837 lines
24 KiB
ArmAsm
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Low-level CPU initialisation
* Based on arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (C) 2003-2012 ARM Ltd.
* Authors: Catalin Marinas <catalin.marinas@arm.com>
* Will Deacon <will.deacon@arm.com>
*/
#include <linux/linkage.h>
#include <linux/init.h>
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08 21:32:42 -07:00
#include <linux/pgtable.h>
arm64: simplify ptrauth initialization Currently __cpu_setup conditionally initializes the address authentication keys and enables them in SCTLR_EL1, doing so differently for the primary CPU and secondary CPUs, and skipping this work for CPUs returning from an idle state. For the latter case, cpu_do_resume restores the keys and SCTLR_EL1 value after the MMU has been enabled. This flow is rather difficult to follow, so instead let's move the primary and secondary CPU initialization into their respective boot paths. By following the example of cpu_do_resume and doing so once the MMU is enabled, we can always initialize the keys from the values in thread_struct, and avoid the machinery necessary to pass the keys in secondary_data or open-coding initialization for the boot CPU. This means we perform an additional RMW of SCTLR_EL1, but we already do this in the cpu_do_resume path, and for other features in cpufeature.c, so this isn't a major concern in a bringup path. Note that even while the enable bits are clear, the key registers are accessible. As this now renders the argument to __cpu_setup redundant, let's also remove that entirely. Future extensions can follow a similar approach to initialize values that differ for primary/secondary CPUs. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2020-04-23 11:16:06 +01:00
#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
#include <asm/bug.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>
#include "efi-header.S"
#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif
/*
* Kernel startup entry point.
* ---------------------------
*
* The requirements are:
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
efi_signature_nop // special NOP to identity as PE/COFF executable
b primary_entry // branch to kernel start, magic
.quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
.long .Lpe_header_offset // Offset to the PE header.
__EFI_PE_HEADER
__INIT
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x20 primary_entry() .. __primary_switch() CPU boot mode
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
* x22 create_idmap() .. start_kernel() ID map VA of the DT blob
* x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
* x24 __primary_switch() linear map KASLR seed
arm64: mm: fix booting with 52-bit address space Joey reports that booting 52-bit VA capable builds on 52-bit VA capable CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible"). This is due to the fact that the primary CPU reads the vabits_actual variable before it has been assigned. The reason for deferring the assignment of vabits_actual was that we try to perform as few stores to memory as we can with the MMU and caches off, due to the cache coherency issues it creates. Since __cpu_setup() [which is where the read of vabits_actual occurs] is also called on the secondary boot path, we cannot just read the CPU ID registers directly, given that the size of the VA space is decided by the capabilities of the primary CPU. So let's read vabits_actual only on the secondary boot path, and read the CPU ID registers directly on the primary boot path, by making it a function parameter of __cpu_setup(). To ensure that all users of vabits_actual (including kasan_early_init()) observe the correct value, move the assignment of vabits_actual back into asm code, but still defer it to after the MMU and caches have been enabled. Cc: Will Deacon <will@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible") Reported-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-07-01 13:10:45 +02:00
* x25 primary_entry() .. start_kernel() supported VA size
* x28 create_idmap() callee preserved temp register
*/
SYM_CODE_START(primary_entry)
bl preserve_boot_args
bl init_kernel_el // w0=cpu_boot_mode
mov x20, x0
bl create_idmap
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
arm64: mm: fix booting with 52-bit address space Joey reports that booting 52-bit VA capable builds on 52-bit VA capable CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible"). This is due to the fact that the primary CPU reads the vabits_actual variable before it has been assigned. The reason for deferring the assignment of vabits_actual was that we try to perform as few stores to memory as we can with the MMU and caches off, due to the cache coherency issues it creates. Since __cpu_setup() [which is where the read of vabits_actual occurs] is also called on the secondary boot path, we cannot just read the CPU ID registers directly, given that the size of the VA space is decided by the capabilities of the primary CPU. So let's read vabits_actual only on the secondary boot path, and read the CPU ID registers directly on the primary boot path, by making it a function parameter of __cpu_setup(). To ensure that all users of vabits_actual (including kasan_early_init()) observe the correct value, move the assignment of vabits_actual back into asm code, but still defer it to after the MMU and caches have been enabled. Cc: Will Deacon <will@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible") Reported-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-07-01 13:10:45 +02:00
#if VA_BITS > 48
mrs_s x0, SYS_ID_AA64MMFR2_EL1
tst x0, #0xf << ID_AA64MMFR2_LVA_SHIFT
mov x0, #VA_BITS
mov x25, #VA_BITS_MIN
csel x25, x25, x0, eq
mov x0, x25
#endif
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
arm64: Rename arm64-internal cache maintenance functions Although naming across the codebase isn't that consistent, it tends to follow certain patterns. Moreover, the term "flush" isn't defined in the Arm Architecture reference manual, and might be interpreted to mean clean, invalidate, or both for a cache. Rename arm64-internal functions to make the naming internally consistent, as well as making it consistent with the Arm ARM, by specifying whether it applies to the instruction, data, or both caches, whether the operation is a clean, invalidate, or both. Also specify which point the operation applies to, i.e., to the point of unification (PoU), coherency (PoC), or persistence (PoP). This commit applies the following sed transformation to all files under arch/arm64: "s/\b__flush_cache_range\b/caches_clean_inval_pou_macro/g;"\ "s/\b__flush_icache_range\b/caches_clean_inval_pou/g;"\ "s/\binvalidate_icache_range\b/icache_inval_pou/g;"\ "s/\b__flush_dcache_area\b/dcache_clean_inval_poc/g;"\ "s/\b__inval_dcache_area\b/dcache_inval_poc/g;"\ "s/__clean_dcache_area_poc\b/dcache_clean_poc/g;"\ "s/\b__clean_dcache_area_pop\b/dcache_clean_pop/g;"\ "s/\b__clean_dcache_area_pou\b/dcache_clean_pou/g;"\ "s/\b__flush_cache_user_range\b/caches_clean_inval_user_pou/g;"\ "s/\b__flush_icache_all\b/icache_inval_all_pou/g;" Note that __clean_dcache_area_poc is deliberately missing a word boundary check at the beginning in order to match the efistub symbols in image-vars.h. Also note that, despite its name, __flush_icache_range operates on both instruction and data caches. The name change here reflects that. No functional change intended. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Fuad Tabba <tabba@google.com> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20210524083001.2586635-19-tabba@google.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-24 09:30:01 +01:00
b dcache_inval_poc // tail call
SYM_CODE_END(preserve_boot_args)
SYM_FUNC_START_LOCAL(clear_page_tables)
/*
* Clear the init page tables.
