2005-04-17 02:20:36 +04:00
/******************************************************************************
*
* ( C ) Copyright 1998 , 1999 SysKonnect ,
* a business unit of Schneider & Koch & Co . Datensysteme GmbH .
*
* See the file " skfddi.c " for further information .
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or
* ( at your option ) any later version .
*
* The information in this file is provided " AS IS " without warranty .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*
* FBI board dependent Driver for SMT and LLC
*/
# include "h/types.h"
# include "h/fddi.h"
# include "h/smc.h"
# include "h/supern_2.h"
# include "h/skfbiinc.h"
2006-12-20 00:09:08 +03:00
# include <linux/bitrev.h>
2005-04-17 02:20:36 +04:00
# ifndef lint
static const char ID_sccs [ ] = " @(#)drvfbi.c 1.63 99/02/11 (C) SK " ;
# endif
/*
* PCM active state
*/
# define PC8_ACTIVE 8
# define LED_Y_ON 0x11 /* Used for ring up/down indication */
# define LED_Y_OFF 0x10
# define MS2BCLK(x) ((x)*12500L)
/*
* valid configuration values are :
*/
# ifdef ISA
const int opt_ints [ ] = { 8 , 3 , 4 , 5 , 9 , 10 , 11 , 12 , 15 } ;
const int opt_iops [ ] = { 8 ,
0x100 , 0x120 , 0x180 , 0x1a0 , 0x220 , 0x240 , 0x320 , 0x340 } ;
const int opt_dmas [ ] = { 4 , 3 , 5 , 6 , 7 } ;
const int opt_eproms [ ] = { 15 , 0xc0 , 0xc2 , 0xc4 , 0xc6 , 0xc8 , 0xca , 0xcc , 0xce ,
0xd0 , 0xd2 , 0xd4 , 0xd6 , 0xd8 , 0xda , 0xdc } ;
# endif
# ifdef EISA
const int opt_ints [ ] = { 5 , 9 , 10 , 11 } ;
const int opt_dmas [ ] = { 0 , 5 , 6 , 7 } ;
const int opt_eproms [ ] = { 0xc0 , 0xc2 , 0xc4 , 0xc6 , 0xc8 , 0xca , 0xcc , 0xce ,
0xd0 , 0xd2 , 0xd4 , 0xd6 , 0xd8 , 0xda , 0xdc } ;
# endif
# ifdef MCA
int opt_ints [ ] = { 3 , 11 , 10 , 9 } ; /* FM1 */
int opt_eproms [ ] = { 0 , 0xc4 , 0xc8 , 0xcc , 0xd0 , 0xd4 , 0xd8 , 0xdc } ;
# endif /* MCA */
/*
* xPOS_ID : xxxx
* | \ /
* | \ /
* | - - - - - - - - - - - - - - - - - - - - - the patched POS_ID of the Adapter
* | xxxx = ( Vendor ID low byte ,
* | Vendor ID high byte ,
* | Device ID low byte ,
* | Device ID high byte )
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - the patched oem_id must be
* ' S ' for SK or ' I ' for IBM
* this is a short id for the driver .
*/
# ifndef MULT_OEM
# ifndef OEM_CONCEPT
# ifndef MCA
const u_char oem_id [ ] = " xPOS_ID:xxxx " ;
# else
const u_char oem_id [ ] = " xPOSID1:xxxx " ; /* FM1 card id. */
# endif
# else /* OEM_CONCEPT */
# ifndef MCA
const u_char oem_id [ ] = OEM_ID ;
# else
const u_char oem_id [ ] = OEM_ID1 ; /* FM1 card id. */
# endif /* MCA */
# endif /* OEM_CONCEPT */
# define ID_BYTE0 8
# define OEMID(smc,i) oem_id[ID_BYTE0 + i]
# else /* MULT_OEM */
const struct s_oem_ids oem_ids [ ] = {
# include "oemids.h"
{ 0 }
} ;
# define OEMID(smc,i) smc->hw.oem_id->oi_id[i]
# endif /* MULT_OEM */
/* Prototypes of external functions */
# ifdef AIX
extern int AIX_vpdReadByte ( ) ;
# endif
2005-06-21 12:47:06 +04:00
/* Prototype of a local function. */
static void smt_stop_watchdog ( struct s_smc * smc ) ;
2005-04-17 02:20:36 +04:00
# ifdef MCA
static int read_card_id ( ) ;
static void DisableSlotAccess ( ) ;
static void EnableSlotAccess ( ) ;
# ifdef AIX
extern int attach_POS_addr ( ) ;
extern int detach_POS_addr ( ) ;
extern u_char read_POS ( ) ;
extern void write_POS ( ) ;
extern int AIX_vpdReadByte ( ) ;
# else
# define read_POS(smc,a1,a2) ((u_char) inp(a1))
# define write_POS(smc,a1,a2,a3) outp((a1),(a3))
# endif
# endif /* MCA */
/*
* FDDI card reset
*/
static void card_start ( struct s_smc * smc )
{
int i ;
# ifdef PCI
u_char rev_id ;
u_short word ;
# endif
smt_stop_watchdog ( smc ) ;
# ifdef ISA
outpw ( CSR_A , 0 ) ; /* reset for all chips */
for ( i = 10 ; i ; i - - ) /* delay for PLC's */
( void ) inpw ( ISR_A ) ;
OUT_82c54_TIMER ( 3 , COUNT ( 2 ) | RW_OP ( 3 ) | TMODE ( 2 ) ) ;
/* counter 2, mode 2 */
OUT_82c54_TIMER ( 2 , 97 ) ; /* LSB */
OUT_82c54_TIMER ( 2 , 0 ) ; /* MSB ( 15.6 us ) */
outpw ( CSR_A , CS_CRESET ) ;
# endif
# ifdef EISA
outpw ( CSR_A , 0 ) ; /* reset for all chips */
