2009-01-04 22:46:16 +01:00
/* Lzma decompressor for Linux kernel. Shamelessly snarfed
* from busybox 1.1 .1
*
* Linux kernel adaptation
* Copyright ( C ) 2006 Alain < alain @ knaff . lu >
*
* Based on small lzma deflate implementation / Small range coder
* implementation for lzma .
* Copyright ( C ) 2006 Aurelien Jacobs < aurel @ gnuage . org >
*
* Based on LzmaDecode . c from the LZMA SDK 4.22 ( http : //www.7-zip.org/)
* Copyright ( C ) 1999 - 2005 Igor Pavlov
*
* Copyrights of the parts , see headers below .
*
*
* This program is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2.1 of the License , or ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library ; if not , write to the Free Software
* Foundation , Inc . , 51 Franklin St , Fifth Floor , Boston , MA 02110 - 1301 USA
*/
# ifndef STATIC
# include <linux/decompress/unlzma.h>
# endif /* STATIC */
# include <linux/decompress/mm.h>
2009-03-24 11:22:01 +02:00
# include <linux/slab.h>
2009-01-04 22:46:16 +01:00
# define MIN(a, b) (((a) < (b)) ? (a) : (b))
static long long INIT read_int ( unsigned char * ptr , int size )
{
int i ;
long long ret = 0 ;
for ( i = 0 ; i < size ; i + + )
ret = ( ret < < 8 ) | ptr [ size - i - 1 ] ;
return ret ;
}
# define ENDIAN_CONVERT(x) \
x = ( typeof ( x ) ) read_int ( ( unsigned char * ) & x , sizeof ( x ) )
/* Small range coder implementation for lzma.
* Copyright ( C ) 2006 Aurelien Jacobs < aurel @ gnuage . org >
*
* Based on LzmaDecode . c from the LZMA SDK 4.22 ( http : //www.7-zip.org/)
* Copyright ( c ) 1999 - 2005 Igor Pavlov
*/
# include <linux/compiler.h>
# define LZMA_IOBUF_SIZE 0x10000
struct rc {
int ( * fill ) ( void * , unsigned int ) ;
uint8_t * ptr ;
uint8_t * buffer ;
uint8_t * buffer_end ;
int buffer_size ;
uint32_t code ;
uint32_t range ;
uint32_t bound ;
} ;
# define RC_TOP_BITS 24
# define RC_MOVE_BITS 5
# define RC_MODEL_TOTAL_BITS 11
/* Called twice: once at startup and once in rc_normalize() */
static void INIT rc_read ( struct rc * rc )
{
rc - > buffer_size = rc - > fill ( ( char * ) rc - > buffer , LZMA_IOBUF_SIZE ) ;
if ( rc - > buffer_size < = 0 )
error ( " unexpected EOF " ) ;
rc - > ptr = rc - > buffer ;
rc - > buffer_end = rc - > buffer + rc - > buffer_size ;
}
/* Called once */
static inline void INIT rc_init ( struct rc * rc ,
int ( * fill ) ( void * , unsigned int ) ,
char * buffer , int buffer_size )
{
rc - > fill = fill ;
rc - > buffer = ( uint8_t * ) buffer ;
rc - > buffer_size = buffer_size ;
rc - > buffer_end = rc - > buffer + rc - > buffer_size ;
rc - > ptr = rc - > buffer ;
rc - > code = 0 ;
rc - > range = 0xFFFFFFFF ;
}
static inline void INIT rc_init_code ( struct rc * rc )
{
int i ;
for ( i = 0 ; i < 5 ; i + + ) {
if ( rc - > ptr > = rc - > buffer_end )
rc_read ( rc ) ;
rc - > code = ( rc - > code < < 8 ) | * rc - > ptr + + ;
}
}
/* Called once. TODO: bb_maybe_free() */
static inline void INIT rc_free ( struct rc * rc )
{
free ( rc - > buffer ) ;
}
/* Called twice, but one callsite is in inline'd rc_is_bit_0_helper() */
static void INIT rc_do_normalize ( struct rc * rc )
{
if ( rc - > ptr > = rc - > buffer_end )
rc_read ( rc ) ;
rc - > range < < = 8 ;
rc - > code = ( rc - > code < < 8 ) | * rc - > ptr + + ;
}
static inline void INIT rc_normalize ( struct rc * rc )
{
if ( rc - > range < ( 1 < < RC_TOP_BITS ) )
rc_do_normalize ( rc ) ;
}
/* Called 9 times */
/* Why rc_is_bit_0_helper exists?