*/
adrp x0, init_pg_dir
adrp x1, init_pg_end
sub x2, x1, x0
mov x1, xzr
b __pi_memset // tail call
SYM_FUNC_END(clear_page_tables)
/*
* Macro to populate page table entries, these entries can be pointers to the next level
* or last level entries pointing to physical memory.
*
* tbl: page table address
* rtbl: pointer to page table or physical memory
* index: start index to write
* eindex: end index to write - [index, eindex] written to
* flags: flags for pagetable entry to or in
* inc: increment to rtbl between each entry
* tmp1: temporary variable
*
* Preserves: tbl, eindex, flags, inc
* Corrupts: index, tmp1
* Returns: rtbl
*/
.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
.Lpe\@: phys_to_pte \tmp1, \rtbl
orr \tmp1, \tmp1, \flags // tmp1 = table entry
str \tmp1, [\tbl, \index, lsl #3]
add \rtbl, \rtbl, \inc // rtbl = pa next level
add \index, \index, #1
cmp \index, \eindex
b.ls .Lpe\@
.endm
/*
* Compute indices of table entries from virtual address range. If multiple entries
* were needed in the previous page table level then the next page table level is assumed
* to be composed of multiple pages. (This effectively scales the end index).
*
* vstart: virtual address of start of range
arm64: head: avoid over-mapping in map_memory The `compute_indices` and `populate_entries` macros operate on inclusive bounds, and thus the `map_memory` macro which uses them also operates on inclusive bounds. We pass `_end` and `_idmap_text_end` to `map_memory`, but these are exclusive bounds, and if one of these is sufficiently aligned (as a result of kernel configuration, physical placement, and KASLR), then: * In `compute_indices`, the computed `iend` will be in the page/block *after* the final byte of the intended mapping. * In `populate_entries`, an unnecessary entry will be created at the end of each level of table. At the leaf level, this entry will map up to SWAPPER_BLOCK_SIZE bytes of physical addresses that we did not intend to map. As we may map up to SWAPPER_BLOCK_SIZE bytes more than intended, we may violate the boot protocol and map physical address past the 2MiB-aligned end address we are permitted to map. As we map these with Normal memory attributes, this may result in further problems depending on what these physical addresses correspond to. The final entry at each level may require an additional table at that level. As EARLY_ENTRIES() calculates an inclusive bound, we allocate enough memory for this. Avoid the extraneous mapping by having map_memory convert the exclusive end address to an inclusive end address by subtracting one, and do likewise in EARLY_ENTRIES() when calculating the number of required tables. For clarity, comments are updated to more clearly document which boundaries the macros operate on. For consistency with the other macros, the comments in map_memory are also updated to describe `vstart` and `vend` as virtual addresses. Fixes: 0370b31e4845 ("arm64: Extend early page table code to allow for larger kernels") Cc: <stable@vger.kernel.org> # 4.16.x Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210823101253.55567-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-08-23 11:12:53 +01:00
* vend: virtual address of end of range - we map [vstart, vend]
* shift: shift used to transform virtual address into index
* order: #imm 2log(number of entries in page table)
* istart: index in table corresponding to vstart
* iend: index in table corresponding to vend
* count: On entry: how many extra entries were required in previous level, scales
* our end index.
* On exit: returns how many extra entries required for next page table level
*
* Preserves: vstart, vend
* Returns: istart, iend, count
*/
.macro compute_indices, vstart, vend, shift, order, istart, iend, count
ubfx \istart, \vstart, \shift, \order
ubfx \iend, \vend, \shift, \order
add \iend, \iend, \count, lsl \order
sub \count, \iend, \istart
.endm
/*
* Map memory for specified virtual address range. Each level of page table needed supports
* multiple entries. If a level requires n entries the next page table level is assumed to be
* formed from n pages.
