557 lines
9.3 KiB
ArmAsm
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2015-2019 ARM Limited.
// Original author: Dave Martin <Dave.Martin@arm.com>
//
// Simple Scalable Vector Extension context switch test
// Repeatedly writes unique test patterns into each SVE register
// and reads them back to verify integrity.
//
// for x in `seq 1 NR_CPUS`; do sve-test & pids=$pids\ $! ; done
// (leave it running for as long as you want...)
// kill $pids
#include <asm/unistd.h>
#include "assembler.h"
#include "asm-offsets.h"
#include "sme-inst.h"
#define NZR 32
#define NPR 16
#define MAXVL_B (2048 / 8)
.arch_extension sve
.macro _sve_ldr_v zt, xn
ldr z\zt, [x\xn]
.endm
.macro _sve_str_v zt, xn
str z\zt, [x\xn]
.endm
.macro _sve_ldr_p pt, xn
ldr p\pt, [x\xn]
.endm
.macro _sve_str_p pt, xn
str p\pt, [x\xn]
.endm
// Generate accessor functions to read/write programmatically selected
// SVE registers.
// x0 is the register index to access
// x1 is the memory address to read from (getz,setp) or store to (setz,setp)
// All clobber x0-x2
define_accessor setz, NZR, _sve_ldr_v
define_accessor getz, NZR, _sve_str_v
define_accessor setp, NPR, _sve_ldr_p
define_accessor getp, NPR, _sve_str_p
// Declare some storate space to shadow the SVE register contents:
.pushsection .text
.data
.align 4
zref:
.space MAXVL_B * NZR
pref:
.space MAXVL_B / 8 * NPR
ffrref:
.space MAXVL_B / 8
scratch:
.space MAXVL_B
.popsection
// Generate a test pattern for storage in SVE registers
// x0: pid (16 bits)
// x1: register number (6 bits)
// x2: generation (4 bits)
// These values are used to constuct a 32-bit pattern that is repeated in the
// scratch buffer as many times as will fit:
// bits 31:28 generation number (increments once per test_loop)
// bits 27:22 32-bit lane index
// bits 21:16 register number
// bits 15: 0 pid
function pattern
orr w1, w0, w1, lsl #16
orr w2, w1, w2, lsl #28
ldr x0, =scratch
mov w1, #MAXVL_B / 4
0: str w2, [x0], #4
add w2, w2, #(1 << 22)
subs w1, w1, #1
bne 0b
ret
endfunction
// Get the address of shadow data for SVE Z-register Z<xn>
.macro _adrz xd, xn, nrtmp
ldr \xd, =zref
rdvl x\nrtmp, #1
madd \xd, x\nrtmp, \xn, \xd
.endm
// Get the address of shadow data for SVE P-register P<xn - NZR>
.macro _adrp xd, xn, nrtmp
ldr \xd, =pref
rdvl x\nrtmp, #1
lsr x\nrtmp, x\nrtmp, #3
sub \xn, \xn, #NZR
madd \xd, x\nrtmp, \xn, \xd
.endm
// Set up test pattern in a SVE Z-register
// x0: pid
// x1: register number
// x2: generation
function setup_zreg
mov x4, x30
mov x6, x1
bl pattern
_adrz x0, x6, 2
mov x5, x0
ldr x1, =scratch
bl memcpy
mov x0, x6
mov x1, x5
bl setz
ret x4
endfunction
// Set up test pattern in a SVE P-register
// x0: pid
// x1: register number
// x2: generation
function setup_preg
mov x4, x30
mov x6, x1
bl pattern
_adrp x0, x6, 2
mov x5, x0
ldr x1, =scratch
bl memcpy
mov x0, x6
mov x1, x5
bl setp
ret x4
endfunction
// Set up test pattern in the FFR
// x0: pid
// x2: generation
kselftest/arm64: sve: Do not use non-canonical FFR register value The "First Fault Register" (FFR) is an SVE register that mimics a predicate register, but clears bits when a load or store fails to handle an element of a vector. The supposed usage scenario is to initialise this register (using SETFFR), then *read* it later on to learn about elements that failed to load or store. Explicit writes to this register using the WRFFR instruction are only supposed to *restore* values previously read from the register (for context-switching only). As the manual describes, this register holds only certain values, it: "... contains a monotonic predicate value, in which starting from bit 0 there are zero or more 1 bits, followed only by 0 bits in any remaining bit positions." Any other value is UNPREDICTABLE and is not supposed to be "restored" into the register. The