return dsa_to_port(ds, p)->type == DSA_PORT_TYPE_DSA;
}
static inline bool dsa_is_user_port(struct dsa_switch *ds, int p)
{
return dsa_to_port(ds, p)->type == DSA_PORT_TYPE_USER;
}
static inline u32 dsa_user_ports(struct dsa_switch *ds)
{
u32 mask = 0;
int p;
for (p = 0; p < ds->num_ports; p++)
if (dsa_is_user_port(ds, p))
mask |= BIT(p);
return mask;
}
/* Return the local port used to reach an arbitrary switch port */
static inline unsigned int dsa_towards_port(struct dsa_switch *ds, int device,
int port)
{
if (device == ds->index)
return port;
else
return ds->rtable[device];
}
/* Return the local port used to reach the dedicated CPU port */
static inline unsigned int dsa_upstream_port(struct dsa_switch *ds, int port)
{
const struct dsa_port *dp = dsa_to_port(ds, port);
const struct dsa_port *cpu_dp = dp->cpu_dp;
if (!cpu_dp)
return port;
return dsa_towards_port(ds, cpu_dp->ds->index, cpu_dp->index);
}
typedef int dsa_fdb_dump_cb_t(const unsigned char *addr, u16 vid,
bool is_static, void *data);
struct dsa_switch_ops {
#if IS_ENABLED(CONFIG_NET_DSA_LEGACY)
/*
* Legacy probing.
*/
const char *(*probe)(struct device *dsa_dev,
struct device *host_dev, int sw_addr,
void **priv);
#endif
enum dsa_tag_protocol (*get_tag_protocol)(struct dsa_switch *ds,
int port);
int (*setup)(struct dsa_switch *ds);
u32 (*get_phy_flags)(struct dsa_switch *ds, int port);
/*
* Access to the switch's PHY registers.
*/
int (*phy_read)(struct dsa_switch *ds, int port, int regnum);
int (*phy_write)(struct dsa_switch *ds, int port,
int regnum, u16 val);
/*
* Link state adjustment (called from libphy)
*/
void (*adjust_link)(struct dsa_switch *ds, int port,
struct phy_device *phydev);
void (*fixed_link_update)(struct dsa_switch *ds, int port,
struct fixed_phy_status *st);
/*
* PHYLINK integration
*/
void (*phylink_validate)(struct dsa_switch *ds, int port,
unsigned long *supported,
struct phylink_link_state *state);
int (*phylink_mac_link_state)(struct dsa_switch *ds, int port,
struct phylink_link_state *state);
void (*phylink_mac_config)(struct dsa_switch *ds, int port,
unsigned int mode,
const struct phylink_link_state *state);
void (*phylink_mac_an_restart)(struct dsa_switch *ds, int port);
void (*phylink_mac_link_down)(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface);
void (*phylink_mac_link_up)(struct dsa_switch *ds, int port,
unsigned int mode,
phy_interface_t interface,
struct phy_device *phydev);
void (*phylink_fixed_state)(struct dsa_switch *ds, int port,
struct phylink_link_state *state);
/*
* ethtool hardware statistics.
*/
void (*get_strings)(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *data);
void (*get_ethtool_stats)(struct dsa_switch *ds,
int port, uint64_t *data);
int (*get_sset_count)(struct dsa_switch *ds, int port, int sset);
void (*get_ethtool_phy_stats)(struct dsa_switch *ds,
int port, uint64_t *data);
/*
* ethtool Wake-on-LAN
*/
void (*get_wol)(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *w);
int (*set_wol)(struct dsa_switch *ds, int port,
struct ethtool_wolinfo *w);
/*
* ethtool timestamp info
*/
int (*get_ts_info)(struct dsa_switch *ds, int port,
struct ethtool_ts_info *ts);
/*
* Suspend and resume
*/
int (*suspend)(struct dsa_switch *ds);
int (*resume)(struct dsa_switch *ds);
/*
* Port enable/disable
*/
int (*port_enable)(struct dsa_switch *ds, int port,
struct phy_device *phy);
void (*port_disable)(struct dsa_switch *ds, int port);
/*
* Port's MAC EEE settings
*/
int (*set_mac_eee)(struct dsa_switch *ds, int port,
struct ethtool_eee *e);
int (*get_mac_eee)(struct dsa_switch *ds, int port,
struct ethtool_eee *e);
/* EEPROM access */
int (*get_eeprom_len)(struct dsa_switch *ds);
int (*get_eeprom)(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data);
int (*set_eeprom)(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data);
/*
* Register access.
