2005-04-16 15:20:36 -07:00
/*
* S390 version
2012-07-20 11:15:04 +02:00
* Copyright IBM Corp . 1999 , 2000
2005-04-16 15:20:36 -07:00
* Author ( s ) : Hartmut Penner ( hp @ de . ibm . com )
* Ulrich Weigand ( weigand @ de . ibm . com )
* Martin Schwidefsky ( schwidefsky @ de . ibm . com )
*
* Derived from " include/asm-i386/pgtable.h "
*/
# ifndef _ASM_S390_PGTABLE_H
# define _ASM_S390_PGTABLE_H
/*
* The Linux memory management assumes a three - level page table setup . For
* s390 31 bit we " fold " the mid level into the top - level page table , so
* that we physically have the same two - level page table as the s390 mmu
* expects in 31 bit mode . For s390 64 bit we use three of the five levels
* the hardware provides ( region first and region second tables are not
* used ) .
*
* The " pgd_xxx() " functions are trivial for a folded two - level
* setup : the pgd is never bad , and a pmd always exists ( as it ' s folded
* into the pgd entry )
*
* This file contains the functions and defines necessary to modify and use
* the S390 page table tree .
*/
# ifndef __ASSEMBLY__
2008-07-14 09:59:11 +02:00
# include <linux/sched.h>
2006-09-29 01:58:41 -07:00
# include <linux/mm_types.h>
2012-11-07 13:17:37 +01:00
# include <linux/page-flags.h>
2014-04-30 16:04:25 +02:00
# include <linux/radix-tree.h>
2005-04-16 15:20:36 -07:00
# include <asm/bug.h>
2011-05-23 10:24:40 +02:00
# include <asm/page.h>
2005-04-16 15:20:36 -07:00
extern pgd_t swapper_pg_dir [ ] __attribute__ ( ( aligned ( 4096 ) ) ) ;
extern void paging_init ( void ) ;
2007-02-05 21:16:47 +01:00
extern void vmem_map_init ( void ) ;
2005-04-16 15:20:36 -07:00
/*
* The S390 doesn ' t have any external MMU info : the kernel page
* tables contain all the necessary information .
*/
MM: Pass a PTE pointer to update_mmu_cache() rather than the PTE itself
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2009-12-18 16:40:18 +00:00
# define update_mmu_cache(vma, address, ptep) do { } while (0)
2012-10-08 16:34:25 -07:00
# define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
2005-04-16 15:20:36 -07:00
/*
2010-10-25 16:10:07 +02:00
* ZERO_PAGE is a global shared page that is always zero ; used
2005-04-16 15:20:36 -07:00
* for zero - mapped memory areas etc . .
*/
2010-10-25 16:10:07 +02:00
extern unsigned long empty_zero_page ;
extern unsigned long zero_page_mask ;
# define ZERO_PAGE(vaddr) \
( virt_to_page ( ( void * ) ( empty_zero_page + \
( ( ( unsigned long ) ( vaddr ) ) & zero_page_mask ) ) ) )
2012-12-12 13:52:36 -08:00
# define __HAVE_COLOR_ZERO_PAGE
2010-10-25 16:10:07 +02:00
2013-04-17 08:46:19 -07:00
/* TODO: s390 cannot support io_remap_pfn_range... */
2005-04-16 15:20:36 -07:00
# endif /* !__ASSEMBLY__ */
/*
* PMD_SHIFT determines the size of the area a second - level page
* table can map
* PGDIR_SHIFT determines what a third - level page table entry can map
*/
2015-02-12 13:08:27 +01:00
# define PMD_SHIFT 20
# define PUD_SHIFT 31
# define PGDIR_SHIFT 42
2005-04-16 15:20:36 -07:00
# define PMD_SIZE (1UL << PMD_SHIFT)
# define PMD_MASK (~(PMD_SIZE-1))
2007-10-22 12:52:48 +02:00
# define PUD_SIZE (1UL << PUD_SHIFT)
# define PUD_MASK (~(PUD_SIZE-1))
2008-02-09 18:24:36 +01:00
# define PGDIR_SIZE (1UL << PGDIR_SHIFT)
# define PGDIR_MASK (~(PGDIR_SIZE-1))
2005-04-16 15:20:36 -07:00
/*
* entries per page directory level : the S390 is two - level , so
* we don ' t really have any PMD directory physically .
* for S390 segment - table entries are combined to one PGD
* that leads to 1024 pte per pgd
*/
2008-02-09 18:24:35 +01:00
# define PTRS_PER_PTE 256
# define PTRS_PER_PMD 2048
2008-02-09 18:24:36 +01:00
# define PTRS_PER_PUD 2048
2008-02-09 18:24:35 +01:00
# define PTRS_PER_PGD 2048
2005-04-16 15:20:36 -07:00
2015-02-11 15:26:41 -08:00
# define FIRST_USER_ADDRESS 0UL
2005-04-19 13:29:23 -07:00
2005-04-16 15:20:36 -07:00
# define pte_ERROR(e) \
printk ( " %s:%d: bad pte %p. \n " , __FILE__ , __LINE__ , ( void * ) pte_val ( e ) )
# define pmd_ERROR(e) \
printk ( " %s:%d: bad pmd %p. \n " , __FILE__ , __LINE__ , ( void * ) pmd_val ( e ) )
2007-10-22 12:52:48 +02:00
# define pud_ERROR(e) \
printk ( " %s:%d: bad pud %p. \n " , __FILE__ , __LINE__ , ( void * ) pud_val ( e ) )
2005-04-16 15:20:36 -07:00
# define pgd_ERROR(e) \
printk ( " %s:%d: bad pgd %p. \n " , __FILE__ , __LINE__ , ( void * ) pgd_val ( e ) )
# ifndef __ASSEMBLY__
/*
2012-10-05 16:52:18 +02:00
* The vmalloc and module area will always be on the topmost area of the kernel
* mapping . We reserve 96 MB ( 31 bit ) / 128 GB ( 64 bit ) for vmalloc and modules .
* On 64 bit kernels we have a 2 GB area at the top of the vmalloc area where
* modules will reside . That makes sure that inter module branches always
* happen without trampolines and in addition the placement within a 2 GB frame
* is branch prediction unit friendly .
2006-12-04 15:40:56 +01:00
*/
2009-06-12 10:26:33 +02:00
extern unsigned long VMALLOC_START ;
2011-12-27 11:27:07 +01:00
extern unsigned long VMALLOC_END ;
extern struct page * vmemmap ;
2009-06-12 10:26:33 +02:00
2011-12-27 11:27:07 +01:00
# define VMEM_MAX_PHYS ((unsigned long) vmemmap)
2008-01-26 14:11:00 +01:00
2012-10-05 16:52:18 +02:00
extern unsigned long MODULES_VADDR ;
extern unsigned long MODULES_END ;
# define MODULES_VADDR MODULES_VADDR
# define MODULES_END MODULES_END
# define MODULES_LEN (1UL << 31)
2014-10-15 12:17:38 +02:00
static inline int is_module_addr ( void * addr )
{
BUILD_BUG_ON ( MODULES_LEN > ( 1UL < < 31 ) ) ;
if ( addr < ( void * ) MODULES_VADDR )
return 0 ;
if ( addr > ( void * ) MODULES_END )
return 0 ;
return 1 ;
}
2005-04-16 15:20:36 -07:00
/*
* A 31 bit pagetable entry of S390 has following format :
* | PFRA | | OS |
* 0 0 IP0
* 00000000001111111111222222222233
* 01234567 890123456789012345678901
*
* I Page - Invalid Bit : Page is not available for address - translation
* P Page - Protection Bit : Store access not possible for page
*
* A 31 bit segmenttable entry of S390 has following format :
* | P - table origin | | PTL
* 0 IC
* 00000000001111111111222222222233
* 01234567 890123456789012345678901
*
* I Segment - Invalid Bit : Segment is not available for address - translation
* C Common - Segment Bit : Segment is not private ( PoP 3 - 30 )
* PTL Page - Table - Length : Page - table length ( PTL + 1 * 16 entries - > up to 256 )
*
* The 31 bit segmenttable origin of S390 has following format :
*
* | S - table origin | | STL |
* X * * GPS
* 00000000001111111111222222222233
* 01234567 890123456789012345678901
*
* X Space - Switch event :
* G Segment - Invalid Bit : *
* P Private - Space Bit : Segment is not private ( PoP 3 - 30 )
* S Storage - Alteration :
* STL Segment - Table - Length : Segment - table length ( STL + 1 * 16 entries - > up to 2048 )
*
* A 64 bit pagetable entry of S390 has following format :
2009-12-07 12:52:11 +01:00
* | PFRA | 0 IPC | OS |
2005-04-16 15:20:36 -07:00
* 0000000000111111111122222222223333333333444444444455555555556666
* 01234567 89012345678901234567890123456789012345678901234567890123
*
* I Page - Invalid Bit : Page is not available for address - translation
* P Page - Protection Bit : Store access not possible for page
2009-12-07 12:52:11 +01:00
* C Change - bit override : HW is not required to set change bit
2005-04-16 15:20:36 -07:00
*
* A 64 bit segmenttable entry of S390 has following format :
* | P - table origin | TT
* 0000000000111111111122222222223333333333444444444455555555556666
* 01234567 89012345678901234567890123456789012345678901234567890123
*
* I Segment - Invalid Bit : Segment is not available for address - translation
* C Common - Segment Bit : Segment is not private ( PoP 3 - 30 )
* P Page - Protection Bit : Store access not possible for page
* TT Type 00
*
* A 64 bit region table entry of S390 has following format :
* | S - table origin | TF TTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 01234567 89012345678901234567890123456789012345678901234567890123
*
* I Segment - Invalid Bit : Segment is not available for address - translation
* TT Type 01
* TF
2007-10-22 12:52:48 +02:00
* TL Table length
2005-04-16 15:20:36 -07:00
*
* The 64 bit regiontable origin of S390 has following format :
* | region table origon | DTTL
* 0000000000111111111122222222223333333333444444444455555555556666
* 01234567 89012345678901234567890123456789012345678901234567890123
*
* X Space - Switch event :
* G Segment - Invalid Bit :
* P Private - Space Bit :
* S Storage - Alteration :
* R Real space
* TL Table - Length :
*
* A storage key has the following format :
* | ACC | F | R | C | 0 |
* 0 3 4 5 6 7
* ACC : access key
* F : fetch protection bit
* R : referenced bit
* C : changed bit
*/
/* Hardware bits in the page table entry */
2013-07-23 20:57:57 +02:00
# define _PAGE_PROTECT 0x200 /* HW read-only bit */
2006-10-18 18:30:51 +02:00
# define _PAGE_INVALID 0x400 /* HW invalid bit */
2013-07-23 20:57:57 +02:00
# define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
2007-10-22 12:52:47 +02:00
/* Software bits in the page table entry */
2013-07-23 20:57:57 +02:00
# define _PAGE_PRESENT 0x001 /* SW pte present bit */
# define _PAGE_TYPE 0x002 /* SW pte type bit */
# define _PAGE_YOUNG 0x004 /* SW pte young bit */
# define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
2013-07-23 22:11:42 +02:00
# define _PAGE_READ 0x010 /* SW pte read bit */
# define _PAGE_WRITE 0x020 /* SW pte write bit */
# define _PAGE_SPECIAL 0x040 /* SW associated with special page */
2013-04-17 17:36:29 +02:00
# define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
2008-04-28 02:13:03 -07:00
# define __HAVE_ARCH_PTE_SPECIAL
2005-04-16 15:20:36 -07:00
2008-07-08 11:31:06 +02:00
/* Set of bits not changed in pte_modify */
2014-09-22 08:50:51 +02:00
# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
_PAGE_YOUNG )
2008-04-30 13:38:46 +02:00
2006-10-18 18:30:51 +02:00
/*
2015-02-10 14:11:04 -08:00
* handle_pte_fault uses pte_present and pte_none to find out the pte type
* WITHOUT holding the page table lock . The _PAGE_PRESENT bit is used to
* distinguish present from not - present ptes . It is changed only with the page
* table lock held .