for ( i = 10 ; i ; i - - ) /* delay for PLC's */
( void ) inpw ( ISR_A ) ;
outpw ( CSR_A , CS_CRESET ) ;
smc - > hw . led = ( 2 < < 6 ) ;
outpw ( CSR_A , CS_CRESET | smc - > hw . led ) ;
# endif
# ifdef MCA
outp ( ADDR ( CARD_DIS ) , 0 ) ; /* reset for all chips */
for ( i = 10 ; i ; i - - ) /* delay for PLC's */
( void ) inpw ( ISR_A ) ;
outp ( ADDR ( CARD_EN ) , 0 ) ;
/* first I/O after reset must not be a access to FORMAC or PLC */
/*
* bus timeout ( MCA )
*/
OUT_82c54_TIMER ( 3 , COUNT ( 2 ) | RW_OP ( 3 ) | TMODE ( 3 ) ) ;
/* counter 2, mode 3 */
OUT_82c54_TIMER ( 2 , ( 2 * 24 ) ) ; /* 3.9 us * 2 square wave */
OUT_82c54_TIMER ( 2 , 0 ) ; /* MSB */
/* POS 102 indicated an activ Check Line or Buss Error monitoring */
if ( inpw ( CSA_A ) & ( POS_EN_CHKINT | POS_EN_BUS_ERR ) ) {
outp ( ADDR ( IRQ_CHCK_EN ) , 0 ) ;
}
if ( ! ( ( i = inpw ( CSR_A ) ) & CS_SAS ) ) {
if ( ! ( i & CS_BYSTAT ) ) {
outp ( ADDR ( BYPASS ( STAT_INS ) ) , 0 ) ; /* insert station */
}
}
outpw ( LEDR_A , LED_1 ) ; /* yellow */
# endif /* MCA */
# ifdef PCI
/*
* make sure no transfer activity is pending
*/
outpw ( FM_A ( FM_MDREG1 ) , FM_MINIT ) ;
outp ( ADDR ( B0_CTRL ) , CTRL_HPI_SET ) ;
hwt_wait_time ( smc , hwt_quick_read ( smc ) , MS2BCLK ( 10 ) ) ;
/*
* now reset everything
*/
outp ( ADDR ( B0_CTRL ) , CTRL_RST_SET ) ; /* reset for all chips */
i = ( int ) inp ( ADDR ( B0_CTRL ) ) ; /* do dummy read */
SK_UNUSED ( i ) ; /* Make LINT happy. */
outp ( ADDR ( B0_CTRL ) , CTRL_RST_CLR ) ;
/*
* Reset all bits in the PCI STATUS register
*/
outp ( ADDR ( B0_TST_CTRL ) , TST_CFG_WRITE_ON ) ; /* enable for writes */
word = inpw ( PCI_C ( PCI_STATUS ) ) ;
outpw ( PCI_C ( PCI_STATUS ) , word | PCI_ERRBITS ) ;
outp ( ADDR ( B0_TST_CTRL ) , TST_CFG_WRITE_OFF ) ; /* disable writes */
/*
* Release the reset of all the State machines
* Release Master_Reset
* Release HPI_SM_Reset
*/
outp ( ADDR ( B0_CTRL ) , CTRL_MRST_CLR | CTRL_HPI_CLR ) ;
/*
* determine the adapter type
* Note : Do it here , because some drivers may call card_start ( ) once
* at very first before any other initialization functions is
* executed .
*/
rev_id = inp ( PCI_C ( PCI_REV_ID ) ) ;
if ( ( rev_id & 0xf0 ) = = SK_ML_ID_1 | | ( rev_id & 0xf0 ) = = SK_ML_ID_2 ) {
smc - > hw . hw_is_64bit = TRUE ;
} else {
smc - > hw . hw_is_64bit = FALSE ;
}
/*
* Watermark initialization
*/
if ( ! smc - > hw . hw_is_64bit ) {
outpd ( ADDR ( B4_R1_F ) , RX_WATERMARK ) ;
outpd ( ADDR ( B5_XA_F ) , TX_WATERMARK ) ;
outpd ( ADDR ( B5_XS_F ) , TX_WATERMARK ) ;
}
outp ( ADDR ( B0_CTRL ) , CTRL_RST_CLR ) ; /* clear the reset chips */
outp ( ADDR ( B0_LED ) , LED_GA_OFF | LED_MY_ON | LED_GB_OFF ) ; /* ye LED on */
/* init the timer value for the watch dog 2,5 minutes */
outpd ( ADDR ( B2_WDOG_INI ) , 0x6FC23AC0 ) ;
/* initialize the ISR mask */
smc - > hw . is_imask = ISR_MASK ;
smc - > hw . hw_state = STOPPED ;
# endif
GET_PAGE ( 0 ) ; /* necessary for BOOT */
}
void card_stop ( struct s_smc * smc )
{
smt_stop_watchdog ( smc ) ;
smc - > hw . mac_ring_is_up = 0 ; /* ring down */
# ifdef ISA
outpw ( CSR_A , 0 ) ; /* reset for all chips */
# endif
# ifdef EISA
outpw ( CSR_A , 0 ) ; /* reset for all chips */
# endif
# ifdef MCA
outp ( ADDR ( CARD_DIS ) , 0 ) ; /* reset for all chips */
# endif
# ifdef PCI
/*
* make sure no transfer activity is pending
*/
outpw ( FM_A ( FM_MDREG1 ) , FM_MINIT ) ;
outp ( ADDR ( B0_CTRL ) , CTRL_HPI_SET ) ;
hwt_wait_time ( smc , hwt_quick_read ( smc ) , MS2BCLK ( 10 ) ) ;
/*
* now reset everything
*/
outp ( ADDR ( B0_CTRL ) , CTRL_RST_SET ) ; /* reset for all chips */
outp ( ADDR ( B0_CTRL ) , CTRL_RST_CLR ) ; /* reset for all chips */
outp ( ADDR ( B0_LED ) , LED_GA_OFF | LED_MY_OFF | LED_GB_OFF ) ; /* all LEDs off */
smc - > hw . hw_state = STOPPED ;
# endif
}
/*--------------------------- ISR handling ----------------------------------*/
void mac1_irq ( struct s_smc * smc , u_short stu , u_short stl )
{
int restart_tx = 0 ;
again :
# ifndef PCI
# ifndef ISA
/*
* FORMAC + bug modified the queue pointer if many read / write accesses happens ! ?