* Because we want to always expose ( rc - > code < rc - > bound ) to optimizer
*/
static inline uint32_t INIT rc_is_bit_0_helper ( struct rc * rc , uint16_t * p )
{
rc_normalize ( rc ) ;
rc - > bound = * p * ( rc - > range > > RC_MODEL_TOTAL_BITS ) ;
return rc - > bound ;
}
static inline int INIT rc_is_bit_0 ( struct rc * rc , uint16_t * p )
{
uint32_t t = rc_is_bit_0_helper ( rc , p ) ;
return rc - > code < t ;
}
/* Called ~10 times, but very small, thus inlined */
static inline void INIT rc_update_bit_0 ( struct rc * rc , uint16_t * p )
{
rc - > range = rc - > bound ;
* p + = ( ( 1 < < RC_MODEL_TOTAL_BITS ) - * p ) > > RC_MOVE_BITS ;
}
static inline void rc_update_bit_1 ( struct rc * rc , uint16_t * p )
{
rc - > range - = rc - > bound ;
rc - > code - = rc - > bound ;
* p - = * p > > RC_MOVE_BITS ;
}
/* Called 4 times in unlzma loop */
static int INIT rc_get_bit ( struct rc * rc , uint16_t * p , int * symbol )
{
if ( rc_is_bit_0 ( rc , p ) ) {
rc_update_bit_0 ( rc , p ) ;
* symbol * = 2 ;
return 0 ;
} else {
rc_update_bit_1 ( rc , p ) ;
* symbol = * symbol * 2 + 1 ;
return 1 ;
}
}
/* Called once */
static inline int INIT rc_direct_bit ( struct rc * rc )
{
rc_normalize ( rc ) ;
rc - > range > > = 1 ;
if ( rc - > code > = rc - > range ) {
rc - > code - = rc - > range ;
return 1 ;
}
return 0 ;
}
/* Called twice */
static inline void INIT
rc_bit_tree_decode ( struct rc * rc , uint16_t * p , int num_levels , int * symbol )
{
int i = num_levels ;
* symbol = 1 ;
while ( i - - )
rc_get_bit ( rc , p + * symbol , symbol ) ;
* symbol - = 1 < < num_levels ;
}
/*
* Small lzma deflate implementation .