2006-10-18 18:30:51 +02:00
*
2013-07-23 20:57:57 +02:00
* The following table gives the different possible bit combinations for
* the pte hardware and software bits in the last 12 bits of a pte :
2006-10-18 18:30:51 +02:00
*
2013-07-23 22:11:42 +02:00
* 842100000000
* 0000 84210000
* 00000000 8421
* . IR . . . wrdytp
* empty .10 . . .000000
* swap .10 . . . xxxx10
* file .11 . . . xxxxx0
* prot - none , clean , old .11 . . .000001
* prot - none , clean , young .11 . . .000101
* prot - none , dirty , old .10 . . .001001
* prot - none , dirty , young .10 . . .001101
* read - only , clean , old .11 . . .010001
* read - only , clean , young .01 . . .010101
* read - only , dirty , old .11 . . .011001
* read - only , dirty , young .01 . . .011101
* read - write , clean , old .11 . . .110001
* read - write , clean , young .01 . . .110101
* read - write , dirty , old .10 . . .111001
* read - write , dirty , young .00 . . .111101
2013-07-23 20:57:57 +02:00
*
* pte_present is true for the bit pattern . xx . . . xxxxx1 , ( pte & 0x001 ) = = 0x001
* pte_none is true for the bit pattern .10 . . . xxxx00 , ( pte & 0x603 ) = = 0x400
* pte_swap is true for the bit pattern .10 . . . xxxx10 , ( pte & 0x603 ) = = 0x402
2006-10-18 18:30:51 +02:00
*/
2007-10-22 12:52:47 +02:00
/* Bits in the segment/region table address-space-control-element */
# define _ASCE_ORIGIN ~0xfffUL /* segment table origin */
# define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
# define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
# define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
# define _ASCE_REAL_SPACE 0x20 /* real space control */
# define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
# define _ASCE_TYPE_REGION1 0x0c /* region first table type */
# define _ASCE_TYPE_REGION2 0x08 /* region second table type */
# define _ASCE_TYPE_REGION3 0x04 /* region third table type */
# define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
# define _ASCE_TABLE_LENGTH 0x03 /* region table length */
/* Bits in the region table entry */
# define _REGION_ENTRY_ORIGIN ~0xfffUL /* region/segment table origin */
2013-07-23 20:57:57 +02:00
# define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
# define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
2007-10-22 12:52:47 +02:00
# define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
# define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
# define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
# define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
# define _REGION_ENTRY_LENGTH 0x03 /* region third length */
# define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
2013-07-23 20:57:57 +02:00
# define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
2007-10-22 12:52:47 +02:00
# define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
2013-07-23 20:57:57 +02:00
# define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
2007-10-22 12:52:47 +02:00
# define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
2013-07-23 20:57:57 +02:00
# define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
2007-10-22 12:52:47 +02:00
2012-10-08 09:18:26 +02:00
# define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
2013-02-16 11:47:27 +01:00
# define _REGION3_ENTRY_RO 0x200 /* page protection bit */
2012-10-08 09:18:26 +02:00
2005-04-16 15:20:36 -07:00
/* Bits in the segment table entry */
2013-07-23 22:11:42 +02:00
# define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
2014-07-24 11:03:41 +02:00
# define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
2013-03-21 12:50:39 +01:00
# define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
2007-10-22 12:52:47 +02:00
# define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL /* segment table origin */
2013-07-23 20:57:57 +02:00
# define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
# define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
2005-04-16 15:20:36 -07:00
2007-10-22 12:52:47 +02:00
# define _SEGMENT_ENTRY (0)
2013-07-23 20:57:57 +02:00
# define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
2007-10-22 12:52:47 +02:00
2014-07-24 11:03:41 +02:00
# define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
# define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
# define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
# define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
# define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
# define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
2013-07-23 22:11:42 +02:00
/*
* Segment table entry encoding ( R = read - only , I = invalid , y = young bit ) :
2014-07-24 11:03:41 +02:00
* dy . . R . . . I . . . wr
* prot - none , clean , old 00. .1 . . .1 . . .00
* prot - none , clean , young 01. .1 . . .1 . . .00
* prot - none , dirty , old 10. .1 . . .1 . . .00
* prot - none , dirty , young 11. .1 . . .1 . . .00
* read - only , clean , old 00. .1 . . .1 . . .01
* read - only , clean , young 01. .1 . . .0 . . .01
* read - only , dirty , old 10. .1 . . .1 . . .01
* read - only , dirty , young 11. .1 . . .0 . . .01
* read - write , clean , old 00. .1 . . .1 . . .11
* read - write , clean , young 01. .1 . . .0 . . .11
* read - write , dirty , old 10. .0 . . .1 . . .11
* read - write , dirty , young 11. .0 . . .0 . . .11
2013-07-23 22:11:42 +02:00
* The segment table origin is used to distinguish empty ( origin = = 0 ) from
* read - write , old segment table entries ( origin ! = 0 )
*/
2013-07-23 20:57:57 +02:00
2014-07-24 11:03:41 +02:00
# define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
2012-10-08 16:30:24 -07:00
2011-06-06 14:14:42 +02:00
/* Page status table bits for virtualization */
2013-05-17 14:41:33 +02:00
# define PGSTE_ACC_BITS 0xf000000000000000UL
# define PGSTE_FP_BIT 0x0800000000000000UL
# define PGSTE_PCL_BIT 0x0080000000000000UL
# define PGSTE_HR_BIT 0x0040000000000000UL
# define PGSTE_HC_BIT 0x0020000000000000UL
# define PGSTE_GR_BIT 0x0004000000000000UL
# define PGSTE_GC_BIT 0x0002000000000000UL
2013-10-18 12:03:41 +02:00
# define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
# define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
2011-06-06 14:14:42 +02:00
2013-04-17 17:36:29 +02:00
/* Guest Page State used for virtualization */
# define _PGSTE_GPS_ZERO 0x0000000080000000UL
# define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
# define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
# define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
2005-04-16 15:20:36 -07:00
/*
2007-10-22 12:52:47 +02:00
* A user page table pointer has the space - switch - event bit , the
* private - space - control bit and the storage - alteration - event - control
* bit set . A kernel page table pointer doesn ' t need them .
2005-04-16 15:20:36 -07:00
*/
2007-10-22 12:52:47 +02:00
# define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
_ASCE_ALT_EVENT )
2005-04-16 15:20:36 -07:00
/*
2006-09-20 15:59:37 +02:00
* Page protection definitions .
2005-04-16 15:20:36 -07:00
*/
2013-07-23 20:57:57 +02:00
# define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
2013-07-23 22:11:42 +02:00
# define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_INVALID | _PAGE_PROTECT )
# define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_INVALID | _PAGE_PROTECT )
# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY )
# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_YOUNG | _PAGE_DIRTY )
# define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
_PAGE_PROTECT )
2005-04-16 15:20:36 -07:00
/*
2011-05-23 10:24:23 +02:00
* On s390 the page table entry has an invalid bit and a read - only bit .
* Read permission implies execute permission and write permission
* implies read permission .
2005-04-16 15:20:36 -07:00
*/
/*xwr*/
2006-09-20 15:59:37 +02:00
# define __P000 PAGE_NONE
2013-07-23 20:57:57 +02:00
# define __P001 PAGE_READ
# define __P010 PAGE_READ
# define __P011 PAGE_READ
# define __P100 PAGE_READ
# define __P101 PAGE_READ
# define __P110 PAGE_READ
# define __P111 PAGE_READ
2006-09-20 15:59:37 +02:00
# define __S000 PAGE_NONE
2013-07-23 20:57:57 +02:00
# define __S001 PAGE_READ
# define __S010 PAGE_WRITE
# define __S011 PAGE_WRITE
# define __S100 PAGE_READ
# define __S101 PAGE_READ
# define __S110 PAGE_WRITE
# define __S111 PAGE_WRITE
2005-04-16 15:20:36 -07:00
2013-04-29 15:07:23 -07:00
/*
* Segment entry ( large page ) protection definitions .
*/
2013-07-23 20:57:57 +02:00
# define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
_SEGMENT_ENTRY_PROTECT )
2014-07-24 11:03:41 +02:00
# define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
_SEGMENT_ENTRY_READ )
# define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
_SEGMENT_ENTRY_WRITE )
2013-04-29 15:07:23 -07:00
2011-05-23 10:24:40 +02:00
static inline int mm_has_pgste ( struct mm_struct * mm )
{
# ifdef CONFIG_PGSTE
if ( unlikely ( mm - > context . has_pgste ) )
return 1 ;
# endif
return 0 ;
}
2014-01-14 15:02:11 +01:00
2015-04-15 13:23:26 +02:00
static inline int mm_alloc_pgste ( struct mm_struct * mm )
{
# ifdef CONFIG_PGSTE
if ( unlikely ( mm - > context . alloc_pgste ) )
return 1 ;
# endif
return 0 ;
}
2014-10-23 12:08:38 +02:00
/*
* In the case that a guest uses storage keys
* faults should no longer be backed by zero pages
*/
# define mm_forbids_zeropage mm_use_skey
2014-01-14 15:02:11 +01:00
static inline int mm_use_skey ( struct mm_struct * mm )
{
# ifdef CONFIG_PGSTE
if ( mm - > context . use_skey )
return 1 ;
# endif
return 0 ;
}
2005-04-16 15:20:36 -07:00
/*
* pgd / pmd / pte query functions
*/
2008-02-09 18:24:36 +01:00
static inline int pgd_present ( pgd_t pgd )
{
2008-02-09 18:24:37 +01:00
if ( ( pgd_val ( pgd ) & _REGION_ENTRY_TYPE_MASK ) < _REGION_ENTRY_TYPE_R2 )
return 1 ;
2008-02-09 18:24:36 +01:00
return ( pgd_val ( pgd ) & _REGION_ENTRY_ORIGIN ) ! = 0UL ;
}
static inline int pgd_none ( pgd_t pgd )
{
2008-02-09 18:24:37 +01:00
if ( ( pgd_val ( pgd ) & _REGION_ENTRY_TYPE_MASK ) < _REGION_ENTRY_TYPE_R2 )
return 0 ;
2013-07-23 20:57:57 +02:00
return ( pgd_val ( pgd ) & _REGION_ENTRY_INVALID ) ! = 0UL ;
2008-02-09 18:24:36 +01:00
}
static inline int pgd_bad ( pgd_t pgd )
{
2008-02-09 18:24:37 +01:00
/*
* With dynamic page table levels the pgd can be a region table
* entry or a segment table entry . Check for the bit that are
* invalid for either table entry .