*/
if ( stl & ( FM_SPCEPDS | /* parit/coding err. syn.q.*/
FM_SPCEPDA0 | /* parit/coding err. a.q.0 */
FM_SPCEPDA1 | /* parit/coding err. a.q.1 */
FM_SPCEPDA2 ) ) { /* parit/coding err. a.q.2 */
SMT_PANIC ( smc , SMT_E0132 , SMT_E0132_MSG ) ;
}
if ( stl & ( FM_STBURS | /* tx buffer underrun syn.q.*/
FM_STBURA0 | /* tx buffer underrun a.q.0 */
FM_STBURA1 | /* tx buffer underrun a.q.1 */
FM_STBURA2 ) ) { /* tx buffer underrun a.q.2 */
SMT_PANIC ( smc , SMT_E0133 , SMT_E0133_MSG ) ;
}
# endif
if ( ( stu & ( FM_SXMTABT | /* transmit abort */
# ifdef SYNC
FM_STXABRS | /* syn. tx abort */
# endif /* SYNC */
FM_STXABRA0 ) ) | | /* asyn. tx abort */
( stl & ( FM_SQLCKS | /* lock for syn. q. */
FM_SQLCKA0 ) ) ) { /* lock for asyn. q. */
formac_tx_restart ( smc ) ; /* init tx */
restart_tx = 1 ;
stu = inpw ( FM_A ( FM_ST1U ) ) ;
stl = inpw ( FM_A ( FM_ST1L ) ) ;
stu & = ~ ( FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS ) ;
if ( stu | | stl )
goto again ;
}
# ifndef SYNC
if ( stu & ( FM_STECFRMA0 | /* end of chain asyn tx */
FM_STEFRMA0 ) ) { /* end of frame asyn tx */
/* free tx_queue */
smc - > hw . n_a_send = 0 ;
if ( + + smc - > hw . fp . tx_free < smc - > hw . fp . tx_max ) {
start_next_send ( smc ) ;
}
restart_tx = 1 ;
}
# else /* SYNC */
if ( stu & ( FM_STEFRMA0 | /* end of asyn tx */
FM_STEFRMS ) ) { /* end of sync tx */
restart_tx = 1 ;
}
# endif /* SYNC */
if ( restart_tx )
llc_restart_tx ( smc ) ;
}
# else /* PCI */
/*
* parity error : note encoding error is not possible in tag mode
*/
if ( stl & ( FM_SPCEPDS | /* parity err. syn.q.*/
FM_SPCEPDA0 | /* parity err. a.q.0 */
FM_SPCEPDA1 ) ) { /* parity err. a.q.1 */
SMT_PANIC ( smc , SMT_E0134 , SMT_E0134_MSG ) ;
}
/*
* buffer underrun : can only occur if a tx threshold is specified
*/
if ( stl & ( FM_STBURS | /* tx buffer underrun syn.q.*/
FM_STBURA0 | /* tx buffer underrun a.q.0 */
FM_STBURA1 ) ) { /* tx buffer underrun a.q.2 */
SMT_PANIC ( smc , SMT_E0133 , SMT_E0133_MSG ) ;
}
if ( ( stu & ( FM_SXMTABT | /* transmit abort */
FM_STXABRS | /* syn. tx abort */
FM_STXABRA0 ) ) | | /* asyn. tx abort */
( stl & ( FM_SQLCKS | /* lock for syn. q. */
FM_SQLCKA0 ) ) ) { /* lock for asyn. q. */
formac_tx_restart ( smc ) ; /* init tx */
restart_tx = 1 ;
stu = inpw ( FM_A ( FM_ST1U ) ) ;
stl = inpw ( FM_A ( FM_ST1L ) ) ;
stu & = ~ ( FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS ) ;
if ( stu | | stl )
goto again ;
}
if ( stu & ( FM_STEFRMA0 | /* end of asyn tx */
FM_STEFRMS ) ) { /* end of sync tx */
restart_tx = 1 ;
}
if ( restart_tx )
llc_restart_tx ( smc ) ;
}
# endif /* PCI */
/*
* interrupt source = plc1
* this function is called in nwfbisr . asm
*/
void plc1_irq ( struct s_smc * smc )
{
u_short st = inpw ( PLC ( PB , PL_INTR_EVENT ) ) ;
# if (defined(ISA) || defined(EISA))
/* reset PLC Int. bits */
outpw ( PLC1_I , inpw ( PLC1_I ) ) ;
# endif
plc_irq ( smc , PB , st ) ;
}
/*
* interrupt source = plc2
* this function is called in nwfbisr . asm
*/
void plc2_irq ( struct s_smc * smc )
{
u_short st = inpw ( PLC ( PA , PL_INTR_EVENT ) ) ;
# if (defined(ISA) || defined(EISA))
/* reset PLC Int. bits */
outpw ( PLC2_I , inpw ( PLC2_I ) ) ;
# endif
plc_irq ( smc , PA , st ) ;
}
/*
* interrupt source = timer
*/
void timer_irq ( struct s_smc * smc )
{
hwt_restart ( smc ) ;
smc - > hw . t_stop = smc - > hw . t_start ;
smt_timer_done ( smc ) ;
}
/*
