309 lines
6.7 KiB
ArmAsm
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright (C) Paul Mackerras 1997.
*
* Adapted for 64 bit LE PowerPC by Andrew Tauferner
*/
#include "ppc_asm.h"
RELA = 7
RELASZ = 8
RELAENT = 9
.data
/* A procedure descriptor used when booting this as a COFF file.
* When making COFF, this comes first in the link and we're
* linked at 0x500000.
*/
.globl _zimage_start_opd
_zimage_start_opd:
.long 0x500000, 0, 0, 0
.text
b _zimage_start
#ifdef __powerpc64__
.balign 8
p_start: .8byte _start
p_etext: .8byte _etext
p_bss_start: .8byte __bss_start
p_end: .8byte _end
powerpc/toc: Future proof kernel toc This patch future-proofs the kernel against linker changes that might put the toc pointer at some location other than .got+0x8000, by replacing __toc_start+0x8000 with .TOC. throughout. If the kernel's idea of the toc pointer doesn't agree with the linker, bad things happen. prom_init.c code relocating its toc is also changed so that a symbolic __prom_init_toc_start toc-pointer relative address is calculated rather than assuming that it is always at toc-pointer - 0x8000. The length calculations loading values from the toc are also avoided. It's a little incestuous to do that with unreloc_toc picking up adjusted values (which is fine in practice, they both adjust by the same amount if all goes well). I've also changed the way .got is aligned in vmlinux.lds and zImage.lds, mostly so that dumping out section info by objdump or readelf plainly shows the alignment is 256. This linker script feature was added 2005-09-27, available in FSF binutils releases from 2.17 onwards. Should be safe to use in the kernel, I think. Finally, put *(.got) before the prom_init.o entry which only needs *(.toc), so that the GOT header goes in the correct place. I don't believe this makes any difference for the kernel as it would for dynamic objects being loaded by ld.so. That change is just to stop lusers who blindly copy kernel scripts being led astray. Of course, this change needs the prom_init.c changes. Some notes on .toc and .got. .toc is a compiler generated section of addresses. .got is a linker generated section of addresses, generally built when the linker sees R_*_*GOT* relocations. In the case of powerpc64 ld.bfd, there are multiple generated .got sections, one per input object file. So you can somewhat reasonably write in a linker script an input section statement like *prom_init.o(.got .toc) to mean "the .got and .toc section for files matching *prom_init.o". On other architectures that doesn't make sense, because the linker generally has just one .got section. Even on powerpc64, note well that the GOT entries for prom_init.o may be merged with GOT entries from other objects. That means that if prom_init.o references, say, _end via some GOT relocation, and some other object also references _end via a GOT relocation, the GOT entry for _end may be in the range __prom_init_toc_start to __prom_init_toc_end and if the kernel does something special to GOT/TOC entries in that range then the value of _end as seen by objects other than prom_init.o will be affected. On the other hand the GOT entry for _end may not be in the range __prom_init_toc_start to __prom_init_toc_end. Which way it turns out is deterministic but a detail of linker operation that should not be relied on. A feature of ld.bfd is that input .toc (and .got) sections matching one linker input section statement may be sorted, to put entries used by small-model code first, near the toc base. This is why scripts for powerpc64 normally use *(.got .toc) rather than *(.got) *(.toc), since the first form allows more freedom to sort. Another feature of ld.bfd is that indirect addressing sequences using the GOT/TOC may be edited by the linker to relative addressing. In many cases relative addressing would be emitted by gcc for -mcmodel=medium if you appropriately decorate variable declarations with non-default visibility. The original patch is here: https://lore.kernel.org/linuxppc-dev/20210310034813.GM6042@bubble.grove.modra.org/ Signed-off-by: Alan Modra <amodra@au1.ibm.com> [aik: removed non-relocatable which is gone in 24d33ac5b8ffb] [aik: added <=2.24 check] [aik: because of llvm-as, kernel_toc_addr() uses "mr" instead of global register variable] Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20211221055904.555763-2-aik@ozlabs.ru
2021-12-21 16:58:59 +11:00
p_toc: .8byte .TOC. - p_base
p_dyn: .8byte __dynamic_start - p_base
p_rela: .8byte __rela_dyn_start - p_base
p_prom: .8byte 0
.weak _platform_stack_top
p_pstack: .8byte _platform_stack_top
#else
p_start: .long _start
p_etext: .long _etext
p_bss_start: .long __bss_start
p_end: .long _end
.weak _platform_stack_top
p_pstack: .long _platform_stack_top
#endif
.weak _zimage_start
_zimage_start:
.globl _zimage_start_lib
_zimage_start_lib:
/* Work out the offset between the address we were linked at
and the address where we're running. */
bcl 20,31,.+4
p_base: mflr r10 /* r10 now points to runtime addr of p_base */
#ifndef __powerpc64__
/* grab the link address of the dynamic section in r11 */
addis r11,r10,(_GLOBAL_OFFSET_TABLE_-p_base)@ha
lwz r11,(_GLOBAL_OFFSET_TABLE_-p_base)@l(r11)
cmpwi r11,0
beq 3f /* if not linked -pie */
/* get the runtime address of the dynamic section in r12 */
.weak __dynamic_start
addis r12,r10,(__dynamic_start-p_base)@ha
addi r12,r12,(__dynamic_start-p_base)@l
subf r11,r11,r12 /* runtime - linktime offset */
/* The dynamic section contains a series of tagged entries.