* Copyright ( C ) 2006 Aurelien Jacobs < aurel @ gnuage . org >
*
* Based on LzmaDecode . c from the LZMA SDK 4.22 ( http : //www.7-zip.org/)
* Copyright ( C ) 1999 - 2005 Igor Pavlov
*/
struct lzma_header {
uint8_t pos ;
uint32_t dict_size ;
uint64_t dst_size ;
} __attribute__ ( ( packed ) ) ;
# define LZMA_BASE_SIZE 1846
# define LZMA_LIT_SIZE 768
# define LZMA_NUM_POS_BITS_MAX 4
# define LZMA_LEN_NUM_LOW_BITS 3
# define LZMA_LEN_NUM_MID_BITS 3
# define LZMA_LEN_NUM_HIGH_BITS 8
# define LZMA_LEN_CHOICE 0
# define LZMA_LEN_CHOICE_2 (LZMA_LEN_CHOICE + 1)
# define LZMA_LEN_LOW (LZMA_LEN_CHOICE_2 + 1)
# define LZMA_LEN_MID (LZMA_LEN_LOW \
+ ( 1 < < ( LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS ) ) )
# define LZMA_LEN_HIGH (LZMA_LEN_MID \
+ ( 1 < < ( LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS ) ) )
# define LZMA_NUM_LEN_PROBS (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS))
# define LZMA_NUM_STATES 12
# define LZMA_NUM_LIT_STATES 7
# define LZMA_START_POS_MODEL_INDEX 4
# define LZMA_END_POS_MODEL_INDEX 14
# define LZMA_NUM_FULL_DISTANCES (1 << (LZMA_END_POS_MODEL_INDEX >> 1))
# define LZMA_NUM_POS_SLOT_BITS 6
# define LZMA_NUM_LEN_TO_POS_STATES 4
# define LZMA_NUM_ALIGN_BITS 4
# define LZMA_MATCH_MIN_LEN 2
# define LZMA_IS_MATCH 0
# define LZMA_IS_REP (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX))
# define LZMA_IS_REP_G0 (LZMA_IS_REP + LZMA_NUM_STATES)
# define LZMA_IS_REP_G1 (LZMA_IS_REP_G0 + LZMA_NUM_STATES)
# define LZMA_IS_REP_G2 (LZMA_IS_REP_G1 + LZMA_NUM_STATES)
# define LZMA_IS_REP_0_LONG (LZMA_IS_REP_G2 + LZMA_NUM_STATES)
# define LZMA_POS_SLOT (LZMA_IS_REP_0_LONG \
+ ( LZMA_NUM_STATES < < LZMA_NUM_POS_BITS_MAX ) )
# define LZMA_SPEC_POS (LZMA_POS_SLOT \
+ ( LZMA_NUM_LEN_TO_POS_STATES < < LZMA_NUM_POS_SLOT_BITS ) )
# define LZMA_ALIGN (LZMA_SPEC_POS \
+ LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX )
# define LZMA_LEN_CODER (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS))
# define LZMA_REP_LEN_CODER (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS)
# define LZMA_LITERAL (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS)
struct writer {
uint8_t * buffer ;
uint8_t previous_byte ;
size_t buffer_pos ;
int bufsize ;
size_t global_pos ;
int ( * flush ) ( void * , unsigned int ) ;
struct lzma_header * header ;
} ;
struct cstate {
int state ;
uint32_t rep0 , rep1 , rep2 , rep3 ;
} ;
static inline size_t INIT get_pos ( struct writer * wr )
{
return
wr - > global_pos + wr - > buffer_pos ;
}
static inline uint8_t INIT peek_old_byte ( struct writer * wr ,
uint32_t offs )
{
if ( ! wr - > flush ) {
int32_t pos ;
while ( offs > wr - > header - > dict_size )
offs - = wr - > header - > dict_size ;
pos = wr - > buffer_pos - offs ;
return wr - > buffer [ pos ] ;