*
* tbl: location of page table
* rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
arm64: head: avoid over-mapping in map_memory The `compute_indices` and `populate_entries` macros operate on inclusive bounds, and thus the `map_memory` macro which uses them also operates on inclusive bounds. We pass `_end` and `_idmap_text_end` to `map_memory`, but these are exclusive bounds, and if one of these is sufficiently aligned (as a result of kernel configuration, physical placement, and KASLR), then: * In `compute_indices`, the computed `iend` will be in the page/block *after* the final byte of the intended mapping. * In `populate_entries`, an unnecessary entry will be created at the end of each level of table. At the leaf level, this entry will map up to SWAPPER_BLOCK_SIZE bytes of physical addresses that we did not intend to map. As we may map up to SWAPPER_BLOCK_SIZE bytes more than intended, we may violate the boot protocol and map physical address past the 2MiB-aligned end address we are permitted to map. As we map these with Normal memory attributes, this may result in further problems depending on what these physical addresses correspond to. The final entry at each level may require an additional table at that level. As EARLY_ENTRIES() calculates an inclusive bound, we allocate enough memory for this. Avoid the extraneous mapping by having map_memory convert the exclusive end address to an inclusive end address by subtracting one, and do likewise in EARLY_ENTRIES() when calculating the number of required tables. For clarity, comments are updated to more clearly document which boundaries the macros operate on. For consistency with the other macros, the comments in map_memory are also updated to describe `vstart` and `vend` as virtual addresses. Fixes: 0370b31e4845 ("arm64: Extend early page table code to allow for larger kernels") Cc: <stable@vger.kernel.org> # 4.16.x Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210823101253.55567-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-08-23 11:12:53 +01:00
* vstart: virtual address of start of range
* vend: virtual address of end of range - we map [vstart, vend - 1]
* flags: flags to use to map last level entries
* phys: physical address corresponding to vstart - physical memory is contiguous
* order: #imm 2log(number of entries in PGD table)
*
* If extra_shift is set, an extra level will be populated if the end address does
* not fit in 'extra_shift' bits. This assumes vend is in the TTBR0 range.
*
* Temporaries: istart, iend, tmp, count, sv - these need to be different registers
arm64: head: avoid over-mapping in map_memory The `compute_indices` and `populate_entries` macros operate on inclusive bounds, and thus the `map_memory` macro which uses them also operates on inclusive bounds. We pass `_end` and `_idmap_text_end` to `map_memory`, but these are exclusive bounds, and if one of these is sufficiently aligned (as a result of kernel configuration, physical placement, and KASLR), then: * In `compute_indices`, the computed `iend` will be in the page/block *after* the final byte of the intended mapping. * In `populate_entries`, an unnecessary entry will be created at the end of each level of table. At the leaf level, this entry will map up to SWAPPER_BLOCK_SIZE bytes of physical addresses that we did not intend to map. As we may map up to SWAPPER_BLOCK_SIZE bytes more than intended, we may violate the boot protocol and map physical address past the 2MiB-aligned end address we are permitted to map. As we map these with Normal memory attributes, this may result in further problems depending on what these physical addresses correspond to. The final entry at each level may require an additional table at that level. As EARLY_ENTRIES() calculates an inclusive bound, we allocate enough memory for this. Avoid the extraneous mapping by having map_memory convert the exclusive end address to an inclusive end address by subtracting one, and do likewise in EARLY_ENTRIES() when calculating the number of required tables. For clarity, comments are updated to more clearly document which boundaries the macros operate on. For consistency with the other macros, the comments in map_memory are also updated to describe `vstart` and `vend` as virtual addresses. Fixes: 0370b31e4845 ("arm64: Extend early page table code to allow for larger kernels") Cc: <stable@vger.kernel.org> # 4.16.x Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210823101253.55567-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-08-23 11:12:53 +01:00
* Preserves: vstart, flags
* Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
*/
.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, order, istart, iend, tmp, count, sv, extra_shift
arm64: head: avoid over-mapping in map_memory The `compute_indices` and `populate_entries` macros operate on inclusive bounds, and thus the `map_memory` macro which uses them also operates on inclusive bounds. We pass `_end` and `_idmap_text_end` to `map_memory`, but these are exclusive bounds, and if one of these is sufficiently aligned (as a result of kernel configuration, physical placement, and KASLR), then: * In `compute_indices`, the computed `iend` will be in the page/block *after* the final byte of the intended mapping. * In `populate_entries`, an unnecessary entry will be created at the end of each level of table. At the leaf level, this entry will map up to SWAPPER_BLOCK_SIZE bytes of physical addresses that we did not intend to map. As we may map up to SWAPPER_BLOCK_SIZE bytes more than intended, we may violate the boot protocol and map physical address past the 2MiB-aligned end address we are permitted to map. As we map these with Normal memory attributes, this may result in further problems depending on what these physical addresses correspond to. The final entry at each level may require an additional table at that level. As EARLY_ENTRIES() calculates an inclusive bound, we allocate enough memory for this. Avoid the extraneous mapping by having map_memory convert the exclusive end address to an inclusive end address by subtracting one, and do likewise in EARLY_ENTRIES() when calculating the number of required tables. For clarity, comments are updated to more clearly document which boundaries the macros operate on. For consistency with the other macros, the comments in map_memory are also updated to describe `vstart` and `vend` as virtual addresses. Fixes: 0370b31e4845 ("arm64: Extend early page table code to allow for larger kernels") Cc: <stable@vger.kernel.org> # 4.16.x Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Steve Capper <steve.capper@arm.com> Cc: Will Deacon <will@kernel.org> Acked-by: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20210823101253.55567-1-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2021-08-23 11:12:53 +01:00
sub \vend, \vend, #1
add \rtbl, \tbl, #PAGE_SIZE
mov \count, #0
.ifnb \extra_shift
tst \vend, #~((1 << (\extra_shift)) - 1)
b.eq .L_\@
compute_indices \vstart, \vend, #\extra_shift, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
.endif
.L_\@:
compute_indices \vstart, \vend, #PGDIR_SHIFT, #\order, \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#if SWAPPER_PGTABLE_LEVELS > 3
compute_indices \vstart, \vend, #PUD_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#endif
#if SWAPPER_PGTABLE_LEVELS > 2
compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
mov \sv, \rtbl
populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
mov \tbl, \sv
#endif
compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count
bic \rtbl, \phys, #SWAPPER_BLOCK_SIZE - 1
populate_entries \tbl, \rtbl, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
.endm
/*
* Remap a subregion created with the map_memory macro with modified attributes
* or output address. The entire remapped region must have been covered in the
* invocation of map_memory.