*/
2008-02-09 18:24:36 +01:00
unsigned long mask =
2013-07-23 20:57:57 +02:00
~ _SEGMENT_ENTRY_ORIGIN & ~ _REGION_ENTRY_INVALID &
2008-02-09 18:24:36 +01:00
~ _REGION_ENTRY_TYPE_MASK & ~ _REGION_ENTRY_LENGTH ;
return ( pgd_val ( pgd ) & mask ) ! = 0 ;
}
2007-10-22 12:52:48 +02:00
static inline int pud_present ( pud_t pud )
2005-04-16 15:20:36 -07:00
{
2008-02-09 18:24:37 +01:00
if ( ( pud_val ( pud ) & _REGION_ENTRY_TYPE_MASK ) < _REGION_ENTRY_TYPE_R3 )
return 1 ;
2007-12-17 16:25:48 +01:00
return ( pud_val ( pud ) & _REGION_ENTRY_ORIGIN ) ! = 0UL ;
2005-04-16 15:20:36 -07:00
}
2007-10-22 12:52:48 +02:00
static inline int pud_none ( pud_t pud )
2005-04-16 15:20:36 -07:00
{
2008-02-09 18:24:37 +01:00
if ( ( pud_val ( pud ) & _REGION_ENTRY_TYPE_MASK ) < _REGION_ENTRY_TYPE_R3 )
return 0 ;
2013-07-23 20:57:57 +02:00
return ( pud_val ( pud ) & _REGION_ENTRY_INVALID ) ! = 0UL ;
2005-04-16 15:20:36 -07:00
}
2012-10-08 09:18:26 +02:00
static inline int pud_large ( pud_t pud )
{
if ( ( pud_val ( pud ) & _REGION_ENTRY_TYPE_MASK ) ! = _REGION_ENTRY_TYPE_R3 )
return 0 ;
return ! ! ( pud_val ( pud ) & _REGION3_ENTRY_LARGE ) ;
}
2007-10-22 12:52:48 +02:00
static inline int pud_bad ( pud_t pud )
2005-04-16 15:20:36 -07:00
{
2008-02-09 18:24:37 +01:00
/*
* With dynamic page table levels the pud can be a region table
* entry or a segment table entry . Check for the bit that are
* invalid for either table entry .
*/
2008-02-09 18:24:36 +01:00
unsigned long mask =
2013-07-23 20:57:57 +02:00
~ _SEGMENT_ENTRY_ORIGIN & ~ _REGION_ENTRY_INVALID &
2008-02-09 18:24:36 +01:00
~ _REGION_ENTRY_TYPE_MASK & ~ _REGION_ENTRY_LENGTH ;
return ( pud_val ( pud ) & mask ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2005-11-08 21:34:42 -08:00
static inline int pmd_present ( pmd_t pmd )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
return pmd_val ( pmd ) ! = _SEGMENT_ENTRY_INVALID ;
2005-04-16 15:20:36 -07:00
}
2005-11-08 21:34:42 -08:00
static inline int pmd_none ( pmd_t pmd )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
return pmd_val ( pmd ) = = _SEGMENT_ENTRY_INVALID ;
2005-04-16 15:20:36 -07:00
}
2012-10-01 12:58:34 +02:00
static inline int pmd_large ( pmd_t pmd )
{
2013-07-23 20:57:57 +02:00
return ( pmd_val ( pmd ) & _SEGMENT_ENTRY_LARGE ) ! = 0 ;
2012-10-01 12:58:34 +02:00
}
2014-07-24 11:03:41 +02:00
static inline int pmd_pfn ( pmd_t pmd )
2013-07-23 22:11:42 +02:00
{
2014-07-24 11:03:41 +02:00
unsigned long origin_mask ;
origin_mask = _SEGMENT_ENTRY_ORIGIN ;
if ( pmd_large ( pmd ) )
origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE ;
return ( pmd_val ( pmd ) & origin_mask ) > > PAGE_SHIFT ;
2013-07-23 22:11:42 +02:00
}
2005-11-08 21:34:42 -08:00
static inline int pmd_bad ( pmd_t pmd )
2005-04-16 15:20:36 -07:00
{
2013-07-23 22:11:42 +02:00
if ( pmd_large ( pmd ) )
return ( pmd_val ( pmd ) & ~ _SEGMENT_ENTRY_BITS_LARGE ) ! = 0 ;
return ( pmd_val ( pmd ) & ~ _SEGMENT_ENTRY_BITS ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2012-10-08 16:30:15 -07:00
# define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush ( struct vm_area_struct * vma ,
unsigned long addr , pmd_t * pmdp ) ;
2012-10-08 16:30:24 -07:00
# define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp ,
pmd_t entry , int dirty ) ;
# define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp ) ;
# define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write ( pmd_t pmd )
{
2014-07-24 11:03:41 +02:00
return ( pmd_val ( pmd ) & _SEGMENT_ENTRY_WRITE ) ! = 0 ;
}
static inline int pmd_dirty ( pmd_t pmd )
{
int dirty = 1 ;
if ( pmd_large ( pmd ) )
dirty = ( pmd_val ( pmd ) & _SEGMENT_ENTRY_DIRTY ) ! = 0 ;
return dirty ;
2012-10-08 16:30:24 -07:00
}
static inline int pmd_young ( pmd_t pmd )
{
2014-07-24 11:03:41 +02:00
int young = 1 ;
if ( pmd_large ( pmd ) )
2013-07-23 22:11:42 +02:00
young = ( pmd_val ( pmd ) & _SEGMENT_ENTRY_YOUNG ) ! = 0 ;
return young ;
2012-10-08 16:30:24 -07:00
}
2013-07-23 20:57:57 +02:00
static inline int pte_present ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
/* Bit pattern: (pte & 0x001) == 0x001 */
return ( pte_val ( pte ) & _PAGE_PRESENT ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2013-07-23 20:57:57 +02:00
static inline int pte_none ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
/* Bit pattern: pte == 0x400 */
return pte_val ( pte ) = = _PAGE_INVALID ;
2005-04-16 15:20:36 -07:00
}
2013-04-17 17:36:29 +02:00
static inline int pte_swap ( pte_t pte )
{
/* Bit pattern: (pte & 0x603) == 0x402 */
return ( pte_val ( pte ) & ( _PAGE_INVALID | _PAGE_PROTECT |
_PAGE_TYPE | _PAGE_PRESENT ) )
= = ( _PAGE_INVALID | _PAGE_TYPE ) ;
}
mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most). Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:
vm_normal_page()
{
...
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
#else
if (!pfn_valid(pfn))
return NULL;
#endif
goto out;
}
...
}
This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes. So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):
vm_normal_page()
{
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
return pte_page(pte);
#else
...
#endif
}
And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits. This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.
So introduce a pte_special pte state, and use it in mm/memory.c. It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.
BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:13:00 -07:00
static inline int pte_special ( pte_t pte )
{
2008-04-28 02:13:03 -07:00
return ( pte_val ( pte ) & _PAGE_SPECIAL ) ;
mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most). Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:
vm_normal_page()
{
...
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
#else
if (!pfn_valid(pfn))
return NULL;
#endif
goto out;
}
...
}
This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes. So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):
vm_normal_page()
{
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
return pte_page(pte);
#else
...
#endif
}
And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits. This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.
So introduce a pte_special pte state, and use it in mm/memory.c. It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.
BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:13:00 -07:00
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
# define __HAVE_ARCH_PTE_SAME
2011-05-23 10:24:40 +02:00
static inline int pte_same ( pte_t a , pte_t b )
{
return pte_val ( a ) = = pte_val ( b ) ;
}
2005-04-16 15:20:36 -07:00
2011-05-23 10:24:40 +02:00
static inline pgste_t pgste_get_lock ( pte_t * ptep )
2008-03-25 18:47:12 +01:00
{
2011-05-23 10:24:40 +02:00
unsigned long new = 0 ;
2008-03-25 18:47:12 +01:00
# ifdef CONFIG_PGSTE
2011-05-23 10:24:40 +02:00
unsigned long old ;
2008-03-25 18:47:12 +01:00
preempt_disable ( ) ;
2011-05-23 10:24:40 +02:00
asm (
" lg %0,%2 \n "
" 0: lgr %1,%0 \n "
2013-05-17 14:41:33 +02:00
" nihh %0,0xff7f \n " /* clear PCL bit in old */
" oihh %1,0x0080 \n " /* set PCL bit in new */
2011-05-23 10:24:40 +02:00
" csg %0,%1,%2 \n "
" jl 0b \n "
: " =&d " ( old ) , " =&d " ( new ) , " =Q " ( ptep [ PTRS_PER_PTE ] )
2013-06-05 09:25:34 +02:00
: " Q " ( ptep [ PTRS_PER_PTE ] ) : " cc " , " memory " ) ;
2008-03-25 18:47:12 +01:00
# endif
2011-05-23 10:24:40 +02:00
return __pgste ( new ) ;
2008-03-25 18:47:12 +01:00
}
2011-05-23 10:24:40 +02:00
static inline void pgste_set_unlock ( pte_t * ptep , pgste_t pgste )
2008-03-25 18:47:12 +01:00
{
# ifdef CONFIG_PGSTE
2011-05-23 10:24:40 +02:00
asm (
2013-05-17 14:41:33 +02:00
" nihh %1,0xff7f \n " /* clear PCL bit */
2011-05-23 10:24:40 +02:00
" stg %1,%0 \n "
: " =Q " ( ptep [ PTRS_PER_PTE ] )
2013-06-05 09:25:34 +02:00
: " d " ( pgste_val ( pgste ) ) , " Q " ( ptep [ PTRS_PER_PTE ] )
: " cc " , " memory " ) ;
2008-03-25 18:47:12 +01:00
preempt_enable ( ) ;
# endif
}
2013-07-19 11:15:54 +02:00
static inline pgste_t pgste_get ( pte_t * ptep )
{
unsigned long pgste = 0 ;
# ifdef CONFIG_PGSTE
pgste = * ( unsigned long * ) ( ptep + PTRS_PER_PTE ) ;
# endif
return __pgste ( pgste ) ;
}
2013-06-05 09:22:33 +02:00
static inline void pgste_set ( pte_t * ptep , pgste_t pgste )
{
# ifdef CONFIG_PGSTE
* ( pgste_t * ) ( ptep + PTRS_PER_PTE ) = pgste ;
# endif
}
2014-01-14 15:02:11 +01:00
static inline pgste_t pgste_update_all ( pte_t * ptep , pgste_t pgste ,
struct mm_struct * mm )
2008-03-25 18:47:12 +01:00
{
# ifdef CONFIG_PGSTE
2013-07-23 22:11:42 +02:00
unsigned long address , bits , skey ;
2011-05-23 10:24:40 +02:00
2014-01-14 15:02:11 +01:00
if ( ! mm_use_skey ( mm ) | | pte_val ( * ptep ) & _PAGE_INVALID )
2011-11-14 11:19:00 +01:00
return pgste ;
[S390] mm: fix storage key handling
page_get_storage_key() and page_set_storage_key() expect a page address
and not its page frame number. This got inconsistent with 2d42552d
"[S390] merge page_test_dirty and page_clear_dirty".
Result is that we read/write storage keys from random pages and do not
have a working dirty bit tracking at all.
E.g. SetPageUpdate() doesn't clear the dirty bit of requested pages, which
for example ext4 doesn't like very much and panics after a while.