* return S - port ( PA or PB )
*/
int pcm_get_s_port ( struct s_smc * smc )
{
SK_UNUSED ( smc ) ;
return ( PS ) ;
}
/*
* Station Label = " FDDI-XYZ " where
*
* X = connector type
* Y = PMD type
* Z = port type
*/
# define STATION_LABEL_CONNECTOR_OFFSET 5
# define STATION_LABEL_PMD_OFFSET 6
# define STATION_LABEL_PORT_OFFSET 7
void read_address ( struct s_smc * smc , u_char * mac_addr )
{
char ConnectorType ;
char PmdType ;
int i ;
# if (defined(ISA) || defined(MCA))
for ( i = 0 ; i < 4 ; i + + ) { /* read mac address from board */
smc - > hw . fddi_phys_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( inpw ( PR_A ( i + SA_MAC ) ) ) ;
2005-04-17 02:20:36 +04:00
}
for ( i = 4 ; i < 6 ; i + + ) {
smc - > hw . fddi_phys_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( inpw ( PR_A ( i + SA_MAC + PRA_OFF ) ) ) ;
2005-04-17 02:20:36 +04:00
}
# endif
# ifdef EISA
/*
* Note : We get trouble on an Alpha machine if we make a inpw ( )
* instead of inp ( )
*/
for ( i = 0 ; i < 4 ; i + + ) { /* read mac address from board */
smc - > hw . fddi_phys_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( inp ( PR_A ( i + SA_MAC ) ) ) ;
2005-04-17 02:20:36 +04:00
}
for ( i = 4 ; i < 6 ; i + + ) {
smc - > hw . fddi_phys_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( inp ( PR_A ( i + SA_MAC + PRA_OFF ) ) ) ;
2005-04-17 02:20:36 +04:00
}
# endif
# ifdef PCI
for ( i = 0 ; i < 6 ; i + + ) { /* read mac address from board */
smc - > hw . fddi_phys_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( inp ( ADDR ( B2_MAC_0 + i ) ) ) ;
2005-04-17 02:20:36 +04:00
}
# endif
# ifndef PCI
ConnectorType = inpw ( PR_A ( SA_PMD_TYPE ) ) & 0xff ;
PmdType = inpw ( PR_A ( SA_PMD_TYPE + 1 ) ) & 0xff ;
# else
ConnectorType = inp ( ADDR ( B2_CONN_TYP ) ) ;
PmdType = inp ( ADDR ( B2_PMD_TYP ) ) ;
# endif
smc - > y [ PA ] . pmd_type [ PMD_SK_CONN ] =
smc - > y [ PB ] . pmd_type [ PMD_SK_CONN ] = ConnectorType ;
smc - > y [ PA ] . pmd_type [ PMD_SK_PMD ] =
smc - > y [ PB ] . pmd_type [ PMD_SK_PMD ] = PmdType ;
if ( mac_addr ) {
for ( i = 0 ; i < 6 ; i + + ) {
smc - > hw . fddi_canon_addr . a [ i ] = mac_addr [ i ] ;
2006-12-20 00:09:08 +03:00
smc - > hw . fddi_home_addr . a [ i ] = bitrev8 ( mac_addr [ i ] ) ;
2005-04-17 02:20:36 +04:00
}
return ;
}
smc - > hw . fddi_home_addr = smc - > hw . fddi_phys_addr ;
for ( i = 0 ; i < 6 ; i + + ) {
smc - > hw . fddi_canon_addr . a [ i ] =
2006-12-20 00:09:08 +03:00
bitrev8 ( smc - > hw . fddi_phys_addr . a [ i ] ) ;
2005-04-17 02:20:36 +04:00
}
}
/*
* FDDI card soft reset
*/
void init_board ( struct s_smc * smc , u_char * mac_addr )
{
card_start ( smc ) ;
read_address ( smc , mac_addr ) ;
# ifndef PCI
if ( inpw ( CSR_A ) & CS_SAS )
# else
if ( ! ( inp ( ADDR ( B0_DAS ) ) & DAS_AVAIL ) )
# endif
smc - > s . sas = SMT_SAS ; /* Single att. station */
else
smc - > s . sas = SMT_DAS ; /* Dual att. station */
# ifndef PCI
if ( inpw ( CSR_A ) & CS_BYSTAT )
# else
if ( ! ( inp ( ADDR ( B0_DAS ) ) & DAS_BYP_ST ) )
# endif
smc - > mib . fddiSMTBypassPresent = 0 ;
/* without opt. bypass */
else
smc - > mib . fddiSMTBypassPresent = 1 ;
/* with opt. bypass */
}
/*
* insert or deinsert optical bypass ( called by ECM )
*/
void sm_pm_bypass_req ( struct s_smc * smc , int mode )
{
# if (defined(ISA) || defined(EISA))
int csra_v ;
# endif
DB_ECMN ( 1 , " ECM : sm_pm_bypass_req(%s) \n " , ( mode = = BP_INSERT ) ?