*
* x0: last level table address (returned in first argument to map_memory)
* x1: start VA of the existing mapping
* x2: start VA of the region to update
* x3: end VA of the region to update (exclusive)
* x4: start PA associated with the region to update
* x5: attributes to set on the updated region
* x6: order of the last level mappings
*/
SYM_FUNC_START_LOCAL(remap_region)
sub x3, x3, #1 // make end inclusive
// Get the index offset for the start of the last level table
lsr x1, x1, x6
bfi x1, xzr, #0, #PAGE_SHIFT - 3
// Derive the start and end indexes into the last level table
// associated with the provided region
lsr x2, x2, x6
lsr x3, x3, x6
sub x2, x2, x1
sub x3, x3, x1
mov x1, #1
lsl x6, x1, x6 // block size at this level
populate_entries x0, x4, x2, x3, x5, x6, x7
ret
SYM_FUNC_END(remap_region)
SYM_FUNC_START_LOCAL(create_idmap)
mov x28, lr
/*
* The ID map carries a 1:1 mapping of the physical address range
* covered by the loaded image, which could be anywhere in DRAM. This
* means that the required size of the VA (== PA) space is decided at
* boot time, and could be more than the configured size of the VA
* space for ordinary kernel and user space mappings.
*
* There are three cases to consider here:
* - 39 <= VA_BITS < 48, and the ID map needs up to 48 VA bits to cover
* the placement of the image. In this case, we configure one extra
* level of translation on the fly for the ID map only. (This case
* also covers 42-bit VA/52-bit PA on 64k pages).
*
* - VA_BITS == 48, and the ID map needs more than 48 VA bits. This can
* only happen when using 64k pages, in which case we need to extend
* the root level table rather than add a level. Note that we can
* treat this case as 'always extended' as long as we take care not
* to program an unsupported T0SZ value into the TCR register.
*
* - Combinations that would require two additional levels of
* translation are not supported, e.g., VA_BITS==36 on 16k pages, or
* VA_BITS==39/4k pages with 5-level paging, where the input address
* requires more than 47 or 48 bits, respectively.
*/
#if (VA_BITS < 48)
#define IDMAP_PGD_ORDER (VA_BITS - PGDIR_SHIFT)
#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
/*
* If VA_BITS < 48, we have to configure an additional table level.
* First, we have to verify our assumption that the current value of
* VA_BITS was chosen such that all translation levels are fully
* utilised, and that lowering T0SZ will always result in an additional
* translation level to be configured.
*/
#if VA_BITS != EXTRA_SHIFT
#error "Mismatch between VA_BITS and page size/number of translation levels"
#endif
#else
#define IDMAP_PGD_ORDER (PHYS_MASK_SHIFT - PGDIR_SHIFT)
#define EXTRA_SHIFT
/*
* If VA_BITS == 48, we don't have to configure an additional
* translation level, but the top-level table has more entries.
*/
#endif
adrp x0, init_idmap_pg_dir
adrp x3, _text
adrp x6, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
mov x7, SWAPPER_RX_MMUFLAGS
map_memory x0, x1, x3, x6, x7, x3, IDMAP_PGD_ORDER, x10, x11, x12, x13, x14, EXTRA_SHIFT
/* Remap the kernel page tables r/w in the ID map */
adrp x1, _text
adrp x2, init_pg_dir
adrp x3, init_pg_end
bic x4, x2, #SWAPPER_BLOCK_SIZE - 1
mov x5, SWAPPER_RW_MMUFLAGS
mov x6, #SWAPPER_BLOCK_SHIFT
bl remap_region
/* Remap the FDT after the kernel image */
adrp x1, _text
adrp x22, _end + SWAPPER_BLOCK_SIZE
bic x2, x22, #SWAPPER_BLOCK_SIZE - 1
bfi x22, x21, #0, #SWAPPER_BLOCK_SHIFT // remapped FDT address
add x3, x2, #MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE
bic x4, x21, #SWAPPER_BLOCK_SIZE - 1
mov x5, SWAPPER_RW_MMUFLAGS
mov x6, #SWAPPER_BLOCK_SHIFT
bl remap_region
/*
* Since the page tables have been populated with non-cacheable
* accesses (MMU disabled), invalidate those tables again to
* remove any speculatively loaded cache lines.
*/
dmb sy
adrp x0, init_idmap_pg_dir
adrp x1, init_idmap_pg_end
bl dcache_inval_poc
ret x28
SYM_FUNC_END(create_idmap)
SYM_FUNC_START_LOCAL(create_kernel_mapping)
arm64/mm: Separate boot-time page tables from swapper_pg_dir Since the address of swapper_pg_dir is fixed for a given kernel image, it is an attractive target for manipulation via an arbitrary write. To mitigate this we'd like to make it read-only by moving it into the rodata section. We require that swapper_pg_dir is at a fixed offset from tramp_pg_dir and reserved_ttbr0, so these will also need to move into rodata. However, swapper_pg_dir is allocated along with some transient page tables used for boot which we do not want to move into rodata. As a step towards this, this patch separates the boot-time page tables into a new init_pg_dir, and reduces swapper_pg_dir to the single page it needs to be. This allows us to retain the relationship between swapper_pg_dir, tramp_pg_dir, and swapper_pg_dir, while cleanly separating these from the boot-time page tables. The init_pg_dir holds all of the pgd/pud/pmd/pte levels needed during boot, and all of these levels will be freed when we switch to the swapper_pg_dir, which is initialized by the existing code in paging_init(). Since we start off on the init_pg_dir, we no longer need to allocate a transient page table in paging_init() in order to ensure that swapper_pg_dir isn't live while we initialize it. There should be no functional change as a result of this patch. Signed-off-by: Jun Yao <yaojun8558363@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> [Mark: place init_pg_dir after BSS, fold mm changes, commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-09-24 15:47:49 +01:00
adrp x0, init_pg_dir
mov_q x5, KIMAGE_VADDR // compile time __va(_text)
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
add x5, x5, x23 // add KASLR displacement
adrp x6, _end // runtime __pa(_end)
adrp x3, _text // runtime __pa(_text)
sub x6, x6, x3 // _end - _text
add x6, x6, x5 // runtime __va(_end)
mov x7, SWAPPER_RW_MMUFLAGS
map_memory x0, x1, x5, x6, x7, x3, (VA_BITS - PGDIR_SHIFT), x10, x11, x12, x13, x14
dsb ishst // sync with page table walker
ret
SYM_FUNC_END(create_kernel_mapping)
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
/*
* Initialize CPU registers with task-specific and cpu-specific context.