Unable to handle kernel paging request at virtual user address (null)
Oops: 0004 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 1 Not tainted 2.6.39-07551-g139f37f-dirty #152
Process flush-94:0 (pid: 1576, task: 000000003eb34538, ksp: 000000003c287b70)
Krnl PSW : 0704c00180000000 0000000000316b12 (jbd2_journal_file_inode+0x10e/0x138)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000000 0000000000000000 0700000000000000
0000000000316a62 000000003eb34cd0 0000000000000025 000000003c287b88
0000000000000001 000000003c287a70 000000003f1ec678 000000003f1ec000
0000000000000000 000000003e66ec00 0000000000316a62 000000003c287988
Krnl Code: 0000000000316b04: f0a0000407f4 srp 4(11,%r0),2036,0
0000000000316b0a: b9020022 ltgr %r2,%r2
0000000000316b0e: a7740015 brc 7,316b38
>0000000000316b12: e3d0c0000024 stg %r13,0(%r12)
0000000000316b18: 4120c010 la %r2,16(%r12)
0000000000316b1c: 4130d060 la %r3,96(%r13)
0000000000316b20: e340d0600004 lg %r4,96(%r13)
0000000000316b26: c0e50002b567 brasl %r14,36d5f4
Call Trace:
([<0000000000316a62>] jbd2_journal_file_inode+0x5e/0x138)
[<00000000002da13c>] mpage_da_map_and_submit+0x2e8/0x42c
[<00000000002daac2>] ext4_da_writepages+0x2da/0x504
[<00000000002597e8>] writeback_single_inode+0xf8/0x268
[<0000000000259f06>] writeback_sb_inodes+0xd2/0x18c
[<000000000025a700>] writeback_inodes_wb+0x80/0x168
[<000000000025aa92>] wb_writeback+0x2aa/0x324
[<000000000025abde>] wb_do_writeback+0xd2/0x274
[<000000000025ae3a>] bdi_writeback_thread+0xba/0x1c4
[<00000000001737be>] kthread+0xa6/0xb0
[<000000000056c1da>] kernel_thread_starter+0x6/0xc
[<000000000056c1d4>] kernel_thread_starter+0x0/0xc
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000000000316a8a>] jbd2_journal_file_inode+0x86/0x138
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2011-05-29 12:40:50 +02:00
address = pte_val ( * ptep ) & PAGE_MASK ;
2013-07-23 22:11:42 +02:00
skey = ( unsigned long ) page_get_storage_key ( address ) ;
2011-05-23 10:24:40 +02:00
bits = skey & ( _PAGE_CHANGED | _PAGE_REFERENCED ) ;
/* Transfer page changed & referenced bit to guest bits in pgste */
2013-05-17 14:41:33 +02:00
pgste_val ( pgste ) | = bits < < 48 ; /* GR bit & GC bit */
2011-05-23 10:24:40 +02:00
/* Copy page access key and fetch protection bit to pgste */
2013-07-23 22:11:42 +02:00
pgste_val ( pgste ) & = ~ ( PGSTE_ACC_BITS | PGSTE_FP_BIT ) ;
pgste_val ( pgste ) | = ( skey & ( _PAGE_ACC_BITS | _PAGE_FP_BIT ) ) < < 56 ;
2011-05-23 10:24:40 +02:00
# endif
return pgste ;
}
2014-01-14 15:02:11 +01:00
static inline void pgste_set_key ( pte_t * ptep , pgste_t pgste , pte_t entry ,
struct mm_struct * mm )
2011-05-23 10:24:40 +02:00
{
# ifdef CONFIG_PGSTE
[S390] mm: fix storage key handling
page_get_storage_key() and page_set_storage_key() expect a page address
and not its page frame number. This got inconsistent with 2d42552d
"[S390] merge page_test_dirty and page_clear_dirty".
Result is that we read/write storage keys from random pages and do not
have a working dirty bit tracking at all.
E.g. SetPageUpdate() doesn't clear the dirty bit of requested pages, which
for example ext4 doesn't like very much and panics after a while.
Unable to handle kernel paging request at virtual user address (null)
Oops: 0004 [#1] PREEMPT SMP DEBUG_PAGEALLOC
Modules linked in:
CPU: 1 Not tainted 2.6.39-07551-g139f37f-dirty #152
Process flush-94:0 (pid: 1576, task: 000000003eb34538, ksp: 000000003c287b70)
Krnl PSW : 0704c00180000000 0000000000316b12 (jbd2_journal_file_inode+0x10e/0x138)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000000 0000000000000000 0700000000000000
0000000000316a62 000000003eb34cd0 0000000000000025 000000003c287b88
0000000000000001 000000003c287a70 000000003f1ec678 000000003f1ec000
0000000000000000 000000003e66ec00 0000000000316a62 000000003c287988
Krnl Code: 0000000000316b04: f0a0000407f4 srp 4(11,%r0),2036,0
0000000000316b0a: b9020022 ltgr %r2,%r2
0000000000316b0e: a7740015 brc 7,316b38
>0000000000316b12: e3d0c0000024 stg %r13,0(%r12)
0000000000316b18: 4120c010 la %r2,16(%r12)
0000000000316b1c: 4130d060 la %r3,96(%r13)
0000000000316b20: e340d0600004 lg %r4,96(%r13)
0000000000316b26: c0e50002b567 brasl %r14,36d5f4
Call Trace:
([<0000000000316a62>] jbd2_journal_file_inode+0x5e/0x138)
[<00000000002da13c>] mpage_da_map_and_submit+0x2e8/0x42c
[<00000000002daac2>] ext4_da_writepages+0x2da/0x504
[<00000000002597e8>] writeback_single_inode+0xf8/0x268
[<0000000000259f06>] writeback_sb_inodes+0xd2/0x18c
[<000000000025a700>] writeback_inodes_wb+0x80/0x168
[<000000000025aa92>] wb_writeback+0x2aa/0x324
[<000000000025abde>] wb_do_writeback+0xd2/0x274
[<000000000025ae3a>] bdi_writeback_thread+0xba/0x1c4
[<00000000001737be>] kthread+0xa6/0xb0
[<000000000056c1da>] kernel_thread_starter+0x6/0xc
[<000000000056c1d4>] kernel_thread_starter+0x0/0xc
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000000000316a8a>] jbd2_journal_file_inode+0x86/0x138
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2011-05-29 12:40:50 +02:00
unsigned long address ;
2013-06-04 09:53:59 +02:00
unsigned long nkey ;
2011-05-23 10:24:40 +02:00
2014-01-14 15:02:11 +01:00
if ( ! mm_use_skey ( mm ) | | pte_val ( entry ) & _PAGE_INVALID )
2011-11-14 11:19:00 +01:00
return ;
2013-06-04 09:53:59 +02:00
VM_BUG_ON ( ! ( pte_val ( * ptep ) & _PAGE_INVALID ) ) ;
2011-11-14 11:19:00 +01:00
address = pte_val ( entry ) & PAGE_MASK ;
2013-06-04 09:53:59 +02:00
/*
* Set page access key and fetch protection bit from pgste .
* The guest C / R information is still in the PGSTE , set real
* key C / R to 0.
*/
2013-07-03 13:21:40 -07:00
nkey = ( pgste_val ( pgste ) & ( PGSTE_ACC_BITS | PGSTE_FP_BIT ) ) > > 56 ;
2013-10-18 12:03:41 +02:00
nkey | = ( pgste_val ( pgste ) & ( PGSTE_GR_BIT | PGSTE_GC_BIT ) ) > > 48 ;
2013-06-04 09:53:59 +02:00
page_set_storage_key ( address , nkey , 0 ) ;
2008-03-25 18:47:12 +01:00
# endif
}
2013-10-18 12:03:41 +02:00
static inline pgste_t pgste_set_pte ( pte_t * ptep , pgste_t pgste , pte_t entry )
2012-11-07 13:17:37 +01:00
{
2013-10-18 12:03:41 +02:00
if ( ( pte_val ( entry ) & _PAGE_PRESENT ) & &
( pte_val ( entry ) & _PAGE_WRITE ) & &
! ( pte_val ( entry ) & _PAGE_INVALID ) ) {
if ( ! MACHINE_HAS_ESOP ) {
/*
* Without enhanced suppression - on - protection force
* the dirty bit on for all writable ptes .
*/
pte_val ( entry ) | = _PAGE_DIRTY ;
pte_val ( entry ) & = ~ _PAGE_PROTECT ;
}
if ( ! ( pte_val ( entry ) & _PAGE_PROTECT ) )
/* This pte allows write access, set user-dirty */
pgste_val ( pgste ) | = PGSTE_UC_BIT ;
2012-11-07 13:17:37 +01:00
}
* ptep = entry ;
2013-10-18 12:03:41 +02:00
return pgste ;
2012-11-07 13:17:37 +01:00
}
2011-07-24 10:48:20 +02:00
/**
* struct gmap_struct - guest address space
2014-04-30 16:04:25 +02:00
* @ crst_list : list of all crst tables used in the guest address space
2011-07-24 10:48:20 +02:00
* @ mm : pointer to the parent mm_struct
2014-04-30 16:04:25 +02:00
* @ guest_to_host : radix tree with guest to host address translation
* @ host_to_guest : radix tree with pointer to segment table entries
* @ guest_table_lock : spinlock to protect all entries in the guest page table
2011-07-24 10:48:20 +02:00
* @ table : pointer to the page directory
2011-09-20 17:07:28 +02:00
* @ asce : address space control element for gmap page table
2013-06-17 16:25:18 +02:00
* @ pfault_enabled : defines if pfaults are applicable for the guest
2011-07-24 10:48:20 +02:00
*/
struct gmap {
struct list_head list ;
2014-04-30 16:04:25 +02:00
struct list_head crst_list ;
2011-07-24 10:48:20 +02:00
struct mm_struct * mm ;
2014-04-30 16:04:25 +02:00
struct radix_tree_root guest_to_host ;
struct radix_tree_root host_to_guest ;
spinlock_t guest_table_lock ;
2011-07-24 10:48:20 +02:00
unsigned long * table ;
2011-09-20 17:07:28 +02:00
unsigned long asce ;
2014-07-01 14:36:04 +02:00
unsigned long asce_end ;
2013-05-17 14:41:36 +02:00
void * private ;
2013-06-17 16:25:18 +02:00
bool pfault_enabled ;
2011-07-24 10:48:20 +02:00
} ;
2013-04-17 10:53:39 +02:00
/**
* struct gmap_notifier - notify function block for page invalidation
* @ notifier_call : address of callback function
*/
struct gmap_notifier {
struct list_head list ;
2014-04-29 09:34:41 +02:00
void ( * notifier_call ) ( struct gmap * gmap , unsigned long gaddr ) ;
2013-04-17 10:53:39 +02:00
} ;
2014-07-01 14:36:04 +02:00
struct gmap * gmap_alloc ( struct mm_struct * mm , unsigned long limit ) ;
2011-07-24 10:48:20 +02:00
void gmap_free ( struct gmap * gmap ) ;
void gmap_enable ( struct gmap * gmap ) ;
void gmap_disable ( struct gmap * gmap ) ;
int gmap_map_segment ( struct gmap * gmap , unsigned long from ,
2013-04-17 10:53:39 +02:00
unsigned long to , unsigned long len ) ;
2011-07-24 10:48:20 +02:00
int gmap_unmap_segment ( struct gmap * gmap , unsigned long to , unsigned long len ) ;
2014-04-29 09:34:41 +02:00
unsigned long __gmap_translate ( struct gmap * , unsigned long gaddr ) ;
unsigned long gmap_translate ( struct gmap * , unsigned long gaddr ) ;
2014-04-30 16:04:25 +02:00
int __gmap_link ( struct gmap * gmap , unsigned long gaddr , unsigned long vmaddr ) ;
int gmap_fault ( struct gmap * , unsigned long gaddr , unsigned int fault_flags ) ;
2014-04-29 09:34:41 +02:00
void gmap_discard ( struct gmap * , unsigned long from , unsigned long to ) ;
void __gmap_zap ( struct gmap * , unsigned long gaddr ) ;
2014-03-24 14:27:58 +01:00
bool gmap_test_and_clear_dirty ( unsigned long address , struct gmap * ) ;
2011-07-24 10:48:20 +02:00
2013-04-17 10:53:39 +02:00
void gmap_register_ipte_notifier ( struct gmap_notifier * ) ;
void gmap_unregister_ipte_notifier ( struct gmap_notifier * ) ;
int gmap_ipte_notify ( struct gmap * , unsigned long start , unsigned long len ) ;
2014-04-30 14:46:26 +02:00
void gmap_do_ipte_notify ( struct mm_struct * , unsigned long addr , pte_t * ) ;
2013-04-17 10:53:39 +02:00
static inline pgste_t pgste_ipte_notify ( struct mm_struct * mm ,
2014-04-30 14:44:44 +02:00
unsigned long addr ,
2013-04-17 10:53:39 +02:00
pte_t * ptep , pgste_t pgste )
{
# ifdef CONFIG_PGSTE
2013-05-17 14:41:33 +02:00
if ( pgste_val ( pgste ) & PGSTE_IN_BIT ) {
pgste_val ( pgste ) & = ~ PGSTE_IN_BIT ;
2014-04-30 14:46:26 +02:00
gmap_do_ipte_notify ( mm , addr , ptep ) ;
2013-04-17 10:53:39 +02:00
}
# endif
return pgste ;
}
2011-05-23 10:24:40 +02:00
/*
* Certain architectures need to do special things when PTEs
* within a page table are directly modified . Thus , the following
* hook is made available .