} else {
uint32_t pos = wr - > buffer_pos - offs ;
while ( pos > = wr - > header - > dict_size )
pos + = wr - > header - > dict_size ;
return wr - > buffer [ pos ] ;
}
}
static inline void INIT write_byte ( struct writer * wr , uint8_t byte )
{
wr - > buffer [ wr - > buffer_pos + + ] = wr - > previous_byte = byte ;
if ( wr - > flush & & wr - > buffer_pos = = wr - > header - > dict_size ) {
wr - > buffer_pos = 0 ;
wr - > global_pos + = wr - > header - > dict_size ;
wr - > flush ( ( char * ) wr - > buffer , wr - > header - > dict_size ) ;
}
}
static inline void INIT copy_byte ( struct writer * wr , uint32_t offs )
{
write_byte ( wr , peek_old_byte ( wr , offs ) ) ;
}
static inline void INIT copy_bytes ( struct writer * wr ,
uint32_t rep0 , int len )
{
do {
copy_byte ( wr , rep0 ) ;
len - - ;
} while ( len ! = 0 & & wr - > buffer_pos < wr - > header - > dst_size ) ;
}
static inline void INIT process_bit0 ( struct writer * wr , struct rc * rc ,
struct cstate * cst , uint16_t * p ,
int pos_state , uint16_t * prob ,
int lc , uint32_t literal_pos_mask ) {
int mi = 1 ;
rc_update_bit_0 ( rc , prob ) ;
prob = ( p + LZMA_LITERAL +
( LZMA_LIT_SIZE
* ( ( ( get_pos ( wr ) & literal_pos_mask ) < < lc )
+ ( wr - > previous_byte > > ( 8 - lc ) ) ) )
) ;
if ( cst - > state > = LZMA_NUM_LIT_STATES ) {
int match_byte = peek_old_byte ( wr , cst - > rep0 ) ;
do {
int bit ;
uint16_t * prob_lit ;
match_byte < < = 1 ;
bit = match_byte & 0x100 ;
prob_lit = prob + 0x100 + bit + mi ;
if ( rc_get_bit ( rc , prob_lit , & mi ) ) {
if ( ! bit )
break ;
} else {
if ( bit )
break ;
}
} while ( mi < 0x100 ) ;
}
while ( mi < 0x100 ) {
uint16_t * prob_lit = prob + mi ;
rc_get_bit ( rc , prob_lit , & mi ) ;
}
write_byte ( wr , mi ) ;
if ( cst - > state < 4 )
cst - > state = 0 ;
else if ( cst - > state < 10 )
cst - > state - = 3 ;
else
cst - > state - = 6 ;
}
static inline void INIT process_bit1 ( struct writer * wr , struct rc * rc ,
struct cstate * cst , uint16_t * p ,
int pos_state , uint16_t * prob ) {
int offset ;
uint16_t * prob_len ;
int num_bits ;
int len ;
rc_update_bit_1 ( rc , prob ) ;
prob = p + LZMA_IS_REP + cst - > state ;
if ( rc_is_bit_0 ( rc , prob ) ) {
rc_update_bit_0 ( rc , prob ) ;
cst - > rep3 = cst - > rep2 ;
cst - > rep2 = cst - > rep1 ;
cst - > rep1 = cst - > rep0 ;
cst - > state = cst - > state < LZMA_NUM_LIT_STATES ? 0 : 3 ;
prob = p + LZMA_LEN_CODER ;
} else {
rc_update_bit_1 ( rc , prob ) ;
prob = p + LZMA_IS_REP_G0 + cst - > state ;
if ( rc_is_bit_0 ( rc , prob ) ) {
rc_update_bit_0 ( rc , prob ) ;
prob = ( p + LZMA_IS_REP_0_LONG
+ ( cst - > state < <
LZMA_NUM_POS_BITS_MAX ) +
pos_state ) ;
if ( rc_is_bit_0 ( rc , prob ) ) {
rc_update_bit_0 ( rc , prob ) ;
cst - > state = cst - > state < LZMA_NUM_LIT_STATES ?