SVE test currently tries to write a signature pattern into the register, which is *not* a canonical FFR value. Apparently the existing setups treat UNPREDICTABLE as "read-as-written", but a new implementation actually only stores canonical values. As a consequence, the sve-test fails immediately when comparing the FFR value: ----------- # ./sve-test Vector length: 128 bits PID: 207 Mismatch: PID=207, iteration=0, reg=48 Expected [cf00] Got [0f00] Aborted ----------- Fix this by only populating the FFR with proper canonical values. Effectively the requirement described above limits us to 17 unique values over 16 bits worth of FFR, so we condense our signature down to 4 bits (2 bits from the PID, 2 bits from the generation) and generate the canonical pattern from it. Any bits describing elements above the minimum 128 bit are set to 0. This aligns the FFR usage to the architecture and fixes the test on microarchitectures implementing FFR in a more restricted way. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviwed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20210319120128.29452-1-andre.przywara@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-03-19 12:01:28 +00:00
//
// We need to generate a canonical FFR value, which consists of a number of
// low "1" bits, followed by a number of zeros. This gives us 17 unique values
// per 16 bits of FFR, so we create a 4 bit signature out of the PID and
// generation, and use that as the initial number of ones in the pattern.
// We fill the upper lanes of FFR with zeros.
// Beware: corrupts P0.
function setup_ffr
#ifndef SSVE
mov x4, x30
kselftest/arm64: sve: Do not use non-canonical FFR register value The "First Fault Register" (FFR) is an SVE register that mimics a predicate register, but clears bits when a load or store fails to handle an element of a vector. The supposed usage scenario is to initialise this register (using SETFFR), then *read* it later on to learn about elements that failed to load or store. Explicit writes to this register using the WRFFR instruction are only supposed to *restore* values previously read from the register (for context-switching only). As the manual describes, this register holds only certain values, it: "... contains a monotonic predicate value, in which starting from bit 0 there are zero or more 1 bits, followed only by 0 bits in any remaining bit positions." Any other value is UNPREDICTABLE and is not supposed to be "restored" into the register. The SVE test currently tries to write a signature pattern into the register, which is *not* a canonical FFR value. Apparently the existing setups treat UNPREDICTABLE as "read-as-written", but a new implementation actually only stores canonical values. As a consequence, the sve-test fails immediately when comparing the FFR value: ----------- # ./sve-test Vector length: 128 bits PID: 207 Mismatch: PID=207, iteration=0, reg=48 Expected [cf00] Got [0f00] Aborted ----------- Fix this by only populating the FFR with proper canonical values. Effectively the requirement described above limits us to 17 unique values over 16 bits worth of FFR, so we condense our signature down to 4 bits (2 bits from the PID, 2 bits from the generation) and generate the canonical pattern from it. Any bits describing elements above the minimum 128 bit are set to 0. This aligns the FFR usage to the architecture and fixes the test on microarchitectures implementing FFR in a more restricted way. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviwed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20210319120128.29452-1-andre.przywara@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-03-19 12:01:28 +00:00
and w0, w0, #0x3
bfi w0, w2, #2, #2
mov w1, #1
lsl w1, w1, w0
sub w1, w1, #1
ldr x0, =ffrref
