2005-04-17 02:20:36 +04:00
/*
2017-09-09 02:17:00 +03:00
* kmod - the kernel module loader
*/
2005-04-17 02:20:36 +04:00
# include <linux/module.h>
# include <linux/sched.h>
2017-02-08 20:51:36 +03:00
# include <linux/sched/task.h>
2017-02-05 16:24:31 +03:00
# include <linux/binfmts.h>
2005-04-17 02:20:36 +04:00
# include <linux/syscalls.h>
# include <linux/unistd.h>
# include <linux/kmod.h>
# include <linux/slab.h>
# include <linux/completion.h>
2011-04-02 01:07:50 +04:00
# include <linux/cred.h>
2005-04-17 02:20:36 +04:00
# include <linux/file.h>
2008-04-24 15:44:08 +04:00
# include <linux/fdtable.h>
2005-04-17 02:20:36 +04:00
# include <linux/workqueue.h>
# include <linux/security.h>
# include <linux/mount.h>
# include <linux/kernel.h>
# include <linux/init.h>
2006-10-01 10:29:28 +04:00
# include <linux/resource.h>
2007-07-19 12:47:36 +04:00
# include <linux/notifier.h>
# include <linux/suspend.h>
PM / Sleep: Fix freezer failures due to racy usermodehelper_is_disabled()
Commit a144c6a (PM: Print a warning if firmware is requested when tasks
are frozen) introduced usermodehelper_is_disabled() to warn and exit
immediately if firmware is requested when usermodehelpers are disabled.
However, it is racy. Consider the following scenario, currently used in
drivers/base/firmware_class.c:
...
if (usermodehelper_is_disabled())
goto out;
/* Do actual work */
...
out:
return err;
Nothing prevents someone from disabling usermodehelpers just after the check
in the 'if' condition, which means that it is quite possible to try doing the
"actual work" with usermodehelpers disabled, leading to undesirable
consequences.
In particular, this race condition in _request_firmware() causes task freezing
failures whenever suspend/hibernation is in progress because, it wrongly waits
to get the firmware/microcode image from userspace when actually the
usermodehelpers are disabled or userspace has been frozen.
Some of the example scenarios that cause freezing failures due to this race
are those that depend on userspace via request_firmware(), such as x86
microcode module initialization and microcode image reload.
Previous discussions about this issue can be found at:
http://thread.gmane.org/gmane.linux.kernel/1198291/focus=1200591
This patch adds proper synchronization to fix this issue.
It is to be noted that this patchset fixes the freezing failures but doesn't
remove the warnings. IOW, it does not attempt to add explicit synchronization
to x86 microcode driver to avoid requesting microcode image at inopportune
moments. Because, the warnings were introduced to highlight such cases, in the
first place. And we need not silence the warnings, since we take care of the
*real* problem (freezing failure) and hence, after that, the warnings are
pretty harmless anyway.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-12-10 02:36:36 +04:00
# include <linux/rwsem.h>
2012-10-11 05:28:25 +04:00
# include <linux/ptrace.h>
2013-01-23 04:48:03 +04:00
# include <linux/async.h>
2016-12-24 22:46:01 +03:00
# include <linux/uaccess.h>
2005-04-17 02:20:36 +04:00
2009-08-17 12:56:28 +04:00
# include <trace/events/module.h>
2017-06-23 22:19:12 +03:00
/*
* Assuming :
*
* threads = div64_u64 ( ( u64 ) totalram_pages * ( u64 ) PAGE_SIZE ,
* ( u64 ) THREAD_SIZE * 8UL ) ;
*
* If you need less than 50 threads would mean we ' re dealing with systems
2020-04-07 06:11:49 +03:00
* smaller than 3200 pages . This assumes you are capable of having ~ 13 M memory ,
2020-08-12 04:36:12 +03:00
* and this would only be an upper limit , after which the OOM killer would take
* effect . Systems like these are very unlikely if modules are enabled .