" BP_INSERT " : " BP_DEINSERT " , 0 ) ;
if ( smc - > s . sas ! = SMT_DAS )
return ;
# if (defined(ISA) || defined(EISA))
csra_v = inpw ( CSR_A ) & ~ CS_BYPASS ;
# ifdef EISA
csra_v | = smc - > hw . led ;
# endif
switch ( mode ) {
case BP_INSERT :
outpw ( CSR_A , csra_v | CS_BYPASS ) ;
break ;
case BP_DEINSERT :
outpw ( CSR_A , csra_v ) ;
break ;
}
# endif /* ISA / EISA */
# ifdef MCA
switch ( mode ) {
case BP_INSERT :
outp ( ADDR ( BYPASS ( STAT_INS ) ) , 0 ) ; /* insert station */
break ;
case BP_DEINSERT :
outp ( ADDR ( BYPASS ( STAT_BYP ) ) , 0 ) ; /* bypass station */
break ;
}
# endif
# ifdef PCI
switch ( mode ) {
case BP_INSERT :
outp ( ADDR ( B0_DAS ) , DAS_BYP_INS ) ; /* insert station */
break ;
case BP_DEINSERT :
outp ( ADDR ( B0_DAS ) , DAS_BYP_RMV ) ; /* bypass station */
break ;
}
# endif
}
/*
* check if bypass connected
*/
int sm_pm_bypass_present ( struct s_smc * smc )
{
# ifndef PCI
return ( ( inpw ( CSR_A ) & CS_BYSTAT ) ? FALSE : TRUE ) ;
# else
return ( ( inp ( ADDR ( B0_DAS ) ) & DAS_BYP_ST ) ? TRUE : FALSE ) ;
# endif
}
void plc_clear_irq ( struct s_smc * smc , int p )
{
SK_UNUSED ( p ) ;
# if (defined(ISA) || defined(EISA))
switch ( p ) {
case PA :
/* reset PLC Int. bits */
outpw ( PLC2_I , inpw ( PLC2_I ) ) ;
break ;
case PB :
/* reset PLC Int. bits */
outpw ( PLC1_I , inpw ( PLC1_I ) ) ;
break ;
}
# else
SK_UNUSED ( smc ) ;
# endif
}
/*
* led_indication called by rmt_indication ( ) and
* pcm_state_change ( )
*
* Input :
* smc : SMT context
* led_event :
* 0 Only switch green LEDs according to their respective PCM state
* LED_Y_OFF just switch yellow LED off
* LED_Y_ON just switch yello LED on
*/
2005-06-21 12:47:06 +04:00
static void led_indication ( struct s_smc * smc , int led_event )
2005-04-17 02:20:36 +04:00
{
/* use smc->hw.mac_ring_is_up == TRUE
* as indication for Ring Operational
*/
u_short led_state ;
struct s_phy * phy ;
struct fddi_mib_p * mib_a ;
struct fddi_mib_p * mib_b ;
phy = & smc - > y [ PA ] ;
mib_a = phy - > mib ;
phy = & smc - > y [ PB ] ;
mib_b = phy - > mib ;
# ifdef EISA
/* Ring up = yellow led OFF*/
if ( led_event = = LED_Y_ON ) {
smc - > hw . led | = CS_LED_1 ;
}
else if ( led_event = = LED_Y_OFF ) {
smc - > hw . led & = ~ CS_LED_1 ;
}
else {
/* Link at Port A or B = green led ON */
if ( mib_a - > fddiPORTPCMState = = PC8_ACTIVE | |
mib_b - > fddiPORTPCMState = = PC8_ACTIVE ) {
smc - > hw . led | = CS_LED_0 ;
}
else {
smc - > hw . led & = ~ CS_LED_0 ;
}
}
# endif
# ifdef MCA
led_state = inpw ( LEDR_A ) ;
/* Ring up = yellow led OFF*/
if ( led_event = = LED_Y_ON ) {
led_state | = LED_1 ;
}
else if ( led_event = = LED_Y_OFF ) {
led_state & = ~ LED_1 ;
}
else {
led_state & = ~ ( LED_2 | LED_0 ) ;
/* Link at Port A = green led A ON */
if ( mib_a - > fddiPORTPCMState = = PC8_ACTIVE ) {
led_state | = LED_2 ;
}
/* Link at Port B/S = green led B ON */
if ( mib_b - > fddiPORTPCMState = = PC8_ACTIVE ) {
led_state | = LED_0 ;
}
}
outpw ( LEDR_A , led_state ) ;
# endif /* MCA */
# ifdef PCI
led_state = 0 ;
/* Ring up = yellow led OFF*/
if ( led_event = = LED_Y_ON ) {
led_state | = LED_MY_ON ;
}
else if ( led_event = = LED_Y_OFF ) {
led_state | = LED_MY_OFF ;
}
else { /* PCM state changed */
/* Link at Port A/S = green led A ON */
if ( mib_a - > fddiPORTPCMState = = PC8_ACTIVE ) {
led_state | = LED_GA_ON ;
}
else {
led_state | = LED_GA_OFF ;
}
/* Link at Port B = green led B ON */
if ( mib_b - > fddiPORTPCMState = = PC8_ACTIVE ) {
led_state | = LED_GB_ON ;
}
else {
led_state | = LED_GB_OFF ;
}
}
outp ( ADDR ( B0_LED ) , led_state ) ;
# endif /* PCI */
}
void pcm_state_change ( struct s_smc * smc , int plc , int p_state )
{
/*
* the current implementation of pcm_state_change ( ) in the driver
* parts must be renamed to drv_pcm_state_change ( ) which will be called
* now after led_indication .
*/
DRV_PCM_STATE_CHANGE ( smc , plc , p_state ) ;
led_indication ( smc , 0 ) ;
}
void rmt_indication ( struct s_smc * smc , int i )
{
/* Call a driver special function if defined */
DRV_RMT_INDICATION ( smc , i ) ;
led_indication ( smc , i ? LED_Y_OFF : LED_Y_ON ) ;
}
/*
* llc_recover_tx called by init_tx ( fplus . c )
*/
void llc_recover_tx ( struct s_smc * smc )
{
# ifdef LOAD_GEN
extern int load_gen_flag ;
load_gen_flag = 0 ;
# endif
# ifndef SYNC
smc - > hw . n_a_send = 0 ;
# else
SK_UNUSED ( smc ) ;
# endif
}
# ifdef MULT_OEM
static int is_equal_num ( char comp1 [ ] , char comp2 [ ] , int num )
{
int i ;
for ( i = 0 ; i < num ; i + + ) {
if ( comp1 [ i ] ! = comp2 [ i ] )
return ( 0 ) ;
}
return ( 1 ) ;
} /* is_equal_num */
/*
* set the OEM ID defaults , and test the contents of the OEM data base
* The default OEM is the first ACTIVE entry in the OEM data base
*
* returns : 0 success
* 1 error in data base
* 2 data base empty
* 3 no active entry
*/
int set_oi_id_def ( struct s_smc * smc )
{
int sel_id ;
int i ;
int act_entries ;
i = 0 ;
sel_id = - 1 ;
act_entries = FALSE ;
smc - > hw . oem_id = 0 ;
smc - > hw . oem_min_status = OI_STAT_ACTIVE ;
/* check OEM data base */
while ( oem_ids [ i ] . oi_status ) {
switch ( oem_ids [ i ] . oi_status ) {
case OI_STAT_ACTIVE :
act_entries = TRUE ; /* we have active IDs */
if ( sel_id = = - 1 )
sel_id = i ; /* save the first active ID */
case OI_STAT_VALID :
case OI_STAT_PRESENT :
i + + ;
break ; /* entry ok */
default :
return ( 1 ) ; /* invalid oi_status */
}
}
if ( i = = 0 )
return ( 2 ) ;
if ( ! act_entries )
return ( 3 ) ;
/* ok, we have a valid OEM data base with an active entry */
smc - > hw . oem_id = ( struct s_oem_ids * ) & oem_ids [ sel_id ] ;
return ( 0 ) ;
}
# endif /* MULT_OEM */
# ifdef MCA
/************************
*
* BEGIN_MANUAL_ENTRY ( )
*
* exist_board
*
* Check if an MCA board is present in the specified slot .