*
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
* Create a final frame record at task_pt_regs(current)->stackframe, so
* that the unwinder can identify the final frame record of any task by
* its location in the task stack. We reserve the entire pt_regs space
* for consistency with user tasks and kthreads.
*/
.macro init_cpu_task tsk, tmp1, tmp2
msr sp_el0, \tsk
ldr \tmp1, [\tsk, #TSK_STACK]
add sp, \tmp1, #THREAD_SIZE
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
sub sp, sp, #PT_REGS_SIZE
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
stp xzr, xzr, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
scs_load \tsk
adr_l \tmp1, __per_cpu_offset
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
ldr \tmp1, [\tmp1, \tmp2, lsl #3]
set_this_cpu_offset \tmp1
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
.endm
/*
* The following fragment of code is executed with the MMU enabled.
*
* x0 = __pa(KERNEL_START)
*/
SYM_FUNC_START_LOCAL(__primary_switched)
adr_l x4, init_task
init_cpu_task x4, x5, x6
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp x29, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
ldr_l x4, kimage_vaddr // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
mov x0, x20
bl set_cpu_boot_mode_flag
// Clear BSS
adr_l x0, __bss_start
mov x1, xzr
adr_l x2, __bss_stop
sub x2, x2, x0
bl __pi_memset
arm64: mm: place empty_zero_page in bss Currently the zero page is set up in paging_init, and thus we cannot use the zero page earlier. We use the zero page as a reserved TTBR value from which no TLB entries may be allocated (e.g. when uninstalling the idmap). To enable such usage earlier (as may be required for invasive changes to the kernel page tables), and to minimise the time that the idmap is active, we need to be able to use the zero page before paging_init. This patch follows the example set by x86, by allocating the zero page at compile time, in .bss. This means that the zero page itself is available immediately upon entry to start_kernel (as we zero .bss before this), and also means that the zero page takes up no space in the raw Image binary. The associated struct page is allocated in bootmem_init, and remains unavailable until this time. Outside of arch code, the only users of empty_zero_page assume that the empty_zero_page symbol refers to the zeroed memory itself, and that ZERO_PAGE(x) must be used to acquire the associated struct page, following the example of x86. This patch also brings arm64 inline with these assumptions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:44:57 +00:00
dsb ishst // Make zero page visible to PTW
arm64: mm: fix booting with 52-bit address space Joey reports that booting 52-bit VA capable builds on 52-bit VA capable CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible"). This is due to the fact that the primary CPU reads the vabits_actual variable before it has been assigned. The reason for deferring the assignment of vabits_actual was that we try to perform as few stores to memory as we can with the MMU and caches off, due to the cache coherency issues it creates. Since __cpu_setup() [which is where the read of vabits_actual occurs] is also called on the secondary boot path, we cannot just read the CPU ID registers directly, given that the size of the VA space is decided by the capabilities of the primary CPU. So let's read vabits_actual only on the secondary boot path, and read the CPU ID registers directly on the primary boot path, by making it a function parameter of __cpu_setup(). To ensure that all users of vabits_actual (including kasan_early_init()) observe the correct value, move the assignment of vabits_actual back into asm code, but still defer it to after the MMU and caches have been enabled. Cc: Will Deacon <will@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible") Reported-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-07-01 13:10:45 +02:00
#if VA_BITS > 48
adr_l x8, vabits_actual // Set this early so KASAN early init
str x25, [x8] // ... observes the correct value
dc civac, x8 // Make visible to booting secondaries
#endif
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
#ifdef CONFIG_RANDOMIZE_BASE
adrp x5, memstart_offset_seed // Save KASLR linear map seed
strh w24, [x5, :lo12:memstart_offset_seed]
#endif
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
2015-10-12 18:52:58 +03:00
bl kasan_early_init
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
#endif
mov x0, x22 // pass FDT address in x0
mov x1, x20 // pass the full boot status
bl init_feature_override // Parse cpu feature overrides
mov x0, x20
bl finalise_el2 // Prefer VHE if possible
ldp x29, x30, [sp], #16
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
bl start_kernel
ASM_BUG()
SYM_FUNC_END(__primary_switched)
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
.section ".idmap.text","awx"
arm64: add support for kernel ASLR This adds support for KASLR is implemented, based on entropy provided by the bootloader in the /chosen/kaslr-seed DT property. Depending on the size of the address space (VA_BITS) and the page size, the entropy in the virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all 4 levels), with the sidenote that displacements that result in the kernel image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB granule kernels, respectively) are not allowed, and will be rounded up to an acceptable value. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is randomized independently from the core kernel. This makes it less likely that the location of core kernel data structures can be determined by an adversary, but causes all function calls from modules into the core kernel to be resolved via entries in the module PLTs. If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is randomized by choosing a page aligned 128 MB region inside the interval [_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of entropy (depending on page size), independently of the kernel randomization, but still guarantees that modules are within the range of relative branch and jump instructions (with the caveat that, since the module region is shared with other uses of the vmalloc area, modules may need to be loaded further away if the module region is exhausted) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 14:12:01 +01:00
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
* reachable EL supported by the kernel in a chosen default state. If dropping
* from EL2 to EL1, configure EL2 before configuring EL1.