2017-06-23 22:19:12 +03:00
*/
# define MAX_KMOD_CONCURRENT 50
static atomic_t kmod_concurrent_max = ATOMIC_INIT ( MAX_KMOD_CONCURRENT ) ;
2017-07-15 00:50:11 +03:00
static DECLARE_WAIT_QUEUE_HEAD ( kmod_wq ) ;
2005-04-17 02:20:36 +04:00
2017-08-19 01:15:58 +03:00
/*
* This is a restriction on having * all * MAX_KMOD_CONCURRENT threads
* running at the same time without returning . When this happens we
* believe you ' ve somehow ended up with a recursive module dependency
* creating a loop .
*
* We have no option but to fail .
*
* Userspace should proactively try to detect and prevent these .
*/
# define MAX_KMOD_ALL_BUSY_TIMEOUT 5
2005-04-17 02:20:36 +04:00
/*
modprobe_path is set via / proc / sys .
*/
modules: add CONFIG_MODPROBE_PATH
Allow the developer to specifiy the initial value of the modprobe_path[]
string. This can be used to set it to the empty string initially, thus
effectively disabling request_module() during early boot until userspace
writes a new value via the /proc/sys/kernel/modprobe interface. [1]
When building a custom kernel (often for an embedded target), it's normal
to build everything into the kernel that is needed for booting, and indeed
the initramfs often contains no modules at all, so every such
request_module() done before userspace init has mounted the real rootfs is
a waste of time.
This is particularly useful when combined with the previous patch, which
made the initramfs unpacking asynchronous - for that to work, it had to
make any usermodehelper call wait for the unpacking to finish before
attempting to invoke the userspace helper. By eliminating all such
(known-to-be-futile) calls of usermodehelper, the initramfs unpacking and
the {device,late}_initcalls can proceed in parallel for much longer.
For a relatively slow ppc board I'm working on, the two patches combined
lead to 0.2s faster boot - but more importantly, the fact that the
initramfs unpacking proceeds completely in the background while devices
get probed means I get to handle the gpio watchdog in time without getting
reset.
[1] __request_module() already has an early -ENOENT return when
modprobe_path is the empty string.
Link: https://lkml.kernel.org/r/20210313212528.2956377-3-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 04:05:45 +03:00
char modprobe_path [ KMOD_PATH_LEN ] = CONFIG_MODPROBE_PATH ;
2005-04-17 02:20:36 +04:00
2012-03-24 02:02:50 +04:00
static void free_modprobe_argv ( struct subprocess_info * info )
{
kfree ( info - > argv [ 3 ] ) ; /* check call_modprobe() */
kfree ( info - > argv ) ;
}
2012-03-24 02:02:49 +04:00
static int call_modprobe ( char * module_name , int wait )
{
2013-05-01 02:28:03 +04:00
struct subprocess_info * info ;
2012-03-24 02:02:49 +04:00
static char * envp [ ] = {
" HOME=/ " ,
" TERM=linux " ,
" PATH=/sbin:/usr/sbin:/bin:/usr/bin " ,
NULL
} ;
2012-03-24 02:02:50 +04:00
char * * argv = kmalloc ( sizeof ( char * [ 5 ] ) , GFP_KERNEL ) ;
if ( ! argv )
goto out ;
module_name = kstrdup ( module_name , GFP_KERNEL ) ;
if ( ! module_name )
goto free_argv ;
argv [ 0 ] = modprobe_path ;
argv [ 1 ] = " -q " ;
argv [ 2 ] = " -- " ;
argv [ 3 ] = module_name ; /* check free_modprobe_argv() */
argv [ 4 ] = NULL ;
2012-03-24 02:02:49 +04:00
2013-05-01 02:28:03 +04:00
info = call_usermodehelper_setup ( modprobe_path , argv , envp , GFP_KERNEL ,
NULL , free_modprobe_argv , NULL ) ;
if ( ! info )
goto free_module_name ;
return call_usermodehelper_exec ( info , wait | UMH_KILLABLE ) ;
free_module_name :
kfree ( module_name ) ;
2012-03-24 02:02:50 +04:00
free_argv :
kfree ( argv ) ;
out :
return - ENOMEM ;
2012-03-24 02:02:49 +04:00
}
2005-04-17 02:20:36 +04:00
/**
2009-02-08 21:42:01 +03:00
* __request_module - try to load a kernel module
* @ wait : wait ( or not ) for the operation to complete
2009-01-07 01:42:39 +03:00
* @ fmt : printf style format string for the name of the module
* @ . . . : arguments as specified in the format string
2005-04-17 02:20:36 +04:00
*
* Load a module using the user mode module loader . The function returns
2015-09-10 01:38:10 +03:00
* zero on success or a negative errno code or positive exit code from
* " modprobe " on failure . Note that a successful module load does not mean
* the module did not then unload and exit on an error of its own . Callers
* must check that the service they requested is now available not blindly
* invoke it .