kselftest/arm64: sve: Do not use non-canonical FFR register value The "First Fault Register" (FFR) is an SVE register that mimics a predicate register, but clears bits when a load or store fails to handle an element of a vector. The supposed usage scenario is to initialise this register (using SETFFR), then *read* it later on to learn about elements that failed to load or store. Explicit writes to this register using the WRFFR instruction are only supposed to *restore* values previously read from the register (for context-switching only). As the manual describes, this register holds only certain values, it: "... contains a monotonic predicate value, in which starting from bit 0 there are zero or more 1 bits, followed only by 0 bits in any remaining bit positions." Any other value is UNPREDICTABLE and is not supposed to be "restored" into the register. The SVE test currently tries to write a signature pattern into the register, which is *not* a canonical FFR value. Apparently the existing setups treat UNPREDICTABLE as "read-as-written", but a new implementation actually only stores canonical values. As a consequence, the sve-test fails immediately when comparing the FFR value: ----------- # ./sve-test Vector length: 128 bits PID: 207 Mismatch: PID=207, iteration=0, reg=48 Expected [cf00] Got [0f00] Aborted ----------- Fix this by only populating the FFR with proper canonical values. Effectively the requirement described above limits us to 17 unique values over 16 bits worth of FFR, so we condense our signature down to 4 bits (2 bits from the PID, 2 bits from the generation) and generate the canonical pattern from it. Any bits describing elements above the minimum 128 bit are set to 0. This aligns the FFR usage to the architecture and fixes the test on microarchitectures implementing FFR in a more restricted way. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviwed-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20210319120128.29452-1-andre.przywara@arm.com Signed-off-by: Will Deacon <will@kernel.org>
2021-03-19 12:01:28 +00:00
strh w1, [x0], 2
rdvl x1, #1
lsr x1, x1, #3
sub x1, x1, #2
bl memclr
mov x0, #0
ldr x1, =ffrref
bl setp
wrffr p0.b
ret x4
#else
ret
#endif
endfunction
// Trivial memory compare: compare x2 bytes starting at address x0 with
// bytes starting at address x1.
// Returns only if all bytes match; otherwise, the program is aborted.
// Clobbers x0-x5.
function memcmp
cbz x2, 2f
stp x0, x1, [sp, #-0x20]!
str x2, [sp, #0x10]
mov x5, #0
0: ldrb w3, [x0, x5]
ldrb w4, [x1, x5]
add x5, x5, #1
cmp w3, w4
b.ne 1f
subs x2, x2, #1
b.ne 0b
1: ldr x2, [sp, #0x10]
ldp x0, x1, [sp], #0x20
b.ne barf
2: ret
endfunction
// Verify that a SVE Z-register matches its shadow in memory, else abort
// x0: reg number
// Clobbers x0-x7.
function check_zreg
mov x3, x30
_adrz x5, x0, 6
mov x4, x0
ldr x7, =scratch
mov x0, x7
mov x1, x6
bl memfill_ae
mov x0, x4
mov x1, x7
bl getz
mov x0, x5
mov x1, x7
mov x2, x6
mov x30, x3
b memcmp
endfunction
// Verify that a SVE P-register matches its shadow in memory, else abort
// x0: reg number
// Clobbers x0-x7.
function check_preg
mov x3, x30
_adrp x5, x0, 6
mov x4, x0
ldr x7, =scratch
mov x0, x7
mov x1, x6
bl memfill_ae
mov x0, x4
mov x1, x7
bl getp
mov x0, x5
mov x1, x7
mov x2, x6
mov x30, x3
b memcmp
endfunction
// Verify that the FFR matches its shadow in memory, else abort
// Beware -- corrupts P0.
// Clobbers x0-x5.
function check_ffr
#ifndef SSVE
mov x3, x30
ldr x4, =scratch
rdvl x5, #1
lsr x5, x5, #3
mov x0, x4
mov x1, x5
bl memfill_ae
rdffr p0.b
mov x0, #0
mov x1, x4
bl getp
ldr x0, =ffrref
mov x1, x4
mov x2, x5
mov x30, x3
b memcmp
#else
ret
#endif
endfunction
// Any SVE register modified here can cause corruption in the main
// thread -- but *only* the registers modified here.