*
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
*
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
* booted in EL1 or EL2 respectively, with the top 32 bits containing
* potential context flags. These flags are *not* stored in __boot_cpu_mode.
*/
SYM_FUNC_START(init_kernel_el)
mrs x0, CurrentEL
cmp x0, #CurrentEL_EL2
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
msr sctlr_el1, x0
isb
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
mov_q x0, INIT_PSTATE_EL1
msr spsr_el1, x0
msr elr_el1, lr
mov w0, #BOOT_CPU_MODE_EL1
eret
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
mov_q x0, HCR_HOST_NVHE_FLAGS
msr hcr_el2, x0
isb
init_el2_state
/* Hypervisor stub */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
isb
/*
* Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
* making it impossible to start in nVHE mode. Is that
* compliant with the architecture? Absolutely not!
*/
mrs x0, hcr_el2
and x0, x0, #HCR_E2H
cbz x0, 1f
/* Switching to VHE requires a sane SCTLR_EL1 as a start */
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
msr_s SYS_SCTLR_EL12, x0
/*
* Force an eret into a helper "function", and let it return
* to our original caller... This makes sure that we have
* initialised the basic PSTATE state.
*/
mov x0, #INIT_PSTATE_EL2
msr spsr_el1, x0
adr x0, __cpu_stick_to_vhe
msr elr_el1, x0
eret
1:
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
msr sctlr_el1, x0
msr elr_el2, lr
arm64: head.S: always initialize PSTATE As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-13 12:49:25 +00:00
mov w0, #BOOT_CPU_MODE_EL2
eret
__cpu_stick_to_vhe:
mov x0, #HVC_FINALISE_EL2
hvc #0
mov x0, #BOOT_CPU_MODE_EL2
orr x0, x0, #BOOT_CPU_FLAG_E2H
ret
SYM_FUNC_END(init_kernel_el)
/*
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
* in w0. See arch/arm64/include/asm/virt.h for more info.
*/
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
adr_l x1, __boot_cpu_mode
cmp w0, #BOOT_CPU_MODE_EL2
b.ne 1f
add x1, x1, #4
1: str w0, [x1] // Save CPU boot mode
ret
SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
bl init_kernel_el // w0=cpu_boot_mode
mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
and x2, x2, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
cmp x4, x2
b.eq secondary_startup
wfe
b pen
SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
SYM_FUNC_END(secondary_entry)
SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
mov x20, x0 // preserve boot mode
bl finalise_el2
bl __cpu_secondary_check52bitva
arm64: mm: fix booting with 52-bit address space Joey reports that booting 52-bit VA capable builds on 52-bit VA capable CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible"). This is due to the fact that the primary CPU reads the vabits_actual variable before it has been assigned. The reason for deferring the assignment of vabits_actual was that we try to perform as few stores to memory as we can with the MMU and caches off, due to the cache coherency issues it creates. Since __cpu_setup() [which is where the read of vabits_actual occurs] is also called on the secondary boot path, we cannot just read the CPU ID registers directly, given that the size of the VA space is decided by the capabilities of the primary CPU. So let's read vabits_actual only on the secondary boot path, and read the CPU ID registers directly on the primary boot path, by making it a function parameter of __cpu_setup(). To ensure that all users of vabits_actual (including kasan_early_init()) observe the correct value, move the assignment of vabits_actual back into asm code, but still defer it to after the MMU and caches have been enabled. Cc: Will Deacon <will@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible") Reported-by: Joey Gouly <joey.gouly@arm.com> Co-developed-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Joey Gouly <joey.gouly@arm.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-07-01 13:10:45 +02:00
#if VA_BITS > 48
ldr_l x0, vabits_actual
#endif
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
adrp x2, idmap_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
SYM_FUNC_END(secondary_startup)
SYM_FUNC_START_LOCAL(__secondary_switched)
mov x0, x20
bl set_cpu_boot_mode_flag
str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
isb
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
adr_l x0, secondary_data
arm64: split thread_info from task stack This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-03 20:23:13 +00:00
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
init_cpu_task x2, x1, x3
arm64: simplify ptrauth initialization Currently __cpu_setup conditionally initializes the address authentication keys and enables them in SCTLR_EL1, doing so differently for the primary CPU and secondary CPUs, and skipping this work for CPUs returning from an idle state. For the latter case, cpu_do_resume restores the keys and SCTLR_EL1 value after the MMU has been enabled. This flow is rather difficult to follow, so instead let's move the primary and secondary CPU initialization into their respective boot paths. By following the example of cpu_do_resume and doing so once the MMU is enabled, we can always initialize the keys from the values in thread_struct, and avoid the machinery necessary to pass the keys in secondary_data or open-coding initialization for the boot CPU. This means we perform an additional RMW of SCTLR_EL1, but we already do this in the cpu_do_resume path, and for other features in cpufeature.c, so this isn't a major concern in a bringup path. Note that even while the enable bits are clear, the key registers are accessible. As this now renders the argument to __cpu_setup redundant, let's also remove that entirely. Future extensions can follow a similar approach to initialize values that differ for primary/secondary CPUs. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Amit Daniel Kachhap <amit.kachhap@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2020-04-23 11:16:06 +01:00
#ifdef CONFIG_ARM64_PTR_AUTH
ptrauth_keys_init_cpu x2, x3, x4, x5
#endif