2005-04-17 02:20:36 +04:00
*
* If module auto - loading support is disabled then this function
kmod: make request_module() return an error when autoloading is disabled
Patch series "module autoloading fixes and cleanups", v5.
This series fixes a bug where request_module() was reporting success to
kernel code when module autoloading had been completely disabled via
'echo > /proc/sys/kernel/modprobe'.
It also addresses the issues raised on the original thread
(https://lkml.kernel.org/lkml/20200310223731.126894-1-ebiggers@kernel.org/T/#u)
bydocumenting the modprobe sysctl, adding a self-test for the empty path
case, and downgrading a user-reachable WARN_ONCE().
This patch (of 4):
It's long been possible to disable kernel module autoloading completely
(while still allowing manual module insertion) by setting
/proc/sys/kernel/modprobe to the empty string.
This can be preferable to setting it to a nonexistent file since it
avoids the overhead of an attempted execve(), avoids potential
deadlocks, and avoids the call to security_kernel_module_request() and
thus on SELinux-based systems eliminates the need to write SELinux rules
to dontaudit module_request.
However, when module autoloading is disabled in this way,
request_module() returns 0. This is broken because callers expect 0 to
mean that the module was successfully loaded.
Apparently this was never noticed because this method of disabling
module autoloading isn't used much, and also most callers don't use the
return value of request_module() since it's always necessary to check
whether the module registered its functionality or not anyway.
But improperly returning 0 can indeed confuse a few callers, for example
get_fs_type() in fs/filesystems.c where it causes a WARNING to be hit:
if (!fs && (request_module("fs-%.*s", len, name) == 0)) {
fs = __get_fs_type(name, len);
WARN_ONCE(!fs, "request_module fs-%.*s succeeded, but still no fs?\n", len, name);
}
This is easily reproduced with:
echo > /proc/sys/kernel/modprobe
mount -t NONEXISTENT none /
It causes:
request_module fs-NONEXISTENT succeeded, but still no fs?
WARNING: CPU: 1 PID: 1106 at fs/filesystems.c:275 get_fs_type+0xd6/0xf0
[...]
This should actually use pr_warn_once() rather than WARN_ONCE(), since
it's also user-reachable if userspace immediately unloads the module.
Regardless, request_module() should correctly return an error when it
fails. So let's make it return -ENOENT, which matches the error when
the modprobe binary doesn't exist.
I've also sent patches to document and test this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Ben Hutchings <benh@debian.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200310223731.126894-1-ebiggers@kernel.org
Link: http://lkml.kernel.org/r/20200312202552.241885-1-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 00:33:43 +03:00
* simply returns - ENOENT .