* We need the RELA and RELACOUNT entries. */
li r9,0
li r0,0
9: lwz r8,0(r12) /* get tag */
cmpwi r8,0
beq 10f /* end of list */
cmpwi r8,RELA
bne 11f
lwz r9,4(r12) /* get RELA pointer in r9 */
b 12f
11: cmpwi r8,RELASZ
bne .Lcheck_for_relaent
lwz r0,4(r12) /* get RELASZ value in r0 */
b 12f
.Lcheck_for_relaent:
cmpwi r8,RELAENT
bne 12f
lwz r14,4(r12) /* get RELAENT value in r14 */
12: addi r12,r12,8
b 9b
/* The relocation section contains a list of relocations.
* We now do the R_PPC_RELATIVE ones, which point to words
* which need to be initialized with addend + offset */
10: /* skip relocation if we don't have both */
cmpwi r0,0
beq 3f
cmpwi r9,0
beq 3f
cmpwi r14,0
beq 3f
add r9,r9,r11 /* Relocate RELA pointer */
divwu r0,r0,r14 /* RELASZ / RELAENT */
mtctr r0
2: lbz r0,4+3(r9) /* ELF32_R_INFO(reloc->r_info) */
cmpwi r0,22 /* R_PPC_RELATIVE */
bne .Lnext
lwz r12,0(r9) /* reloc->r_offset */
lwz r0,8(r9) /* reloc->r_addend */
add r0,r0,r11
stwx r0,r11,r12
.Lnext: add r9,r9,r14
bdnz 2b
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
/* Do a cache flush for our text, in case the loader didn't */
3: lwz r9,p_start-p_base(r10) /* note: these are relocated now */
lwz r8,p_etext-p_base(r10)
4: dcbf r0,r9
icbi r0,r9
addi r9,r9,0x20
cmplw cr0,r9,r8
blt 4b
sync
isync
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
/* Clear the BSS */
lwz r9,p_bss_start-p_base(r10)
lwz r8,p_end-p_base(r10)
li r0,0
5: stw r0,0(r9)
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
addi r9,r9,4
cmplw cr0,r9,r8
blt 5b
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
/* Possibly set up a custom stack */
lwz r8,p_pstack-p_base(r10)
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
cmpwi r8,0
beq 6f
lwz r1,0(r8)
li r0,0
stwu r0,-16(r1) /* establish a stack frame */
6:
#else /* __powerpc64__ */
/* Save the prom pointer at p_prom. */
std r5,(p_prom-p_base)(r10)
/* Set r2 to the TOC. */
ld r2,(p_toc-p_base)(r10)
add r2,r2,r10
/* Grab the link address of the dynamic section in r11. */
ld r11,-32768(r2)
cmpwi r11,0
beq 3f /* if not linked -pie then no dynamic section */
ld r11,(p_dyn-p_base)(r10)
add r11,r11,r10
ld r9,(p_rela-p_base)(r10)
add r9,r9,r10
li r13,0
li r8,0
9: ld r12,0(r11) /* get tag */
cmpdi r12,0
beq 12f /* end of list */
cmpdi r12,RELA
bne 10f
ld r13,8(r11) /* get RELA pointer in r13 */
b 11f
10: cmpwi r12,RELASZ
bne .Lcheck_for_relaent
lwz r8,8(r11) /* get RELASZ pointer in r8 */
b 11f
.Lcheck_for_relaent:
cmpwi r12,RELAENT
bne 11f
lwz r14,8(r11) /* get RELAENT pointer in r14 */
11: addi r11,r11,16
b 9b
12:
cmpdi r13,0 /* check we have both RELA, RELASZ, RELAENT*/
cmpdi cr1,r8,0
beq 3f
beq cr1,3f
cmpdi r14,0
beq 3f
/* Calcuate the runtime offset. */
subf r13,r13,r9
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
/* Run through the list of relocations and process the
* R_PPC64_RELATIVE ones. */
divdu r8,r8,r14 /* RELASZ / RELAENT */
mtctr r8
13: ld r0,8(r9) /* ELF64_R_TYPE(reloc->r_info) */
cmpdi r0,22 /* R_PPC64_RELATIVE */
bne .Lnext
ld r12,0(r9) /* reloc->r_offset */
ld r0,16(r9) /* reloc->r_addend */
add r0,r0,r13
stdx r0,r13,r12
.Lnext: add r9,r9,r14
bdnz 13b
/* Do a cache flush for our text, in case the loader didn't */
3: ld r9,p_start-p_base(r10) /* note: these are relocated now */
ld r8,p_etext-p_base(r10)
4: dcbf r0,r9
icbi r0,r9
addi r9,r9,0x20
cmpld cr0,r9,r8
blt 4b
sync
isync