*
* int exist_board (
* struct s_smc * smc ,
* int slot ) ;
* In
* smc - A pointer to the SMT Context struct .
*
* slot - The number of the slot to inspect .
* Out
* 0 = No adapter present .
* 1 = Found FM1 adapter .
*
* Pseudo
* Read MCA ID
* for all valid OEM_IDs
* compare with ID read
* if equal , return 1
* return ( 0
*
* Note
* The smc pointer must be valid now .
*
* END_MANUAL_ENTRY ( )
*
* * * * * * * * * * * * * * * * * * * * * * * */
# define LONG_CARD_ID(lo, hi) ((((hi) & 0xff) << 8) | ((lo) & 0xff))
int exist_board ( struct s_smc * smc , int slot )
{
# ifdef MULT_OEM
SK_LOC_DECL ( u_char , id [ 2 ] ) ;
int idi ;
# endif /* MULT_OEM */
/* No longer valid. */
if ( smc = = NULL )
return ( 0 ) ;
# ifndef MULT_OEM
if ( read_card_id ( smc , slot )
= = LONG_CARD_ID ( OEMID ( smc , 0 ) , OEMID ( smc , 1 ) ) )
return ( 1 ) ; /* Found FM adapter. */
# else /* MULT_OEM */
idi = read_card_id ( smc , slot ) ;
id [ 0 ] = idi & 0xff ;
id [ 1 ] = idi > > 8 ;
smc - > hw . oem_id = ( struct s_oem_ids * ) & oem_ids [ 0 ] ;
for ( ; smc - > hw . oem_id - > oi_status ! = OI_STAT_LAST ; smc - > hw . oem_id + + ) {
if ( smc - > hw . oem_id - > oi_status < smc - > hw . oem_min_status )
continue ;
if ( is_equal_num ( & id [ 0 ] , & OEMID ( smc , 0 ) , 2 ) )
return ( 1 ) ;
}
# endif /* MULT_OEM */
return ( 0 ) ; /* No adapter found. */
}
/************************
*
* read_card_id
*
* Read the MCA card id from the specified slot .
* In
* smc - A pointer to the SMT Context struct .
* CAVEAT : This pointer may be NULL and * must not * be used within this
* function . It ' s only purpose is for drivers that need some information
* for the inp ( ) and outp ( ) macros .
*
* slot - The number of the slot for which the card id is returned .
* Out
* Returns the card id read from the specified slot . If an illegal slot
* number is specified , the function returns zero .
*
* * * * * * * * * * * * * * * * * * * * * * * */
static int read_card_id ( struct s_smc * smc , int slot )
/* struct s_smc *smc ; Do not use. */
{
int card_id ;
SK_UNUSED ( smc ) ; /* Make LINT happy. */
if ( ( slot < 1 ) | | ( slot > 15 ) ) /* max 16 slots, 0 = motherboard */
return ( 0 ) ; /* Illegal slot number specified. */
EnableSlotAccess ( smc , slot ) ;
card_id = ( ( read_POS ( smc , POS_ID_HIGH , slot - 1 ) & 0xff ) < < 8 ) |
( read_POS ( smc , POS_ID_LOW , slot - 1 ) & 0xff ) ;
DisableSlotAccess ( smc ) ;
return ( card_id ) ;
}
/************************
*
* BEGIN_MANUAL_ENTRY ( )
*
* get_board_para
*
* Get adapter configuration information . Fill all board specific
* parameters within the ' smc ' structure .
*
* int get_board_para (
* struct s_smc * smc ,
* int slot ) ;
* In
* smc - A pointer to the SMT Context struct , to which this function will
* write some adapter configuration data .
*
* slot - The number of the slot , in which the adapter is installed .
* Out
* 0 = No adapter present .
* 1 = Ok .
* 2 = Adapter present , but card enable bit not set .