*/
int (*get_regs_len)(struct dsa_switch *ds, int port);
void (*get_regs)(struct dsa_switch *ds, int port,
struct ethtool_regs *regs, void *p);
/*
* Bridge integration
*/
int (*set_ageing_time)(struct dsa_switch *ds, unsigned int msecs);
int (*port_bridge_join)(struct dsa_switch *ds, int port,
struct net_device *bridge);
void (*port_bridge_leave)(struct dsa_switch *ds, int port,
struct net_device *bridge);
void (*port_stp_state_set)(struct dsa_switch *ds, int port,
u8 state);
void (*port_fast_age)(struct dsa_switch *ds, int port);
int (*port_egress_floods)(struct dsa_switch *ds, int port,
bool unicast, bool multicast);
/*
* VLAN support
*/
int (*port_vlan_filtering)(struct dsa_switch *ds, int port,
bool vlan_filtering);
int (*port_vlan_prepare)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan);
void (*port_vlan_add)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan);
int (*port_vlan_del)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan);
/*
* Forwarding database
*/
int (*port_fdb_add)(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid);
int (*port_fdb_del)(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid);
int (*port_fdb_dump)(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data);
/*
* Multicast database
*/
int (*port_mdb_prepare)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
void (*port_mdb_add)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
int (*port_mdb_del)(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb);
/*
* RXNFC
*/
int (*get_rxnfc)(struct dsa_switch *ds, int port,
struct ethtool_rxnfc *nfc, u32 *rule_locs);
int (*set_rxnfc)(struct dsa_switch *ds, int port,
struct ethtool_rxnfc *nfc);
/*
* TC integration
*/
int (*port_mirror_add)(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress);
void (*port_mirror_del)(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror);
/*
* Cross-chip operations
*/
int (*crosschip_bridge_join)(struct dsa_switch *ds, int sw_index,
int port, struct net_device *br);
void (*crosschip_bridge_leave)(struct dsa_switch *ds, int sw_index,
int port, struct net_device *br);
/*
* PTP functionality
*/
int (*port_hwtstamp_get)(struct dsa_switch *ds, int port,
struct ifreq *ifr);
int (*port_hwtstamp_set)(struct dsa_switch *ds, int port,
struct ifreq *ifr);
bool (*port_txtstamp)(struct dsa_switch *ds, int port,
struct sk_buff *clone, unsigned int type);
bool (*port_rxtstamp)(struct dsa_switch *ds, int port,
struct sk_buff *skb, unsigned int type);
};
struct dsa_switch_driver {
struct list_head list;
const struct dsa_switch_ops *ops;
};
#if IS_ENABLED(CONFIG_NET_DSA_LEGACY)
/* Legacy driver registration */
void register_switch_driver(struct dsa_switch_driver *type);
void unregister_switch_driver(struct dsa_switch_driver *type);
struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev);
#else
static inline void register_switch_driver(struct dsa_switch_driver *type) { }
static inline void unregister_switch_driver(struct dsa_switch_driver *type) { }
static inline struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
{
return NULL;
}
#endif
struct net_device *dsa_dev_to_net_device(struct device *dev);
/* Keep inline for faster access in hot path */
static inline bool netdev_uses_dsa(struct net_device *dev)
{
#if IS_ENABLED(CONFIG_NET_DSA)
return dev->dsa_ptr && dev->dsa_ptr->rcv;
#endif
return false;
}
struct dsa_switch *dsa_switch_alloc(struct device *dev, size_t n);
void dsa_unregister_switch(struct dsa_switch *ds);
int dsa_register_switch(struct dsa_switch *ds);
#ifdef CONFIG_PM_SLEEP
int dsa_switch_suspend(struct dsa_switch *ds);
int dsa_switch_resume(struct dsa_switch *ds);
#else
static inline int dsa_switch_suspend(struct dsa_switch *ds)
{
return 0;
}
static inline int dsa_switch_resume(struct dsa_switch *ds)
{
return 0;
}
#endif /* CONFIG_PM_SLEEP */
enum dsa_notifier_type {
DSA_PORT_REGISTER,
DSA_PORT_UNREGISTER,
};
struct dsa_notifier_info {
struct net_device *dev;
};
struct dsa_notifier_register_info {
struct dsa_notifier_info info; /* must be first */
struct net_device *master;
unsigned int port_number;
unsigned int switch_number;
};
static inline struct net_device *
dsa_notifier_info_to_dev(const struct dsa_notifier_info *info)
{
return info->dev;
}
#if IS_ENABLED(CONFIG_NET_DSA)
int register_dsa_notifier(struct notifier_block *nb);
int unregister_dsa_notifier(struct notifier_block *nb);
int call_dsa_notifiers(unsigned long val, struct net_device *dev,
struct dsa_notifier_info *info);
#else
static inline int register_dsa_notifier(struct notifier_block *nb)
{
return 0;
}
static inline int unregister_dsa_notifier(struct notifier_block *nb)
{
return 0;
}
static inline int call_dsa_notifiers(unsigned long val, struct net_device *dev,
struct dsa_notifier_info *info)
{
return NOTIFY_DONE;
}
#endif
/* Broadcom tag specific helpers to insert and extract queue/port number */
#define BRCM_TAG_SET_PORT_QUEUE(p, q) ((p) << 8 | q)
#define BRCM_TAG_GET_PORT(v) ((v) >> 8)
#define BRCM_TAG_GET_QUEUE(v) ((v) & 0xff)
int dsa_port_get_phy_strings(struct dsa_port *dp, uint8_t *data);
int dsa_port_get_ethtool_phy_stats(struct dsa_port *dp, uint64_t *data);
int dsa_port_get_phy_sset_count(struct dsa_port *dp);
void dsa_port_phylink_mac_change(struct dsa_switch *ds, int port, bool up);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 13:44:02 +00:00
#endif