9 : 11 ;
copy_byte ( wr , cst - > rep0 ) ;
return ;
} else {
rc_update_bit_1 ( rc , prob ) ;
}
} else {
uint32_t distance ;
rc_update_bit_1 ( rc , prob ) ;
prob = p + LZMA_IS_REP_G1 + cst - > state ;
if ( rc_is_bit_0 ( rc , prob ) ) {
rc_update_bit_0 ( rc , prob ) ;
distance = cst - > rep1 ;
} else {
rc_update_bit_1 ( rc , prob ) ;
prob = p + LZMA_IS_REP_G2 + cst - > state ;
if ( rc_is_bit_0 ( rc , prob ) ) {
rc_update_bit_0 ( rc , prob ) ;
distance = cst - > rep2 ;
} else {
rc_update_bit_1 ( rc , prob ) ;
distance = cst - > rep3 ;
cst - > rep3 = cst - > rep2 ;
}
cst - > rep2 = cst - > rep1 ;
}
cst - > rep1 = cst - > rep0 ;
cst - > rep0 = distance ;
}
cst - > state = cst - > state < LZMA_NUM_LIT_STATES ? 8 : 11 ;
prob = p + LZMA_REP_LEN_CODER ;
}
prob_len = prob + LZMA_LEN_CHOICE ;
if ( rc_is_bit_0 ( rc , prob_len ) ) {
rc_update_bit_0 ( rc , prob_len ) ;
prob_len = ( prob + LZMA_LEN_LOW
+ ( pos_state < <
LZMA_LEN_NUM_LOW_BITS ) ) ;
offset = 0 ;
num_bits = LZMA_LEN_NUM_LOW_BITS ;
} else {
rc_update_bit_1 ( rc , prob_len ) ;
prob_len = prob + LZMA_LEN_CHOICE_2 ;
if ( rc_is_bit_0 ( rc , prob_len ) ) {
rc_update_bit_0 ( rc , prob_len ) ;
prob_len = ( prob + LZMA_LEN_MID
+ ( pos_state < <
LZMA_LEN_NUM_MID_BITS ) ) ;
offset = 1 < < LZMA_LEN_NUM_LOW_BITS ;
num_bits = LZMA_LEN_NUM_MID_BITS ;
} else {
rc_update_bit_1 ( rc , prob_len ) ;
prob_len = prob + LZMA_LEN_HIGH ;
offset = ( ( 1 < < LZMA_LEN_NUM_LOW_BITS )
+ ( 1 < < LZMA_LEN_NUM_MID_BITS ) ) ;
num_bits = LZMA_LEN_NUM_HIGH_BITS ;
}
}
rc_bit_tree_decode ( rc , prob_len , num_bits , & len ) ;
len + = offset ;
if ( cst - > state < 4 ) {
int pos_slot ;
cst - > state + = LZMA_NUM_LIT_STATES ;
prob =
p + LZMA_POS_SLOT +
( ( len <
LZMA_NUM_LEN_TO_POS_STATES ? len :
LZMA_NUM_LEN_TO_POS_STATES - 1 )
< < LZMA_NUM_POS_SLOT_BITS ) ;
rc_bit_tree_decode ( rc , prob ,
LZMA_NUM_POS_SLOT_BITS ,
& pos_slot ) ;
if ( pos_slot > = LZMA_START_POS_MODEL_INDEX ) {
int i , mi ;
num_bits = ( pos_slot > > 1 ) - 1 ;
cst - > rep0 = 2 | ( pos_slot & 1 ) ;
if ( pos_slot < LZMA_END_POS_MODEL_INDEX ) {
cst - > rep0 < < = num_bits ;
prob = p + LZMA_SPEC_POS +
cst - > rep0 - pos_slot - 1 ;
} else {
num_bits - = LZMA_NUM_ALIGN_BITS ;
while ( num_bits - - )
cst - > rep0 = ( cst - > rep0 < < 1 ) |
rc_direct_bit ( rc ) ;
prob = p + LZMA_ALIGN ;
cst - > rep0 < < = LZMA_NUM_ALIGN_BITS ;
num_bits = LZMA_NUM_ALIGN_BITS ;
}
i = 1 ;
mi = 1 ;
while ( num_bits - - ) {
if ( rc_get_bit ( rc , prob + mi , & mi ) )
cst - > rep0 | = i ;
i < < = 1 ;
}
} else
cst - > rep0 = pos_slot ;
if ( + + ( cst - > rep0 ) = = 0 )
return ;
}
len + = LZMA_MATCH_MIN_LEN ;
copy_bytes ( wr , cst - > rep0 , len ) ;
}
STATIC inline int INIT unlzma ( unsigned char * buf , int in_len ,