2005-04-17 02:20:36 +04:00
*/
2009-02-08 21:42:01 +03:00
int __request_module ( bool wait , const char * fmt , . . . )
2005-04-17 02:20:36 +04:00
{
va_list args ;
char module_name [ MODULE_NAME_LEN ] ;
int ret ;
2013-01-23 04:48:03 +04:00
/*
* We don ' t allow synchronous module loading from async . Module
* init may invoke async_synchronize_full ( ) which will end up
* waiting for this task which already is waiting for the module
* loading to complete , leading to a deadlock .
*/
WARN_ON_ONCE ( wait & & current_is_async ( ) ) ;
2013-07-04 02:08:15 +04:00
if ( ! modprobe_path [ 0 ] )
kmod: make request_module() return an error when autoloading is disabled
Patch series "module autoloading fixes and cleanups", v5.
This series fixes a bug where request_module() was reporting success to
kernel code when module autoloading had been completely disabled via
'echo > /proc/sys/kernel/modprobe'.
It also addresses the issues raised on the original thread
(https://lkml.kernel.org/lkml/20200310223731.126894-1-ebiggers@kernel.org/T/#u)
bydocumenting the modprobe sysctl, adding a self-test for the empty path
case, and downgrading a user-reachable WARN_ONCE().
This patch (of 4):
It's long been possible to disable kernel module autoloading completely
(while still allowing manual module insertion) by setting
/proc/sys/kernel/modprobe to the empty string.
This can be preferable to setting it to a nonexistent file since it
avoids the overhead of an attempted execve(), avoids potential
deadlocks, and avoids the call to security_kernel_module_request() and
thus on SELinux-based systems eliminates the need to write SELinux rules
to dontaudit module_request.
However, when module autoloading is disabled in this way,
request_module() returns 0. This is broken because callers expect 0 to
mean that the module was successfully loaded.
Apparently this was never noticed because this method of disabling
module autoloading isn't used much, and also most callers don't use the
return value of request_module() since it's always necessary to check
whether the module registered its functionality or not anyway.
But improperly returning 0 can indeed confuse a few callers, for example
get_fs_type() in fs/filesystems.c where it causes a WARNING to be hit:
if (!fs && (request_module("fs-%.*s", len, name) == 0)) {
fs = __get_fs_type(name, len);
WARN_ONCE(!fs, "request_module fs-%.*s succeeded, but still no fs?\n", len, name);
}
This is easily reproduced with:
echo > /proc/sys/kernel/modprobe
mount -t NONEXISTENT none /
It causes:
request_module fs-NONEXISTENT succeeded, but still no fs?
WARNING: CPU: 1 PID: 1106 at fs/filesystems.c:275 get_fs_type+0xd6/0xf0
[...]
This should actually use pr_warn_once() rather than WARN_ONCE(), since
it's also user-reachable if userspace immediately unloads the module.
Regardless, request_module() should correctly return an error when it
fails. So let's make it return -ENOENT, which matches the error when
the modprobe binary doesn't exist.
I've also sent patches to document and test this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jeff Vander Stoep <jeffv@google.com>
Cc: Ben Hutchings <benh@debian.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200310223731.126894-1-ebiggers@kernel.org
Link: http://lkml.kernel.org/r/20200312202552.241885-1-ebiggers@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-11 00:33:43 +03:00
return - ENOENT ;
2013-07-04 02:08:15 +04:00
2005-04-17 02:20:36 +04:00
va_start ( args , fmt ) ;
ret = vsnprintf ( module_name , MODULE_NAME_LEN , fmt , args ) ;
va_end ( args ) ;
if ( ret > = MODULE_NAME_LEN )
return - ENAMETOOLONG ;
2009-11-03 08:35:32 +03:00
ret = security_kernel_module_request ( module_name ) ;
if ( ret )
return ret ;
2017-06-23 22:19:12 +03:00
if ( atomic_dec_if_positive ( & kmod_concurrent_max ) < 0 ) {
2017-07-15 00:50:11 +03:00
pr_warn_ratelimited ( " request_module: kmod_concurrent_max (%u) close to 0 (max_modprobes: %u), for module %s, throttling... " ,
atomic_read ( & kmod_concurrent_max ) ,
MAX_KMOD_CONCURRENT , module_name ) ;