*/
static inline void set_pte_at ( struct mm_struct * mm , unsigned long addr ,
pte_t * ptep , pte_t entry )
{
pgste_t pgste ;
if ( mm_has_pgste ( mm ) ) {
pgste = pgste_get_lock ( ptep ) ;
2013-04-17 17:36:29 +02:00
pgste_val ( pgste ) & = ~ _PGSTE_GPS_ZERO ;
2014-01-14 15:02:11 +01:00
pgste_set_key ( ptep , pgste , entry , mm ) ;
2013-10-18 12:03:41 +02:00
pgste = pgste_set_pte ( ptep , pgste , entry ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
2012-11-07 13:17:37 +01:00
} else {
2011-05-23 10:24:40 +02:00
* ptep = entry ;
2012-11-07 13:17:37 +01:00
}
2011-05-23 10:24:40 +02:00
}
2005-04-16 15:20:36 -07:00
/*
* query functions pte_write / pte_dirty / pte_young only work if
* pte_present ( ) is true . Undefined behaviour if not . .
*/
2005-11-08 21:34:42 -08:00
static inline int pte_write ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
return ( pte_val ( pte ) & _PAGE_WRITE ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2005-11-08 21:34:42 -08:00
static inline int pte_dirty ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
return ( pte_val ( pte ) & _PAGE_DIRTY ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2005-11-08 21:34:42 -08:00
static inline int pte_young ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 22:11:42 +02:00
return ( pte_val ( pte ) & _PAGE_YOUNG ) ! = 0 ;
2005-04-16 15:20:36 -07:00
}
2013-04-17 17:36:29 +02:00
# define __HAVE_ARCH_PTE_UNUSED
static inline int pte_unused ( pte_t pte )
{
return pte_val ( pte ) & _PAGE_UNUSED ;
}
2005-04-16 15:20:36 -07:00
/*
* pgd / pmd / pte modification functions
*/
2011-05-23 10:24:40 +02:00
static inline void pgd_clear ( pgd_t * pgd )
2008-02-09 18:24:36 +01:00
{
2008-02-09 18:24:37 +01:00
if ( ( pgd_val ( * pgd ) & _REGION_ENTRY_TYPE_MASK ) = = _REGION_ENTRY_TYPE_R2 )
pgd_val ( * pgd ) = _REGION2_ENTRY_EMPTY ;
2008-02-09 18:24:36 +01:00
}
2011-05-23 10:24:40 +02:00
static inline void pud_clear ( pud_t * pud )
2005-04-16 15:20:36 -07:00
{
2008-02-09 18:24:37 +01:00
if ( ( pud_val ( * pud ) & _REGION_ENTRY_TYPE_MASK ) = = _REGION_ENTRY_TYPE_R3 )
pud_val ( * pud ) = _REGION3_ENTRY_EMPTY ;
2005-04-16 15:20:36 -07:00
}
2011-05-23 10:24:40 +02:00
static inline void pmd_clear ( pmd_t * pmdp )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pmd_val ( * pmdp ) = _SEGMENT_ENTRY_INVALID ;
2005-04-16 15:20:36 -07:00
}
2005-11-08 21:34:42 -08:00
static inline void pte_clear ( struct mm_struct * mm , unsigned long addr , pte_t * ptep )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( * ptep ) = _PAGE_INVALID ;
2005-04-16 15:20:36 -07:00
}
/*
* The following pte modification functions only work if
* pte_present ( ) is true . Undefined behaviour if not . .
*/
2005-11-08 21:34:42 -08:00
static inline pte_t pte_modify ( pte_t pte , pgprot_t newprot )
2005-04-16 15:20:36 -07:00
{
2008-07-08 11:31:06 +02:00
pte_val ( pte ) & = _PAGE_CHG_MASK ;
2005-04-16 15:20:36 -07:00
pte_val ( pte ) | = pgprot_val ( newprot ) ;
2013-07-23 22:11:42 +02:00
/*
* newprot for PAGE_NONE , PAGE_READ and PAGE_WRITE has the
* invalid bit set , clear it again for readable , young pages
*/
if ( ( pte_val ( pte ) & _PAGE_YOUNG ) & & ( pte_val ( pte ) & _PAGE_READ ) )
pte_val ( pte ) & = ~ _PAGE_INVALID ;
/*
* newprot for PAGE_READ and PAGE_WRITE has the page protection
* bit set , clear it again for writable , dirty pages
*/
2013-07-23 20:57:57 +02:00
if ( ( pte_val ( pte ) & _PAGE_DIRTY ) & & ( pte_val ( pte ) & _PAGE_WRITE ) )
pte_val ( pte ) & = ~ _PAGE_PROTECT ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_wrprotect ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) & = ~ _PAGE_WRITE ;
pte_val ( pte ) | = _PAGE_PROTECT ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_mkwrite ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) | = _PAGE_WRITE ;
if ( pte_val ( pte ) & _PAGE_DIRTY )
pte_val ( pte ) & = ~ _PAGE_PROTECT ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_mkclean ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) & = ~ _PAGE_DIRTY ;
pte_val ( pte ) | = _PAGE_PROTECT ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_mkdirty ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) | = _PAGE_DIRTY ;
if ( pte_val ( pte ) & _PAGE_WRITE )
pte_val ( pte ) & = ~ _PAGE_PROTECT ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_mkold ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) & = ~ _PAGE_YOUNG ;
2013-07-23 22:11:42 +02:00
pte_val ( pte ) | = _PAGE_INVALID ;
2005-04-16 15:20:36 -07:00
return pte ;
}
2005-11-08 21:34:42 -08:00
static inline pte_t pte_mkyoung ( pte_t pte )
2005-04-16 15:20:36 -07:00
{
2013-07-23 22:11:42 +02:00
pte_val ( pte ) | = _PAGE_YOUNG ;
if ( pte_val ( pte ) & _PAGE_READ )
pte_val ( pte ) & = ~ _PAGE_INVALID ;
2005-04-16 15:20:36 -07:00
return pte ;
}
mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most). Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:
vm_normal_page()
{
...
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
#else
if (!pfn_valid(pfn))
return NULL;
#endif
goto out;
}
...
}
This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes. So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):
vm_normal_page()
{
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
return pte_page(pte);
#else
...
#endif
}
And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits. This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.
So introduce a pte_special pte state, and use it in mm/memory.c. It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.
BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:13:00 -07:00
static inline pte_t pte_mkspecial ( pte_t pte )
{
2008-04-28 02:13:03 -07:00
pte_val ( pte ) | = _PAGE_SPECIAL ;
mm: introduce pte_special pte bit
s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory
model (which is more dynamic than most). Instead, they had proposed to
implement it with an additional path through vm_normal_page(), using a bit in
the pte to determine whether or not the page should be refcounted:
vm_normal_page()
{
...
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
#else
if (!pfn_valid(pfn))
return NULL;
#endif
goto out;
}
...
}
This is fine, however if we are allowed to use a bit in the pte to determine
refcountedness, we can use that to _completely_ replace all the vma based
schemes. So instead of adding more cases to the already complex vma-based
scheme, we can have a clearly seperate and simple pte-based scheme (and get
slightly better code generation in the process):
vm_normal_page()
{
#ifdef s390
if (!mixedmap_refcount_pte(pte))
return NULL;
return pte_page(pte);
#else
...
#endif
}
And finally, we may rather make this concept usable by any architecture rather
than making it s390 only, so implement a new type of pte state for this.
Unfortunately the old vma based code must stay, because some architectures may
not be able to spare pte bits. This makes vm_normal_page a little bit more
ugly than we would like, but the 2 cases are clearly seperate.
So introduce a pte_special pte state, and use it in mm/memory.c. It is
currently a noop for all architectures, so this doesn't actually result in any
compiled code changes to mm/memory.o.
BTW:
I haven't put vm_normal_page() into arch code as-per an earlier suggestion.
The reason is that, regardless of where vm_normal_page is actually
implemented, the *abstraction* is still exactly the same. Also, while it
depends on whether the architecture has pte_special or not, that is the
only two possible cases, and it really isn't an arch specific function --
the role of the arch code should be to provide primitive functions and
accessors with which to build the core code; pte_special does that. We do
not want architectures to know or care about vm_normal_page itself, and
we definitely don't want them being able to invent something new there
out of sight of mm/ code. If we made vm_normal_page an arch function, then
we have to make vm_insert_mixed (next patch) an arch function too. So I
don't think moving it to arch code fundamentally improves any abstractions,
while it does practically make the code more difficult to follow, for both
mm and arch developers, and easier to misuse.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Acked-by: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 02:13:00 -07:00
return pte ;
}
2010-10-25 16:10:36 +02:00
# ifdef CONFIG_HUGETLB_PAGE
static inline pte_t pte_mkhuge ( pte_t pte )
{
2013-07-23 20:57:57 +02:00
pte_val ( pte ) | = _PAGE_LARGE ;
2010-10-25 16:10:36 +02:00
return pte ;
}
# endif
2006-09-20 15:59:37 +02:00
static inline void __ptep_ipte ( unsigned long address , pte_t * ptep )
2005-04-16 15:20:36 -07:00
{
2012-09-10 13:00:09 +02:00
unsigned long pto = ( unsigned long ) ptep ;
/* Invalidation + global TLB flush for the pte */
asm volatile (
" ipte %2,%3 "
: " =m " ( * ptep ) : " m " ( * ptep ) , " a " ( pto ) , " a " ( address ) ) ;
}
2014-04-03 13:55:01 +02:00
static inline void __ptep_ipte_local ( unsigned long address , pte_t * ptep )
{
unsigned long pto = ( unsigned long ) ptep ;
/* Invalidation + local TLB flush for the pte */
asm volatile (
" .insn rrf,0xb2210000,%2,%3,0,1 "
: " =m " ( * ptep ) : " m " ( * ptep ) , " a " ( pto ) , " a " ( address ) ) ;
}
2014-09-23 21:29:20 +02:00
static inline void __ptep_ipte_range ( unsigned long address , int nr , pte_t * ptep )
{
unsigned long pto = ( unsigned long ) ptep ;
/* Invalidate a range of ptes + global TLB flush of the ptes */
do {
asm volatile (
" .insn rrf,0xb2210000,%2,%0,%1,0 "
: " +a " ( address ) , " +a " ( nr ) : " a " ( pto ) : " memory " ) ;
} while ( nr ! = 255 ) ;
}
2012-09-10 13:00:09 +02:00
static inline void ptep_flush_direct ( struct mm_struct * mm ,
unsigned long address , pte_t * ptep )
{
2014-04-03 13:55:01 +02:00
int active , count ;
2012-09-10 13:00:09 +02:00
if ( pte_val ( * ptep ) & _PAGE_INVALID )
return ;
2014-04-03 13:55:01 +02:00
active = ( mm = = current - > active_mm ) ? 1 : 0 ;
count = atomic_add_return ( 0x10000 , & mm - > context . attach_count ) ;
if ( MACHINE_HAS_TLB_LC & & ( count & 0xffff ) < = active & &
cpumask_equal ( mm_cpumask ( mm ) , cpumask_of ( smp_processor_id ( ) ) ) )
__ptep_ipte_local ( address , ptep ) ;
else
__ptep_ipte ( address , ptep ) ;
atomic_sub ( 0x10000 , & mm - > context . attach_count ) ;
2006-09-20 15:59:37 +02:00
}
2013-08-16 13:31:40 +02:00
static inline void ptep_flush_lazy ( struct mm_struct * mm ,
unsigned long address , pte_t * ptep )
{
2012-09-10 13:00:09 +02:00
int active , count ;
2013-08-16 13:31:40 +02:00
2012-09-10 13:00:09 +02:00
if ( pte_val ( * ptep ) & _PAGE_INVALID )
return ;
active = ( mm = = current - > active_mm ) ? 1 : 0 ;
count = atomic_add_return ( 0x10000 , & mm - > context . attach_count ) ;
if ( ( count & 0xffff ) < = active ) {
pte_val ( * ptep ) | = _PAGE_INVALID ;
2013-08-16 13:31:40 +02:00
mm - > context . flush_mm = 1 ;
2012-09-10 13:00:09 +02:00
} else
__ptep_ipte ( address , ptep ) ;
atomic_sub ( 0x10000 , & mm - > context . attach_count ) ;
2013-08-16 13:31:40 +02:00
}
2013-10-18 12:03:41 +02:00
/*
* Get ( and clear ) the user dirty bit for a pte .