int ( * fill ) ( void * , unsigned int ) ,
int ( * flush ) ( void * , unsigned int ) ,
unsigned char * output ,
int * posp ,
void ( * error_fn ) ( char * x )
)
{
struct lzma_header header ;
int lc , pb , lp ;
uint32_t pos_state_mask ;
uint32_t literal_pos_mask ;
uint16_t * p ;
int num_probs ;
struct rc rc ;
int i , mi ;
struct writer wr ;
struct cstate cst ;
unsigned char * inbuf ;
int ret = - 1 ;
set_error_fn ( error_fn ) ;
if ( ! flush )
in_len - = 4 ; /* Uncompressed size hack active in pre-boot
environment */
if ( buf )
inbuf = buf ;
else
inbuf = malloc ( LZMA_IOBUF_SIZE ) ;
if ( ! inbuf ) {
error ( " Could not allocate input bufer " ) ;
goto exit_0 ;
}
cst . state = 0 ;
cst . rep0 = cst . rep1 = cst . rep2 = cst . rep3 = 1 ;
wr . header = & header ;
wr . flush = flush ;
wr . global_pos = 0 ;
wr . previous_byte = 0 ;
wr . buffer_pos = 0 ;
rc_init ( & rc , fill , inbuf , in_len ) ;
for ( i = 0 ; i < sizeof ( header ) ; i + + ) {
if ( rc . ptr > = rc . buffer_end )
rc_read ( & rc ) ;
( ( unsigned char * ) & header ) [ i ] = * rc . ptr + + ;
}
if ( header . pos > = ( 9 * 5 * 5 ) )
error ( " bad header " ) ;
mi = 0 ;
lc = header . pos ;
while ( lc > = 9 ) {
mi + + ;
lc - = 9 ;
}
pb = 0 ;
lp = mi ;
while ( lp > = 5 ) {
pb + + ;
lp - = 5 ;
}
pos_state_mask = ( 1 < < pb ) - 1 ;
literal_pos_mask = ( 1 < < lp ) - 1 ;
ENDIAN_CONVERT ( header . dict_size ) ;
ENDIAN_CONVERT ( header . dst_size ) ;
if ( header . dict_size = = 0 )
header . dict_size = 1 ;
if ( output )
wr . buffer = output ;
else {
wr . bufsize = MIN ( header . dst_size , header . dict_size ) ;
wr . buffer = large_malloc ( wr . bufsize ) ;
}
if ( wr . buffer = = NULL )
goto exit_1 ;
num_probs = LZMA_BASE_SIZE + ( LZMA_LIT_SIZE < < ( lc + lp ) ) ;
p = ( uint16_t * ) large_malloc ( num_probs * sizeof ( * p ) ) ;
if ( p = = 0 )
goto exit_2 ;
num_probs = LZMA_LITERAL + ( LZMA_LIT_SIZE < < ( lc + lp ) ) ;
for ( i = 0 ; i < num_probs ; i + + )
p [ i ] = ( 1 < < RC_MODEL_TOTAL_BITS ) > > 1 ;
rc_init_code ( & rc ) ;
while ( get_pos ( & wr ) < header . dst_size ) {
int pos_state = get_pos ( & wr ) & pos_state_mask ;
uint16_t * prob = p + LZMA_IS_MATCH +
( cst . state < < LZMA_NUM_POS_BITS_MAX ) + pos_state ;
if ( rc_is_bit_0 ( & rc , prob ) )
process_bit0 ( & wr , & rc , & cst , p , pos_state , prob ,
lc , literal_pos_mask ) ;
else {
process_bit1 ( & wr , & rc , & cst , p , pos_state , prob ) ;
if ( cst . rep0 = = 0 )
break ;
}
}
if ( posp )
* posp = rc . ptr - rc . buffer ;
if ( wr . flush )
wr . flush ( wr . buffer , wr . buffer_pos ) ;
ret = 0 ;
large_free ( p ) ;
exit_2 :
if ( ! output )
large_free ( wr . buffer ) ;
exit_1 :
if ( ! buf )
free ( inbuf ) ;
exit_0 :
return ret ;
}
# define decompress unlzma