*
* END_MANUAL_ENTRY ( )
*
* * * * * * * * * * * * * * * * * * * * * * * */
int get_board_para ( struct s_smc * smc , int slot )
{
int val ;
int i ;
/* Check if adapter present & get type of adapter. */
switch ( exist_board ( smc , slot ) ) {
case 0 : /* Adapter not present. */
return ( 0 ) ;
case 1 : /* FM Rev. 1 */
smc - > hw . rev = FM1_REV ;
smc - > hw . VFullRead = 0x0a ;
smc - > hw . VFullWrite = 0x05 ;
smc - > hw . DmaWriteExtraBytes = 8 ; /* 2 extra words. */
break ;
}
smc - > hw . slot = slot ;
EnableSlotAccess ( smc , slot ) ;
if ( ! ( read_POS ( smc , POS_102 , slot - 1 ) & POS_CARD_EN ) ) {
DisableSlotAccess ( smc ) ;
return ( 2 ) ; /* Card enable bit not set. */
}
val = read_POS ( smc , POS_104 , slot - 1 ) ; /* I/O, IRQ */
# ifndef MEM_MAPPED_IO /* is defined by the operating system */
i = val & POS_IOSEL ; /* I/O base addr. (0x0200 .. 0xfe00) */
smc - > hw . iop = ( i + 1 ) * 0x0400 - 0x200 ;
# endif
i = ( ( val & POS_IRQSEL ) > > 6 ) & 0x03 ; /* IRQ <0, 1> */
smc - > hw . irq = opt_ints [ i ] ;
/* FPROM base addr. */
i = ( ( read_POS ( smc , POS_103 , slot - 1 ) & POS_MSEL ) > > 4 ) & 0x07 ;
smc - > hw . eprom = opt_eproms [ i ] ;
DisableSlotAccess ( smc ) ;
/* before this, the smc->hw.iop must be set !!! */
smc - > hw . slot_32 = inpw ( CSF_A ) & SLOT_32 ;
return ( 1 ) ;
}
/* Enable access to specified MCA slot. */
static void EnableSlotAccess ( struct s_smc * smc , int slot )
{
SK_UNUSED ( slot ) ;
# ifndef AIX
SK_UNUSED ( smc ) ;
/* System mode. */
outp ( POS_SYS_SETUP , POS_SYSTEM ) ;
/* Select slot. */
outp ( POS_CHANNEL_POS , POS_CHANNEL_BIT | ( slot - 1 ) ) ;
# else
attach_POS_addr ( smc ) ;
# endif
}
/* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */
static void DisableSlotAccess ( struct s_smc * smc )
{
# ifndef AIX
SK_UNUSED ( smc ) ;
outp ( POS_CHANNEL_POS , 0 ) ;
# else
detach_POS_addr ( smc ) ;
# endif
}
# endif /* MCA */
# ifdef EISA
# ifndef MEM_MAPPED_IO
# define SADDR(slot) (((slot)<<12)&0xf000)
# else /* MEM_MAPPED_IO */
# define SADDR(slot) (smc->hw.iop)
# endif /* MEM_MAPPED_IO */
/************************
*
* BEGIN_MANUAL_ENTRY ( )
*
* exist_board
*
* Check if an EISA board is present in the specified slot .
*
* int exist_board (
* struct s_smc * smc ,
* int slot ) ;
* In
* smc - A pointer to the SMT Context struct .
*
* slot - The number of the slot to inspect .
* Out
* 0 = No adapter present .
* 1 = Found adapter .
*
* Pseudo
* Read EISA ID
* for all valid OEM_IDs
* compare with ID read
* if equal , return 1
* return ( 0
*
* Note
* The smc pointer must be valid now .
*
* * * * * * * * * * * * * * * * * * * * * * * */
int exist_board ( struct s_smc * smc , int slot )
{
int i ;
# ifdef MULT_OEM
SK_LOC_DECL ( u_char , id [ 4 ] ) ;
# endif /* MULT_OEM */
/* No longer valid. */
if ( smc = = NULL )
return ( 0 ) ;
SK_UNUSED ( slot ) ;
# ifndef MULT_OEM
for ( i = 0 ; i < 4 ; i + + ) {
if ( inp ( SADDR ( slot ) + PRA ( i ) ) ! = OEMID ( smc , i ) )
return ( 0 ) ;
}
return ( 1 ) ;
# else /* MULT_OEM */
for ( i = 0 ; i < 4 ; i + + )
id [ i ] = inp ( SADDR ( slot ) + PRA ( i ) ) ;
smc - > hw . oem_id = ( struct s_oem_ids * ) & oem_ids [ 0 ] ;
for ( ; smc - > hw . oem_id - > oi_status ! = OI_STAT_LAST ; smc - > hw . oem_id + + ) {
if ( smc - > hw . oem_id - > oi_status < smc - > hw . oem_min_status )
continue ;
if ( is_equal_num ( & id [ 0 ] , & OEMID ( smc , 0 ) , 4 ) )
return ( 1 ) ;
}
return ( 0 ) ; /* No adapter found. */
# endif /* MULT_OEM */
}
int get_board_para ( struct s_smc * smc , int slot )
{
int i ;
if ( ! exist_board ( smc , slot ) )
return ( 0 ) ;
smc - > hw . slot = slot ;
# ifndef MEM_MAPPED_IO /* if defined by the operating system */
smc - > hw . iop = SADDR ( slot ) ;
# endif
if ( ! ( inp ( C0_A ( 0 ) ) & CFG_CARD_EN ) ) {
return ( 2 ) ; /* CFG_CARD_EN bit not set! */
}
smc - > hw . irq = opt_ints [ ( inp ( C1_A ( 0 ) ) & CFG_IRQ_SEL ) ] ;
smc - > hw . dma = opt_dmas [ ( ( inp ( C1_A ( 0 ) ) & CFG_DRQ_SEL ) > > 3 ) ] ;
if ( ( i = inp ( C2_A ( 0 ) ) & CFG_EPROM_SEL ) ! = 0x0f )
smc - > hw . eprom = opt_eproms [ i ] ;
else
smc - > hw . eprom = 0 ;
smc - > hw . DmaWriteExtraBytes = 8 ;
return ( 1 ) ;
}