/* Clear the BSS */
ld r9,p_bss_start-p_base(r10)
ld r8,p_end-p_base(r10)
li r0,0
5: std r0,0(r9)
addi r9,r9,8
cmpld cr0,r9,r8
blt 5b
/* Possibly set up a custom stack */
ld r8,p_pstack-p_base(r10)
cmpdi r8,0
beq 6f
ld r1,0(r8)
li r0,0
stdu r0,-112(r1) /* establish a stack frame */
6:
#endif /* __powerpc64__ */
[POWERPC] zImage: Cleanup and improve zImage entry point This patch re-organises the way the zImage wrapper code is entered, to allow more flexibility on platforms with unusual entry conditions. After this patch, a platform .o file has two options: 1) It can define a _zimage_start, in which case the platform code gets control from the very beginning of execution. In this case the platform code is responsible for relocating the zImage if necessary, clearing the BSS, performing any platform specific initialization, and finally calling start() to load and enter the kernel. 2) It can define platform_init(). In this case the generic crt0.S handles initial entry, and calls platform_init() before calling start(). The signature of platform_init() is changed, however, to take up to 5 parameters (in r3..r7) as they come from the platform's initial loader, instead of a fixed set of parameters based on OF's usage. When using the generic crt0.S, the platform .o can optionally supply a custom stack to use, using the BSS_STACK() macro. If this is not supplied, the crt0.S will assume that the loader has supplied a usable stack. In either case, the platform code communicates information to the generic code (specifically, a PROM pointer for OF systems, and/or an initrd image address supplied by the bootloader) via a global structure "loader_info". In addition the wrapper script is rearranged to ensure that the platform .o is always linked first. This means that platforms where the zImage entry point is at a fixed address or offset, rather than being encoded in the binary header can be supported using option (1). Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-03-05 14:24:52 +11:00
/* Call platform_init() */
bl platform_init
/* Call start */
b start
#ifdef __powerpc64__
#define PROM_FRAME_SIZE 512
.macro OP_REGS op, width, start, end, base, offset
.Lreg=\start
.rept (\end - \start + 1)
\op .Lreg,\offset+\width*.Lreg(\base)
.Lreg=.Lreg+1
.endr
.endm
#define SAVE_GPRS(start, end, base) OP_REGS std, 8, start, end, base, 0
#define REST_GPRS(start, end, base) OP_REGS ld, 8, start, end, base, 0
#define SAVE_GPR(n, base) SAVE_GPRS(n, n, base)
#define REST_GPR(n, base) REST_GPRS(n, n, base)
/* prom handles the jump into and return from firmware. The prom args pointer
is loaded in r3. */
.globl prom
prom:
mflr r0
std r0,16(r1)
stdu r1,-PROM_FRAME_SIZE(r1) /* Save SP and create stack space */
SAVE_GPR(2, r1)
SAVE_GPRS(13, 31, r1)
mfcr r10
std r10,8*32(r1)
mfmsr r10
std r10,8*33(r1)
/* remove MSR_LE from msr but keep MSR_SF */
mfmsr r10
rldicr r10,r10,0,62
mtsrr1 r10
/* Load FW address, set LR to label 1, and jump to FW */
bcl 20,31,0f
0: mflr r10
addi r11,r10,(1f-0b)
mtlr r11
ld r10,(p_prom-0b)(r10)
mtsrr0 r10
rfid
1: /* Return from OF */
FIXUP_ENDIAN
/* Restore registers and return. */
rldicl r1,r1,0,32
/* Restore the MSR (back to 64 bits) */
ld r10,8*(33)(r1)
mtmsr r10
isync
/* Restore other registers */
REST_GPR(2, r1)
REST_GPRS(13, 31, r1)
ld r10,8*32(r1)
mtcr r10
addi r1,r1,PROM_FRAME_SIZE
ld r0,16(r1)
mtlr r0
blr
#endif