*/
static inline int ptep_test_and_clear_user_dirty ( struct mm_struct * mm ,
unsigned long addr ,
pte_t * ptep )
{
pgste_t pgste ;
pte_t pte ;
int dirty ;
if ( ! mm_has_pgste ( mm ) )
return 0 ;
pgste = pgste_get_lock ( ptep ) ;
dirty = ! ! ( pgste_val ( pgste ) & PGSTE_UC_BIT ) ;
pgste_val ( pgste ) & = ~ PGSTE_UC_BIT ;
pte = * ptep ;
if ( dirty & & ( pte_val ( pte ) & _PAGE_PRESENT ) ) {
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( mm , addr , ptep , pgste ) ;
2013-10-18 12:03:41 +02:00
__ptep_ipte ( addr , ptep ) ;
if ( MACHINE_HAS_ESOP | | ! ( pte_val ( pte ) & _PAGE_WRITE ) )
pte_val ( pte ) | = _PAGE_PROTECT ;
else
pte_val ( pte ) | = _PAGE_INVALID ;
* ptep = pte ;
}
pgste_set_unlock ( ptep , pgste ) ;
return dirty ;
}
2013-07-23 22:11:42 +02:00
# define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young ( struct vm_area_struct * vma ,
unsigned long addr , pte_t * ptep )
{
pgste_t pgste ;
2014-08-28 21:21:41 +02:00
pte_t pte , oldpte ;
2013-07-23 22:11:42 +02:00
int young ;
if ( mm_has_pgste ( vma - > vm_mm ) ) {
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( vma - > vm_mm , addr , ptep , pgste ) ;
2013-07-23 22:11:42 +02:00
}
2014-08-28 21:21:41 +02:00
oldpte = pte = * ptep ;
2012-09-10 13:00:09 +02:00
ptep_flush_direct ( vma - > vm_mm , addr , ptep ) ;
2013-07-23 22:11:42 +02:00
young = pte_young ( pte ) ;
pte = pte_mkold ( pte ) ;
if ( mm_has_pgste ( vma - > vm_mm ) ) {
2014-08-28 21:21:41 +02:00
pgste = pgste_update_all ( & oldpte , pgste , vma - > vm_mm ) ;
2013-10-18 12:03:41 +02:00
pgste = pgste_set_pte ( ptep , pgste , pte ) ;
2013-07-23 22:11:42 +02:00
pgste_set_unlock ( ptep , pgste ) ;
} else
* ptep = pte ;
return young ;
}
# define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young ( struct vm_area_struct * vma ,
unsigned long address , pte_t * ptep )
{
return ptep_test_and_clear_young ( vma , address , ptep ) ;
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
/*
* This is hard to understand . ptep_get_and_clear and ptep_clear_flush
* both clear the TLB for the unmapped pte . The reason is that
* ptep_get_and_clear is used in common code ( e . g . change_pte_range )
* to modify an active pte . The sequence is
* 1 ) ptep_get_and_clear
* 2 ) set_pte_at
* 3 ) flush_tlb_range
* On s390 the tlb needs to get flushed with the modification of the pte
* if the pte is active . The only way how this can be implemented is to
* have ptep_get_and_clear do the tlb flush . In exchange flush_tlb_range
* is a nop .
*/
# define __HAVE_ARCH_PTEP_GET_AND_CLEAR
2011-05-23 10:24:40 +02:00
static inline pte_t ptep_get_and_clear ( struct mm_struct * mm ,
unsigned long address , pte_t * ptep )
{
pgste_t pgste ;
pte_t pte ;
2013-04-17 10:53:39 +02:00
if ( mm_has_pgste ( mm ) ) {
2011-05-23 10:24:40 +02:00
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
2011-05-23 10:24:40 +02:00
pte = * ptep ;
2013-08-16 13:31:40 +02:00
ptep_flush_lazy ( mm , address , ptep ) ;
2013-07-23 20:57:57 +02:00
pte_val ( * ptep ) = _PAGE_INVALID ;
2011-05-23 10:24:40 +02:00
if ( mm_has_pgste ( mm ) ) {
2014-01-14 15:02:11 +01:00
pgste = pgste_update_all ( & pte , pgste , mm ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
}
return pte ;
}
# define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
static inline pte_t ptep_modify_prot_start ( struct mm_struct * mm ,
unsigned long address ,
pte_t * ptep )
{
2013-04-17 10:53:39 +02:00
pgste_t pgste ;
2011-05-23 10:24:40 +02:00
pte_t pte ;
2013-04-17 10:53:39 +02:00
if ( mm_has_pgste ( mm ) ) {
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste_ipte_notify ( mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
2011-05-23 10:24:40 +02:00
pte = * ptep ;
2013-08-16 13:31:40 +02:00
ptep_flush_lazy ( mm , address , ptep ) ;
2013-05-27 16:19:55 +02:00
2013-06-05 09:22:33 +02:00
if ( mm_has_pgste ( mm ) ) {
2014-01-14 15:02:11 +01:00
pgste = pgste_update_all ( & pte , pgste , mm ) ;
2013-06-05 09:22:33 +02:00
pgste_set ( ptep , pgste ) ;
}
2011-05-23 10:24:40 +02:00
return pte ;
}
static inline void ptep_modify_prot_commit ( struct mm_struct * mm ,
unsigned long address ,
pte_t * ptep , pte_t pte )
{
2013-05-27 16:19:55 +02:00
pgste_t pgste ;
2012-11-07 13:17:37 +01:00
if ( mm_has_pgste ( mm ) ) {
2013-07-19 11:15:54 +02:00
pgste = pgste_get ( ptep ) ;
2014-01-14 15:02:11 +01:00
pgste_set_key ( ptep , pgste , pte , mm ) ;
2013-10-18 12:03:41 +02:00
pgste = pgste_set_pte ( ptep , pgste , pte ) ;
2013-05-27 16:19:55 +02:00
pgste_set_unlock ( ptep , pgste ) ;
2012-11-07 13:17:37 +01:00
} else
* ptep = pte ;
2011-05-23 10:24:40 +02:00
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
# define __HAVE_ARCH_PTEP_CLEAR_FLUSH
2007-07-17 04:03:03 -07:00
static inline pte_t ptep_clear_flush ( struct vm_area_struct * vma ,
unsigned long address , pte_t * ptep )
{
2011-05-23 10:24:40 +02:00
pgste_t pgste ;
pte_t pte ;
2013-04-17 10:53:39 +02:00
if ( mm_has_pgste ( vma - > vm_mm ) ) {
2011-05-23 10:24:40 +02:00
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( vma - > vm_mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
2011-05-23 10:24:40 +02:00
pte = * ptep ;
2012-09-10 13:00:09 +02:00
ptep_flush_direct ( vma - > vm_mm , address , ptep ) ;
2013-07-23 20:57:57 +02:00
pte_val ( * ptep ) = _PAGE_INVALID ;
2011-05-23 10:24:40 +02:00
if ( mm_has_pgste ( vma - > vm_mm ) ) {
2013-04-17 17:36:29 +02:00
if ( ( pgste_val ( pgste ) & _PGSTE_GPS_USAGE_MASK ) = =
_PGSTE_GPS_USAGE_UNUSED )
pte_val ( pte ) | = _PAGE_UNUSED ;
2014-01-14 15:02:11 +01:00
pgste = pgste_update_all ( & pte , pgste , vma - > vm_mm ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
}
2005-04-16 15:20:36 -07:00
return pte ;
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
/*
* The batched pte unmap code uses ptep_get_and_clear_full to clear the
* ptes . Here an optimization is possible . tlb_gather_mmu flushes all
* tlbs of an mm if it can guarantee that the ptes of the mm_struct
* cannot be accessed while the batched unmap is running . In this case
* full = = 1 and a simple pte_clear is enough . See tlb . h .
*/
# define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
static inline pte_t ptep_get_and_clear_full ( struct mm_struct * mm ,
2011-05-23 10:24:40 +02:00
unsigned long address ,
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
pte_t * ptep , int full )
2005-04-16 15:20:36 -07:00
{
2011-05-23 10:24:40 +02:00
pgste_t pgste ;
pte_t pte ;
2013-07-19 10:31:55 +02:00
if ( ! full & & mm_has_pgste ( mm ) ) {
2011-05-23 10:24:40 +02:00
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
2011-05-23 10:24:40 +02:00
pte = * ptep ;
if ( ! full )
2013-08-16 13:31:40 +02:00
ptep_flush_lazy ( mm , address , ptep ) ;
2013-07-23 20:57:57 +02:00
pte_val ( * ptep ) = _PAGE_INVALID ;
2011-05-23 10:24:40 +02:00
2013-07-19 10:31:55 +02:00
if ( ! full & & mm_has_pgste ( mm ) ) {
2014-01-14 15:02:11 +01:00
pgste = pgste_update_all ( & pte , pgste , mm ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
return pte ;
2005-04-16 15:20:36 -07:00
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
# define __HAVE_ARCH_PTEP_SET_WRPROTECT
2011-05-23 10:24:40 +02:00
static inline pte_t ptep_set_wrprotect ( struct mm_struct * mm ,
unsigned long address , pte_t * ptep )
{
pgste_t pgste ;
pte_t pte = * ptep ;
if ( pte_write ( pte ) ) {
2013-04-17 10:53:39 +02:00
if ( mm_has_pgste ( mm ) ) {
2011-05-23 10:24:40 +02:00
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
2011-05-23 10:24:40 +02:00
2013-08-16 13:31:40 +02:00
ptep_flush_lazy ( mm , address , ptep ) ;
2012-11-07 13:17:37 +01:00
pte = pte_wrprotect ( pte ) ;
2011-05-23 10:24:40 +02:00
2012-11-07 13:17:37 +01:00
if ( mm_has_pgste ( mm ) ) {
2013-10-18 12:03:41 +02:00
pgste = pgste_set_pte ( ptep , pgste , pte ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
2012-11-07 13:17:37 +01:00
} else
* ptep = pte ;
2011-05-23 10:24:40 +02:00
}
return pte ;
}
[S390] tlb flush fix.
The current tlb flushing code for page table entries violates the
s390 architecture in a small detail. The relevant section from the
principles of operation (SA22-7832-02 page 3-47):
"A valid table entry must not be changed while it is attached
to any CPU and may be used for translation by that CPU except to
(1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY or
INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page-table
entry, or (3) make a change by means of a COMPARE AND SWAP AND
PURGE instruction that purges the TLB."
That means if one thread of a multithreaded applciation uses a vma
while another thread does an unmap on it, the page table entries of
that vma needs to get removed with IPTE, IDTE or CSP. In some strange
and rare situations a cpu could check-stop (die) because a entry has
been pushed out of the TLB that is still needed to complete a
(milli-coded) instruction. I've never seen it happen with the current
code on any of the supported machines, so right now this is a
theoretical problem. But I want to fix it nevertheless, to avoid
headaches in the futures.