arm64: Implement stack trace termination record Reliable stacktracing requires that we identify when a stacktrace is terminated early. We can do this by ensuring all tasks have a final frame record at a known location on their task stack, and checking that this is the final frame record in the chain. We'd like to use task_pt_regs(task)->stackframe as the final frame record, as this is already setup upon exception entry from EL0. For kernel tasks we need to consistently reserve the pt_regs and point x29 at this, which we can do with small changes to __primary_switched, __secondary_switched, and copy_process(). Since the final frame record must be at a specific location, we must create the final frame record in __primary_switched and __secondary_switched rather than leaving this to start_kernel and secondary_start_kernel. Thus, __primary_switched and __secondary_switched will now show up in stacktraces for the idle tasks. Since the final frame record is now identified by its location rather than by its contents, we identify it at the start of unwind_frame(), before we read any values from it. External debuggers may terminate the stack trace when FP == 0. In the pt_regs->stackframe, the PC is 0 as well. So, stack traces taken in the debugger may print an extra record 0x0 at the end. While this is not pretty, this does not do any harm. This is a small price to pay for having reliable stack trace termination in the kernel. That said, gdb does not show the extra record probably because it uses DWARF and not frame pointers for stack traces. Signed-off-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com> Reviewed-by: Mark Brown <broonie@kernel.org> [Mark: rebase, use ASM_BUG(), update comments, update commit message] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20210510110026.18061-1-mark.rutland@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-05-10 12:00:26 +01:00
bl secondary_start_kernel
ASM_BUG()
SYM_FUNC_END(__secondary_switched)
SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
* update_early_cpu_boot_status tmp, status
* - Corrupts tmp1, tmp2
* - Writes 'status' to __early_cpu_boot_status and makes sure
* it is committed to memory.
*/
.macro update_early_cpu_boot_status status, tmp1, tmp2
mov \tmp2, #\status
adr_l \tmp1, __early_cpu_boot_status
str \tmp2, [\tmp1]
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
dmb sy
dc ivac, \tmp1 // Invalidate potentially stale cache line
.endm
/*
* Enable the MMU.
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
* x2 = ID map root table address
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
*
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
SYM_FUNC_START(__enable_mmu)
mrs x3, ID_AA64MMFR0_EL1
ubfx x3, x3, #ID_AA64MMFR0_TGRAN_SHIFT, 4
cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
cmp x3, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
load_ttbr1 x1, x1, x3
set_sctlr_el1 x0
ret
SYM_FUNC_END(__enable_mmu)
SYM_FUNC_START(__cpu_secondary_check52bitva)
#if VA_BITS > 48
ldr_l x0, vabits_actual
cmp x0, #52
b.ne 2f
mrs_s x0, SYS_ID_AA64MMFR2_EL1
and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
cbnz x0, 2f
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1: wfe
wfi
b 1b
#endif
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
SYM_FUNC_START_LOCAL(__no_granule_support)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
1:
wfe
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
wfi
b 1b
SYM_FUNC_END(__no_granule_support)
#ifdef CONFIG_RELOCATABLE
SYM_FUNC_START_LOCAL(__relocate_kernel)
/*
* Iterate over each entry in the relocation table, and apply the
* relocations in place.
*/
adr_l x9, __rela_start
adr_l x10, __rela_end
mov_q x11, KIMAGE_VADDR // default virtual offset
add x11, x11, x23 // actual virtual offset
0: cmp x9, x10
arm64: relocatable: suppress R_AARCH64_ABS64 relocations in vmlinux The linker routines that we rely on to produce a relocatable PIE binary treat it as a shared ELF object in some ways, i.e., it emits symbol based R_AARCH64_ABS64 relocations into the final binary since doing so would be appropriate when linking a shared library that is subject to symbol preemption. (This means that an executable can override certain symbols that are exported by a shared library it is linked with, and that the shared library *must* update all its internal references as well, and point them to the version provided by the executable.) Symbol preemption does not occur for OS hosted PIE executables, let alone for vmlinux, and so we would prefer to get rid of these symbol based relocations. This would allow us to simplify the relocation routines, and to strip the .dynsym, .dynstr and .hash sections from the binary. (Note that these are tiny, and are placed in the .init segment, but they clutter up the vmlinux binary.) Note that these R_AARCH64_ABS64 relocations are only emitted for absolute references to symbols defined in the linker script, all other relocatable quantities are covered by anonymous R_AARCH64_RELATIVE relocations that simply list the offsets to all 64-bit values in the binary that need to be fixed up based on the offset between the link time and run time addresses. Fortunately, GNU ld has a -Bsymbolic option, which is intended for shared libraries to allow them to ignore symbol preemption, and unconditionally bind all internal symbol references to its own definitions. So set it for our PIE binary as well, and get rid of the asoociated sections and the relocation code that processes them. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [will: fixed conflict with __dynsym_offset linker script entry] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-24 14:00:13 +02:00
b.hs 1f
ldp x12, x13, [x9], #24
ldr x14, [x9, #-8]
cmp w13, #R_AARCH64_RELATIVE
arm64: relocatable: suppress R_AARCH64_ABS64 relocations in vmlinux The linker routines that we rely on to produce a relocatable PIE binary treat it as a shared ELF object in some ways, i.e., it emits symbol based R_AARCH64_ABS64 relocations into the final binary since doing so would be appropriate when linking a shared library that is subject to symbol preemption. (This means that an executable can override certain symbols that are exported by a shared library it is linked with, and that the shared library *must* update all its internal references as well, and point them to the version provided by the executable.) Symbol preemption does not occur for OS hosted PIE executables, let alone for vmlinux, and so we would prefer to get rid of these symbol based relocations. This would allow us to simplify the relocation routines, and to strip the .dynsym, .dynstr and .hash sections from the binary. (Note that these are tiny, and are placed in the .init segment, but they clutter up the vmlinux binary.) Note that these R_AARCH64_ABS64 relocations are only emitted for absolute references to symbols defined in the linker script, all other relocatable quantities are covered by anonymous R_AARCH64_RELATIVE relocations that simply list the offsets to all 64-bit values in the binary that need to be fixed up based on the offset between the link time and run time addresses. Fortunately, GNU ld has a -Bsymbolic option, which is intended for shared libraries to allow them to ignore symbol preemption, and unconditionally bind all internal symbol references to its own definitions. So set it for our PIE binary as well, and get rid of the asoociated sections and the relocation code that processes them. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [will: fixed conflict with __dynsym_offset linker script entry] Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-24 14:00:13 +02:00
b.ne 0b
add x14, x14, x23 // relocate
str x14, [x12, x23]
b 0b
1:
#ifdef CONFIG_RELR
/*
* Apply RELR relocations.