2017-08-19 01:15:58 +03:00
ret = wait_event_killable_timeout ( kmod_wq ,
atomic_dec_if_positive ( & kmod_concurrent_max ) > = 0 ,
MAX_KMOD_ALL_BUSY_TIMEOUT * HZ ) ;
if ( ! ret ) {
pr_warn_ratelimited ( " request_module: modprobe %s cannot be processed, kmod busy with %d threads for more than %d seconds now " ,
module_name , MAX_KMOD_CONCURRENT , MAX_KMOD_ALL_BUSY_TIMEOUT ) ;
return - ETIME ;
} else if ( ret = = - ERESTARTSYS ) {
pr_warn_ratelimited ( " request_module: sigkill sent for modprobe %s, giving up " , module_name ) ;
return ret ;
}
2005-04-17 02:20:36 +04:00
}
2009-08-17 12:56:28 +04:00
trace_module_request ( module_name , wait , _RET_IP_ ) ;
2012-03-24 02:02:49 +04:00
ret = call_modprobe ( module_name , wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC ) ;
kmod: add init function to usermodehelper
About 6 months ago, I made a set of changes to how the core-dump-to-a-pipe
feature in the kernel works. We had reports of several races, including
some reports of apps bypassing our recursion check so that a process that
was forked as part of a core_pattern setup could infinitely crash and
refork until the system crashed.
We fixed those by improving our recursion checks. The new check basically
refuses to fork a process if its core limit is zero, which works well.
Unfortunately, I've been getting grief from maintainer of user space
programs that are inserted as the forked process of core_pattern. They
contend that in order for their programs (such as abrt and apport) to
work, all the running processes in a system must have their core limits
set to a non-zero value, to which I say 'yes'. I did this by design, and
think thats the right way to do things.
But I've been asked to ease this burden on user space enough times that I
thought I would take a look at it. The first suggestion was to make the
recursion check fail on a non-zero 'special' number, like one. That way
the core collector process could set its core size ulimit to 1, and enable
the kernel's recursion detection. This isn't a bad idea on the surface,
but I don't like it since its opt-in, in that if a program like abrt or
apport has a bug and fails to set such a core limit, we're left with a
recursively crashing system again.
So I've come up with this. What I've done is modify the
call_usermodehelper api such that an extra parameter is added, a function
pointer which will be called by the user helper task, after it forks, but
before it exec's the required process. This will give the caller the
opportunity to get a call back in the processes context, allowing it to do
whatever it needs to to the process in the kernel prior to exec-ing the
user space code. In the case of do_coredump, this callback is ues to set
the core ulimit of the helper process to 1. This elimnates the opt-in
problem that I had above, as it allows the ulimit for core sizes to be set
to the value of 1, which is what the recursion check looks for in
do_coredump.
This patch:
Create new function call_usermodehelper_fns() and allow it to assign both
an init and cleanup function, as we'll as arbitrary data.
The init function is called from the context of the forked process and
allows for customization of the helper process prior to calling exec. Its
return code gates the continuation of the process, or causes its exit.
Also add an arbitrary data pointer to the subprocess_info struct allowing
for data to be passed from the caller to the new process, and the
subsequent cleanup process
Also, use this patch to cleanup the cleanup function. It currently takes
an argp and envp pointer for freeing, which is ugly. Lets instead just
make the subprocess_info structure public, and pass that to the cleanup
and init routines
Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 01:42:58 +04:00
2017-06-23 22:19:12 +03:00
atomic_inc ( & kmod_concurrent_max ) ;
2017-07-15 00:50:11 +03:00
wake_up ( & kmod_wq ) ;
2017-06-23 22:19:12 +03:00
2005-04-17 02:20:36 +04:00
return ret ;
}
2009-02-08 21:42:01 +03:00
EXPORT_SYMBOL ( __request_module ) ;