To get this implemented correctly without changing common code the
primitives ptep_get_and_clear, ptep_get_and_clear_full and
ptep_set_wrprotect need to use the IPTE instruction to invalidate the
pte before the new pte value gets stored. If IPTE is always used for
the three primitives three important operations will have a performace
hit: fork, mprotect and exit_mmap. Time for some workarounds:
* 1: ptep_get_and_clear_full is used in unmap_vmas to remove page
tables entries in a batched tlb gather operation. If the mmu_gather
context passed to unmap_vmas has been started with full_mm_flush==1
or if only one cpu is online or if the only user of a mm_struct is the
current process then the fullmm indication in the mmu_gather context is
set to one. All TLBs for mm_struct are flushed by the tlb_gather_mmu
call. No new TLBs can be created while the unmap is in progress. In
this case ptep_get_and_clear_full clears the ptes with a simple store.
* 2: ptep_get_and_clear is used in change_protection to clear the
ptes from the page tables before they are reentered with the new
access flags. At the end of the update flush_tlb_range clears the
remaining TLBs. In general the ptep_get_and_clear has to issue IPTE
for each pte and flush_tlb_range is a nop. But if there is only one
user of the mm_struct then ptep_get_and_clear uses simple stores
to do the update and flush_tlb_range will flush the TLBs.
* 3: Similar to 2, ptep_set_wrprotect is used in copy_page_range
for a fork to make all ptes of a cow mapping read-only. At the end of
of copy_page_range dup_mmap will flush the TLBs with a call to
flush_tlb_mm. Check for mm->mm_users and if there is only one user
avoid using IPTE in ptep_set_wrprotect and let flush_tlb_mm clear the
TLBs.
Overall for single threaded programs the tlb flush code now performs
better, for multi threaded programs it is slightly worse. In particular
exit_mmap() now does a single IDTE for the mm and then just frees every
page cache reference and every page table page directly without a delay
over the mmu_gather structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2007-10-22 12:52:44 +02:00
# define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
2011-05-23 10:24:40 +02:00
static inline int ptep_set_access_flags ( struct vm_area_struct * vma ,
unsigned long address , pte_t * ptep ,
pte_t entry , int dirty )
{
pgste_t pgste ;
if ( pte_same ( * ptep , entry ) )
return 0 ;
2013-04-17 10:53:39 +02:00
if ( mm_has_pgste ( vma - > vm_mm ) ) {
2011-05-23 10:24:40 +02:00
pgste = pgste_get_lock ( ptep ) ;
2014-04-30 14:44:44 +02:00
pgste = pgste_ipte_notify ( vma - > vm_mm , address , ptep , pgste ) ;
2013-04-17 10:53:39 +02:00
}
2011-05-23 10:24:40 +02:00
2012-09-10 13:00:09 +02:00
ptep_flush_direct ( vma - > vm_mm , address , ptep ) ;
2011-05-23 10:24:40 +02:00
2012-11-07 13:17:37 +01:00
if ( mm_has_pgste ( vma - > vm_mm ) ) {
2014-08-28 23:44:57 +02:00
pgste_set_key ( ptep , pgste , entry , vma - > vm_mm ) ;
2013-10-18 12:03:41 +02:00
pgste = pgste_set_pte ( ptep , pgste , entry ) ;
2011-05-23 10:24:40 +02:00
pgste_set_unlock ( ptep , pgste ) ;
2012-11-07 13:17:37 +01:00
} else
* ptep = entry ;
2011-05-23 10:24:40 +02:00
return 1 ;
}
2005-04-16 15:20:36 -07:00
/*
* Conversion functions : convert a page and protection to a page entry ,
* and a page entry and page directory to the page they refer to .
*/
static inline pte_t mk_pte_phys ( unsigned long physpage , pgprot_t pgprot )
{
pte_t __pte ;
pte_val ( __pte ) = physpage + pgprot_val ( pgprot ) ;
2013-07-23 22:11:42 +02:00
return pte_mkyoung ( __pte ) ;
2005-04-16 15:20:36 -07:00
}
2006-09-29 01:58:41 -07:00
static inline pte_t mk_pte ( struct page * page , pgprot_t pgprot )
{
2006-10-04 20:02:23 +02:00
unsigned long physpage = page_to_phys ( page ) ;
2012-11-07 13:17:37 +01:00
pte_t __pte = mk_pte_phys ( physpage , pgprot ) ;
2005-04-16 15:20:36 -07:00
2013-07-23 20:57:57 +02:00
if ( pte_write ( __pte ) & & PageDirty ( page ) )
__pte = pte_mkdirty ( __pte ) ;
2012-11-07 13:17:37 +01:00
return __pte ;
2006-09-29 01:58:41 -07:00
}
2007-10-22 12:52:48 +02:00
# define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
# define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
# define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
# define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
2005-04-16 15:20:36 -07:00
2007-10-22 12:52:48 +02:00
# define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
# define pgd_offset_k(address) pgd_offset(&init_mm, address)
2005-04-16 15:20:36 -07:00
2007-10-22 12:52:48 +02:00
# define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
# define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
2008-02-09 18:24:36 +01:00
# define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
2005-04-16 15:20:36 -07:00
2008-02-09 18:24:36 +01:00
static inline pud_t * pud_offset ( pgd_t * pgd , unsigned long address )
{
2008-02-09 18:24:37 +01:00
pud_t * pud = ( pud_t * ) pgd ;
if ( ( pgd_val ( * pgd ) & _REGION_ENTRY_TYPE_MASK ) = = _REGION_ENTRY_TYPE_R2 )
pud = ( pud_t * ) pgd_deref ( * pgd ) ;
2008-02-09 18:24:36 +01:00
return pud + pud_index ( address ) ;
}
2005-04-16 15:20:36 -07:00
2007-10-22 12:52:48 +02:00
static inline pmd_t * pmd_offset ( pud_t * pud , unsigned long address )
2005-04-16 15:20:36 -07:00
{
2008-02-09 18:24:37 +01:00
pmd_t * pmd = ( pmd_t * ) pud ;
if ( ( pud_val ( * pud ) & _REGION_ENTRY_TYPE_MASK ) = = _REGION_ENTRY_TYPE_R3 )
pmd = ( pmd_t * ) pud_deref ( * pud ) ;
2007-10-22 12:52:48 +02:00
return pmd + pmd_index ( address ) ;
2005-04-16 15:20:36 -07:00
}
2007-10-22 12:52:48 +02:00
# define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
# define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
# define pte_page(x) pfn_to_page(pte_pfn(x))
2005-04-16 15:20:36 -07:00
2014-07-24 11:03:41 +02:00
# define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
2005-04-16 15:20:36 -07:00
2007-10-22 12:52:48 +02:00
/* Find an entry in the lowest level page table.. */
# define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
# define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
2005-04-16 15:20:36 -07:00
# define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
# define pte_unmap(pte) do { } while (0)
2013-04-29 15:07:23 -07:00
# if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2012-10-08 16:30:24 -07:00
static inline unsigned long massage_pgprot_pmd ( pgprot_t pgprot )
{
2012-10-25 17:42:50 +02:00
/*
2013-07-23 20:57:57 +02:00
* pgprot is PAGE_NONE , PAGE_READ , or PAGE_WRITE ( see __Pxxx / __Sxxx )
2012-10-25 17:42:50 +02:00
* Convert to segment table entry format .
*/
if ( pgprot_val ( pgprot ) = = pgprot_val ( PAGE_NONE ) )
return pgprot_val ( SEGMENT_NONE ) ;
2013-07-23 20:57:57 +02:00
if ( pgprot_val ( pgprot ) = = pgprot_val ( PAGE_READ ) )
return pgprot_val ( SEGMENT_READ ) ;
return pgprot_val ( SEGMENT_WRITE ) ;
2012-10-08 16:30:24 -07:00
}
2014-07-24 11:03:41 +02:00
static inline pmd_t pmd_wrprotect ( pmd_t pmd )
2013-07-23 22:11:42 +02:00
{
2014-07-24 11:03:41 +02:00
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_WRITE ;
pmd_val ( pmd ) | = _SEGMENT_ENTRY_PROTECT ;
return pmd ;
}
static inline pmd_t pmd_mkwrite ( pmd_t pmd )
{
pmd_val ( pmd ) | = _SEGMENT_ENTRY_WRITE ;
if ( pmd_large ( pmd ) & & ! ( pmd_val ( pmd ) & _SEGMENT_ENTRY_DIRTY ) )
return pmd ;
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_PROTECT ;
return pmd ;
}
static inline pmd_t pmd_mkclean ( pmd_t pmd )
{
if ( pmd_large ( pmd ) ) {
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_DIRTY ;
2013-07-23 22:11:42 +02:00
pmd_val ( pmd ) | = _SEGMENT_ENTRY_PROTECT ;
2014-07-24 11:03:41 +02:00
}
return pmd ;
}
static inline pmd_t pmd_mkdirty ( pmd_t pmd )
{
if ( pmd_large ( pmd ) ) {
pmd_val ( pmd ) | = _SEGMENT_ENTRY_DIRTY ;
if ( pmd_val ( pmd ) & _SEGMENT_ENTRY_WRITE )
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_PROTECT ;
}
return pmd ;
}
static inline pmd_t pmd_mkyoung ( pmd_t pmd )
{
if ( pmd_large ( pmd ) ) {
2013-07-23 22:11:42 +02:00
pmd_val ( pmd ) | = _SEGMENT_ENTRY_YOUNG ;
2014-07-24 11:03:41 +02:00
if ( pmd_val ( pmd ) & _SEGMENT_ENTRY_READ )
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_INVALID ;
2013-07-23 22:11:42 +02:00
}
return pmd ;
}
static inline pmd_t pmd_mkold ( pmd_t pmd )
{
2014-07-24 11:03:41 +02:00
if ( pmd_large ( pmd ) ) {
2013-07-23 22:11:42 +02:00
pmd_val ( pmd ) & = ~ _SEGMENT_ENTRY_YOUNG ;
pmd_val ( pmd ) | = _SEGMENT_ENTRY_INVALID ;
}
return pmd ;
}
2012-10-08 16:30:24 -07:00
static inline pmd_t pmd_modify ( pmd_t pmd , pgprot_t newprot )
{
2014-07-24 11:03:41 +02:00
if ( pmd_large ( pmd ) ) {
pmd_val ( pmd ) & = _SEGMENT_ENTRY_ORIGIN_LARGE |
_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT ;
pmd_val ( pmd ) | = massage_pgprot_pmd ( newprot ) ;
if ( ! ( pmd_val ( pmd ) & _SEGMENT_ENTRY_DIRTY ) )
pmd_val ( pmd ) | = _SEGMENT_ENTRY_PROTECT ;
if ( ! ( pmd_val ( pmd ) & _SEGMENT_ENTRY_YOUNG ) )
pmd_val ( pmd ) | = _SEGMENT_ENTRY_INVALID ;
return pmd ;
}
pmd_val ( pmd ) & = _SEGMENT_ENTRY_ORIGIN ;
2012-10-08 16:30:24 -07:00
pmd_val ( pmd ) | = massage_pgprot_pmd ( newprot ) ;
return pmd ;
}
2013-04-29 15:07:23 -07:00
static inline pmd_t mk_pmd_phys ( unsigned long physpage , pgprot_t pgprot )
2012-10-08 16:30:24 -07:00
{
2013-04-29 15:07:23 -07:00
pmd_t __pmd ;
pmd_val ( __pmd ) = physpage + massage_pgprot_pmd ( pgprot ) ;