*
* RELR is a compressed format for storing relative relocations. The
* encoded sequence of entries looks like:
* [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
*
* i.e. start with an address, followed by any number of bitmaps. The
* address entry encodes 1 relocation. The subsequent bitmap entries
* encode up to 63 relocations each, at subsequent offsets following
* the last address entry.
*
* The bitmap entries must have 1 in the least significant bit. The
* assumption here is that an address cannot have 1 in lsb. Odd
* addresses are not supported. Any odd addresses are stored in the RELA
* section, which is handled above.
*
* Excluding the least significant bit in the bitmap, each non-zero
* bit in the bitmap represents a relocation to be applied to
* a corresponding machine word that follows the base address
* word. The second least significant bit represents the machine
* word immediately following the initial address, and each bit
* that follows represents the next word, in linear order. As such,
* a single bitmap can encode up to 63 relocations in a 64-bit object.
*
* In this implementation we store the address of the next RELR table
* entry in x9, the address being relocated by the current address or
* bitmap entry in x13 and the address being relocated by the current
* bit in x14.
*/
adr_l x9, __relr_start
adr_l x10, __relr_end
2: cmp x9, x10
b.hs 7f
ldr x11, [x9], #8
tbnz x11, #0, 3f // branch to handle bitmaps
add x13, x11, x23
ldr x12, [x13] // relocate address entry
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
add x12, x12, x23
str x12, [x13], #8 // adjust to start of bitmap
b 2b
3: mov x14, x13
4: lsr x11, x11, #1
cbz x11, 6f
tbz x11, #0, 5f // skip bit if not set
ldr x12, [x14] // relocate bit
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
add x12, x12, x23
str x12, [x14]
5: add x14, x14, #8 // move to next bit's address
b 4b
6: /*
* Move to the next bitmap's address. 8 is the word size, and 63 is the
* number of significant bits in a bitmap entry.
*/
add x13, x13, #(8 * 63)
b 2b
7:
#endif
ret
SYM_FUNC_END(__relocate_kernel)
#endif
SYM_FUNC_START_LOCAL(__primary_switch)
adrp x1, reserved_pg_dir
adrp x2, init_idmap_pg_dir
bl __enable_mmu
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
#ifdef CONFIG_RELOCATABLE
adrp x23, KERNEL_START
arm64: head: avoid relocating the kernel twice for KASLR Currently, when KASLR is in effect, we set up the kernel virtual address space twice: the first time, the KASLR seed is looked up in the device tree, and the kernel virtual mapping is torn down and recreated again, after which the relocations are applied a second time. The latter step means that statically initialized global pointer variables will be reset to their initial values, and to ensure that BSS variables are not set to values based on the initial translation, they are cleared again as well. All of this is needed because we need the command line (taken from the DT) to tell us whether or not to randomize the virtual address space before entering the kernel proper. However, this code has expanded little by little and now creates global state unrelated to the virtual randomization of the kernel before the mapping is torn down and set up again, and the BSS cleared for a second time. This has created some issues in the past, and it would be better to avoid this little dance if possible. So instead, let's use the temporary mapping of the device tree, and execute the bare minimum of code to decide whether or not KASLR should be enabled, and what the seed is. Only then, create the virtual kernel mapping, clear BSS, etc and proceed as normal. This avoids the issues around inconsistent global state due to BSS being cleared twice, and is generally more maintainable, as it permits us to defer all the remaining DT parsing and KASLR initialization to a later time. This means the relocation fixup code runs only a single time as well, allowing us to simplify the RELR handling code too, which is not idempotent and was therefore required to keep track of the offset that was applied the first time around. Note that this means we have to clone a pair of FDT library objects, so that we can control how they are built - we need the stack protector and other instrumentation disabled so that the code can tolerate being called this early. Note that only the kernel page tables and the temporary stack are mapped read-write at this point, which ensures that the early code does not modify any global state inadvertently. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220624150651.1358849-21-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-24 17:06:50 +02:00
and x23, x23, MIN_KIMG_ALIGN - 1
#ifdef CONFIG_RANDOMIZE_BASE
mov x0, x22
adrp x1, init_pg_end
mov sp, x1
mov x29, xzr
bl __pi_kaslr_early_init
and x24, x0, #SZ_2M - 1 // capture memstart offset seed
bic x0, x0, #SZ_2M - 1
orr x23, x23, x0 // record kernel offset
#endif
#endif
bl clear_page_tables
bl create_kernel_mapping
adrp x1, init_pg_dir
load_ttbr1 x1, x1, x2
#ifdef CONFIG_RELOCATABLE
bl __relocate_kernel
#endif
ldr x8, =__primary_switched
adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8
SYM_FUNC_END(__primary_switch)