# endif /* EISA */
# ifdef ISA
# ifndef MULT_OEM
const u_char sklogo [ 6 ] = SKLOGO_STR ;
# define SIZE_SKLOGO(smc) sizeof(sklogo)
# define SKLOGO(smc,i) sklogo[i]
# else /* MULT_OEM */
# define SIZE_SKLOGO(smc) smc->hw.oem_id->oi_logo_len
# define SKLOGO(smc,i) smc->hw.oem_id->oi_logo[i]
# endif /* MULT_OEM */
int exist_board ( struct s_smc * smc , HW_PTR port )
{
int i ;
# ifdef MULT_OEM
int bytes_read ;
u_char board_logo [ 15 ] ;
SK_LOC_DECL ( u_char , id [ 4 ] ) ;
# endif /* MULT_OEM */
/* No longer valid. */
if ( smc = = NULL )
return ( 0 ) ;
SK_UNUSED ( smc ) ;
# ifndef MULT_OEM
for ( i = SADDRL ; i < ( signed ) ( SADDRL + SIZE_SKLOGO ( smc ) ) ; i + + ) {
if ( ( u_char ) inpw ( ( PRA ( i ) + port ) ) ! = SKLOGO ( smc , i - SADDRL ) ) {
return ( 0 ) ;
}
}
/* check MAC address (S&K or other) */
for ( i = 0 ; i < 3 ; i + + ) {
if ( ( u_char ) inpw ( ( PRA ( i ) + port ) ) ! = OEMID ( smc , i ) )
return ( 0 ) ;
}
return ( 1 ) ;
# else /* MULT_OEM */
smc - > hw . oem_id = ( struct s_oem_ids * ) & oem_ids [ 0 ] ;
board_logo [ 0 ] = ( u_char ) inpw ( ( PRA ( SADDRL ) + port ) ) ;
bytes_read = 1 ;
for ( ; smc - > hw . oem_id - > oi_status ! = OI_STAT_LAST ; smc - > hw . oem_id + + ) {
if ( smc - > hw . oem_id - > oi_status < smc - > hw . oem_min_status )
continue ;
/* Test all read bytes with current OEM_entry */
/* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */
for ( i = 0 ; i < bytes_read ; i + + ) {
if ( board_logo [ i ] ! = SKLOGO ( smc , i ) )
break ;
}
/* If mismatch, switch to next OEM entry */
if ( ( board_logo [ i ] ! = SKLOGO ( smc , i ) ) & & ( i < bytes_read ) )
continue ;
- - i ;
while ( bytes_read < SIZE_SKLOGO ( smc ) ) {
// inpw next byte SK_Logo
i + + ;
board_logo [ i ] = ( u_char ) inpw ( ( PRA ( SADDRL + i ) + port ) ) ;
bytes_read + + ;
if ( board_logo [ i ] ! = SKLOGO ( smc , i ) )
break ;
}
for ( i = 0 ; i < 3 ; i + + )
id [ i ] = ( u_char ) inpw ( ( PRA ( i ) + port ) ) ;
if ( ( board_logo [ i ] = = SKLOGO ( smc , i ) )
& & ( bytes_read = = SIZE_SKLOGO ( smc ) ) ) {
if ( is_equal_num ( & id [ 0 ] , & OEMID ( smc , 0 ) , 3 ) )
return ( 1 ) ;
}
} /* for */
return ( 0 ) ;
# endif /* MULT_OEM */
}
int get_board_para ( struct s_smc * smc , int slot )
{
SK_UNUSED ( smc ) ;
SK_UNUSED ( slot ) ;
return ( 0 ) ; /* for ISA not supported */
}
# endif /* ISA */
# ifdef PCI
# ifdef USE_BIOS_FUN
int exist_board ( struct s_smc * smc , int slot )
{
u_short dev_id ;
u_short ven_id ;
int found ;
int i ;
found = FALSE ; /* make sure we returned with adatper not found*/
/* if an empty oemids.h was included */
# ifdef MULT_OEM
smc - > hw . oem_id = ( struct s_oem_ids * ) & oem_ids [ 0 ] ;
for ( ; smc - > hw . oem_id - > oi_status ! = OI_STAT_LAST ; smc - > hw . oem_id + + ) {
if ( smc - > hw . oem_id - > oi_status < smc - > hw . oem_min_status )
continue ;
# endif
ven_id = OEMID ( smc , 0 ) + ( OEMID ( smc , 1 ) < < 8 ) ;
dev_id = OEMID ( smc , 2 ) + ( OEMID ( smc , 3 ) < < 8 ) ;
for ( i = 0 ; i < slot ; i + + ) {
if ( pci_find_device ( i , & smc - > hw . pci_handle ,
dev_id , ven_id ) ! = 0 ) {
found = FALSE ;
} else {
found = TRUE ;
}
}
if ( found ) {
return ( 1 ) ; /* adapter was found */
}
# ifdef MULT_OEM
}
# endif
return ( 0 ) ; /* adapter was not found */
}
# endif /* PCI */
# endif /* USE_BIOS_FUNC */
void driver_get_bia ( struct s_smc * smc , struct fddi_addr * bia_addr )
{
int i ;
2006-12-20 00:09:08 +03:00
for ( i = 0 ; i < 6 ; i + + )
bia_addr - > a [ i ] = bitrev8 ( smc - > hw . fddi_phys_addr . a [ i ] ) ;
2005-04-17 02:20:36 +04:00
}
void smt_start_watchdog ( struct s_smc * smc )
{
SK_UNUSED ( smc ) ; /* Make LINT happy. */
# ifndef DEBUG
# ifdef PCI
if ( smc - > hw . wdog_used ) {
outpw ( ADDR ( B2_WDOG_CRTL ) , TIM_START ) ; /* Start timer. */
}
# endif
# endif /* DEBUG */
}
2005-06-21 12:47:06 +04:00
static void smt_stop_watchdog ( struct s_smc * smc )
2005-04-17 02:20:36 +04:00
{
SK_UNUSED ( smc ) ; /* Make LINT happy. */
# ifndef DEBUG
# ifdef PCI
if ( smc - > hw . wdog_used ) {
outpw ( ADDR ( B2_WDOG_CRTL ) , TIM_STOP ) ; /* Stop timer. */
}
# endif
# endif /* DEBUG */
}
# ifdef PCI
void mac_do_pci_fix ( struct s_smc * smc )
{
SK_UNUSED ( smc ) ;
}
# endif /* PCI */