2014-07-24 11:03:41 +02:00
return __pmd ;
2012-10-08 16:30:24 -07:00
}
2013-04-29 15:07:23 -07:00
# endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
2014-04-03 13:55:01 +02:00
static inline void __pmdp_csp ( pmd_t * pmdp )
{
register unsigned long reg2 asm ( " 2 " ) = pmd_val ( * pmdp ) ;
register unsigned long reg3 asm ( " 3 " ) = pmd_val ( * pmdp ) |
_SEGMENT_ENTRY_INVALID ;
register unsigned long reg4 asm ( " 4 " ) = ( ( unsigned long ) pmdp ) + 5 ;
asm volatile (
" csp %1,%3 "
: " =m " ( * pmdp )
: " d " ( reg2 ) , " d " ( reg3 ) , " d " ( reg4 ) , " m " ( * pmdp ) : " cc " ) ;
}
static inline void __pmdp_idte ( unsigned long address , pmd_t * pmdp )
{
unsigned long sto ;
sto = ( unsigned long ) pmdp - pmd_index ( address ) * sizeof ( pmd_t ) ;
asm volatile (
" .insn rrf,0xb98e0000,%2,%3,0,0 "
: " =m " ( * pmdp )
: " m " ( * pmdp ) , " a " ( sto ) , " a " ( ( address & HPAGE_MASK ) )
: " cc " ) ;
}
static inline void __pmdp_idte_local ( unsigned long address , pmd_t * pmdp )
{
unsigned long sto ;
sto = ( unsigned long ) pmdp - pmd_index ( address ) * sizeof ( pmd_t ) ;
asm volatile (
" .insn rrf,0xb98e0000,%2,%3,0,1 "
: " =m " ( * pmdp )
: " m " ( * pmdp ) , " a " ( sto ) , " a " ( ( address & HPAGE_MASK ) )
: " cc " ) ;
}
static inline void pmdp_flush_direct ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
int active , count ;
if ( pmd_val ( * pmdp ) & _SEGMENT_ENTRY_INVALID )
return ;
if ( ! MACHINE_HAS_IDTE ) {
__pmdp_csp ( pmdp ) ;
return ;
}
active = ( mm = = current - > active_mm ) ? 1 : 0 ;
count = atomic_add_return ( 0x10000 , & mm - > context . attach_count ) ;
if ( MACHINE_HAS_TLB_LC & & ( count & 0xffff ) < = active & &
cpumask_equal ( mm_cpumask ( mm ) , cpumask_of ( smp_processor_id ( ) ) ) )
__pmdp_idte_local ( address , pmdp ) ;
else
__pmdp_idte ( address , pmdp ) ;
atomic_sub ( 0x10000 , & mm - > context . attach_count ) ;
}
2013-07-26 15:04:02 +02:00
static inline void pmdp_flush_lazy ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
2012-09-10 13:00:09 +02:00
int active , count ;
2013-07-26 15:04:02 +02:00
2014-04-03 13:55:01 +02:00
if ( pmd_val ( * pmdp ) & _SEGMENT_ENTRY_INVALID )
return ;
2012-09-10 13:00:09 +02:00
active = ( mm = = current - > active_mm ) ? 1 : 0 ;
count = atomic_add_return ( 0x10000 , & mm - > context . attach_count ) ;
if ( ( count & 0xffff ) < = active ) {
pmd_val ( * pmdp ) | = _SEGMENT_ENTRY_INVALID ;
2013-07-26 15:04:02 +02:00
mm - > context . flush_mm = 1 ;
2014-04-03 13:55:01 +02:00
} else if ( MACHINE_HAS_IDTE )
__pmdp_idte ( address , pmdp ) ;
else
__pmdp_csp ( pmdp ) ;
2012-09-10 13:00:09 +02:00
atomic_sub ( 0x10000 , & mm - > context . attach_count ) ;
2013-07-26 15:04:02 +02:00
}
2013-04-29 15:07:23 -07:00
# ifdef CONFIG_TRANSPARENT_HUGEPAGE
# define __HAVE_ARCH_PGTABLE_DEPOSIT
2013-06-05 17:14:02 -07:00
extern void pgtable_trans_huge_deposit ( struct mm_struct * mm , pmd_t * pmdp ,
pgtable_t pgtable ) ;
2013-04-29 15:07:23 -07:00
# define __HAVE_ARCH_PGTABLE_WITHDRAW
2013-06-05 17:14:02 -07:00
extern pgtable_t pgtable_trans_huge_withdraw ( struct mm_struct * mm , pmd_t * pmdp ) ;
2013-04-29 15:07:23 -07:00
static inline int pmd_trans_splitting ( pmd_t pmd )
{
2014-07-24 11:03:41 +02:00
return ( pmd_val ( pmd ) & _SEGMENT_ENTRY_LARGE ) & &
( pmd_val ( pmd ) & _SEGMENT_ENTRY_SPLIT ) ;
2013-04-29 15:07:23 -07:00
}
static inline void set_pmd_at ( struct mm_struct * mm , unsigned long addr ,
pmd_t * pmdp , pmd_t entry )
{
* pmdp = entry ;
}
static inline pmd_t pmd_mkhuge ( pmd_t pmd )
{
pmd_val ( pmd ) | = _SEGMENT_ENTRY_LARGE ;
2014-07-24 11:03:41 +02:00
pmd_val ( pmd ) | = _SEGMENT_ENTRY_YOUNG ;
pmd_val ( pmd ) | = _SEGMENT_ENTRY_PROTECT ;
2012-10-08 16:30:24 -07:00
return pmd ;
}
# define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp )
{
2013-07-23 22:11:42 +02:00
pmd_t pmd ;
2012-10-08 16:30:24 -07:00
2013-07-23 22:11:42 +02:00
pmd = * pmdp ;
2014-04-03 13:55:01 +02:00
pmdp_flush_direct ( vma - > vm_mm , address , pmdp ) ;
2013-07-23 22:11:42 +02:00
* pmdp = pmd_mkold ( pmd ) ;
return pmd_young ( pmd ) ;
2012-10-08 16:30:24 -07:00
}
# define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
pmd_t pmd = * pmdp ;
2014-04-03 13:55:01 +02:00
pmdp_flush_direct ( mm , address , pmdp ) ;
2012-10-08 16:30:24 -07:00
pmd_clear ( pmdp ) ;
return pmd ;
}
2014-10-24 10:52:29 +02:00
# define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
static inline pmd_t pmdp_get_and_clear_full ( struct mm_struct * mm ,
unsigned long address ,
pmd_t * pmdp , int full )
{
pmd_t pmd = * pmdp ;
if ( ! full )
pmdp_flush_lazy ( mm , address , pmdp ) ;
pmd_clear ( pmdp ) ;
return pmd ;
}
2012-10-08 16:30:24 -07:00
# define __HAVE_ARCH_PMDP_CLEAR_FLUSH
static inline pmd_t pmdp_clear_flush ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp )
{
return pmdp_get_and_clear ( vma - > vm_mm , address , pmdp ) ;
}
# define __HAVE_ARCH_PMDP_INVALIDATE
static inline void pmdp_invalidate ( struct vm_area_struct * vma ,
unsigned long address , pmd_t * pmdp )
{
2014-04-03 13:55:01 +02:00
pmdp_flush_direct ( vma - > vm_mm , address , pmdp ) ;
2012-10-08 16:30:24 -07:00
}
2013-01-21 16:48:07 +01:00
# define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect ( struct mm_struct * mm ,
unsigned long address , pmd_t * pmdp )
{
pmd_t pmd = * pmdp ;
if ( pmd_write ( pmd ) ) {
2014-04-03 13:55:01 +02:00
pmdp_flush_direct ( mm , address , pmdp ) ;
2013-01-21 16:48:07 +01:00
set_pmd_at ( mm , address , pmdp , pmd_wrprotect ( pmd ) ) ;
}
}
2012-10-08 16:30:24 -07:00
# define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
# define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
static inline int pmd_trans_huge ( pmd_t pmd )
{
return pmd_val ( pmd ) & _SEGMENT_ENTRY_LARGE ;
}
static inline int has_transparent_hugepage ( void )
{
return MACHINE_HAS_HPAGE ? 1 : 0 ;
}
2012-10-08 16:30:15 -07:00
# endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2005-04-16 15:20:36 -07:00
/*
* 31 bit swap entry format :
* A page - table entry has some bits we have to treat in a special way .
* Bits 0 , 20 and bit 23 have to be zero , otherwise an specification
* exception will occur instead of a page translation exception . The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore .
2013-07-23 20:57:57 +02:00
* Bits 21 , 22 , 30 and 31 are used to indicate the page type .
* A swap pte is indicated by bit pattern ( pte & 0x603 ) = = 0x402
2005-04-16 15:20:36 -07:00
* This leaves the bits 1 - 19 and bits 24 - 29 to store type and offset .
* We use the 5 bits from 25 - 29 for the type and the 20 bits from 1 - 19
* plus 24 for the offset .
* 0 | offset | 0110 | o | type | 00 |
* 0 0000000001111111111 2222 2 22222 33
* 0 1234567890123456789 0123 4 56789 01
*
* 64 bit swap entry format :
* A page - table entry has some bits we have to treat in a special way .
* Bits 52 and bit 55 have to be zero , otherwise an specification
* exception will occur instead of a page translation exception . The
* specifiation exception has the bad habit not to store necessary
* information in the lowcore .
2013-07-23 20:57:57 +02:00
* Bits 53 , 54 , 62 and 63 are used to indicate the page type .
* A swap pte is indicated by bit pattern ( pte & 0x603 ) = = 0x402
2005-04-16 15:20:36 -07:00
* This leaves the bits 0 - 51 and bits 56 - 61 to store type and offset .
* We use the 5 bits from 57 - 61 for the type and the 53 bits from 0 - 51
* plus 56 for the offset .
* | offset | 0110 | o | type | 00 |
* 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
* 01234567 89012345678901234567890123456789012345678901 2345 6 78901 23
*/
2015-02-12 13:08:27 +01:00
2005-04-16 15:20:36 -07:00
# define __SWP_OFFSET_MASK (~0UL >> 11)
2015-02-12 13:08:27 +01:00
2005-11-08 21:34:42 -08:00
static inline pte_t mk_swap_pte ( unsigned long type , unsigned long offset )
2005-04-16 15:20:36 -07:00
{
pte_t pte ;
offset & = __SWP_OFFSET_MASK ;
2013-07-23 20:57:57 +02:00
pte_val ( pte ) = _PAGE_INVALID | _PAGE_TYPE | ( ( type & 0x1f ) < < 2 ) |
2005-04-16 15:20:36 -07:00
( ( offset & 1UL ) < < 7 ) | ( ( offset & ~ 1UL ) < < 11 ) ;
return pte ;
}
# define __swp_type(entry) (((entry).val >> 2) & 0x1f)
# define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
# define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
# define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
# define __swp_entry_to_pte(x) ((pte_t) { (x).val })
# endif /* !__ASSEMBLY__ */
# define kern_addr_valid(addr) (1)
2008-04-30 13:38:47 +02:00
extern int vmem_add_mapping ( unsigned long start , unsigned long size ) ;
extern int vmem_remove_mapping ( unsigned long start , unsigned long size ) ;
2008-03-25 18:47:10 +01:00
extern int s390_enable_sie ( void ) ;
2014-10-23 12:09:17 +02:00
extern int s390_enable_skey ( void ) ;
2014-10-23 12:07:14 +02:00
extern void s390_reset_cmma ( struct mm_struct * mm ) ;
2006-12-08 15:56:07 +01:00
2015-01-14 17:51:17 +01:00
/* s390 has a private copy of get unmapped area to deal with cache synonyms */
# define HAVE_ARCH_UNMAPPED_AREA
# define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2005-04-16 15:20:36 -07:00
/*
* No page table caches to initialise
*/
2013-03-23 10:29:01 +01:00
static inline void pgtable_cache_init ( void ) { }
static inline void check_pgt_cache ( void ) { }
2005-04-16 15:20:36 -07:00
# include <asm-generic/pgtable.h>
# endif /* _S390_PAGE_H */