function irritator_handler
// Increment the irritation signal count (x23):
ldr x0, [x2, #ucontext_regs + 8 * 23]
add x0, x0, #1
str x0, [x2, #ucontext_regs + 8 * 23]
// Corrupt some random Z-regs
adr x0, .text + (irritator_handler - .text) / 16 * 16
movi v0.8b, #1
movi v9.16b, #2
movi v31.8b, #3
#ifndef SSVE
// And P0
rdffr p0.b
// And FFR
wrffr p15.b
#endif
ret
endfunction
function tickle_handler
// Increment the signal count (x23):
ldr x0, [x2, #ucontext_regs + 8 * 23]
add x0, x0, #1
str x0, [x2, #ucontext_regs + 8 * 23]
ret
endfunction
function terminate_handler
mov w21, w0
mov x20, x2
puts "Terminated by signal "
mov w0, w21
bl putdec
puts ", no error, iterations="
ldr x0, [x20, #ucontext_regs + 8 * 22]
bl putdec
puts ", signals="
ldr x0, [x20, #ucontext_regs + 8 * 23]
bl putdecn
mov x0, #0
mov x8, #__NR_exit
svc #0
endfunction
// w0: signal number
// x1: sa_action
// w2: sa_flags
// Clobbers x0-x6,x8
function setsignal
str x30, [sp, #-((sa_sz + 15) / 16 * 16 + 16)]!
mov w4, w0
mov x5, x1
mov w6, w2
add x0, sp, #16
mov x1, #sa_sz
bl memclr
mov w0, w4
add x1, sp, #16
str w6, [x1, #sa_flags]
str x5, [x1, #sa_handler]
mov x2, #0
mov x3, #sa_mask_sz
mov x8, #__NR_rt_sigaction
svc #0
cbz w0, 1f
puts "sigaction failure\n"
b .Labort
1: ldr x30, [sp], #((sa_sz + 15) / 16 * 16 + 16)
ret
endfunction
// Main program entry point
.globl _start
function _start
_start:
mov x23, #0 // Irritation signal count
mov w0, #SIGINT
adr x1, terminate_handler
mov w2, #SA_SIGINFO
bl setsignal
mov w0, #SIGTERM
adr x1, terminate_handler
mov w2, #SA_SIGINFO
bl setsignal
mov w0, #SIGUSR1
adr x1, irritator_handler
mov w2, #SA_SIGINFO
orr w2, w2, #SA_NODEFER
bl setsignal
mov w0, #SIGUSR2
adr x1, tickle_handler
mov w2, #SA_SIGINFO
orr w2, w2, #SA_NODEFER
bl setsignal
#ifdef SSVE
puts "Streaming mode "
smstart_sm
#endif
// Sanity-check and report the vector length
rdvl x19, #8
cmp x19, #128
b.lo 1f
cmp x19, #2048
b.hi 1f
tst x19, #(8 - 1)
b.eq 2f
1: puts "Bad vector length: "
mov x0, x19
bl putdecn
b .Labort
2: puts "Vector length:\t"
mov x0, x19
bl putdec
puts " bits\n"
// Obtain our PID, to ensure test pattern uniqueness between processes
mov x8, #__NR_getpid
svc #0
mov x20, x0
puts "PID:\t"
mov x0, x20
bl putdecn
#ifdef SSVE
smstart_sm // syscalls will have exited streaming mode
#endif
mov x22, #0 // generation number, increments per iteration
.Ltest_loop:
rdvl x0, #8
cmp x0, x19
b.ne vl_barf
mov x21, #0 // Set up Z-regs & shadow with test pattern
0: mov x0, x20
mov x1, x21
and x2, x22, #0xf
bl setup_zreg
add x21, x21, #1
cmp x21, #NZR
b.lo 0b
mov x0, x20 // Set up FFR & shadow with test pattern
mov x1, #NZR + NPR
and x2, x22, #0xf
bl setup_ffr
0: mov x0, x20 // Set up P-regs & shadow with test pattern
mov x1, x21
and x2, x22, #0xf
bl setup_preg
add x21, x21, #1
cmp x21, #NZR + NPR
b.lo 0b
// Can't do this when SVE state is volatile across SVC:
// mov x8, #__NR_sched_yield // Encourage preemption
// svc #0
mov x21, #0
0: mov x0, x21
bl check_zreg
add x21, x21, #1
cmp x21, #NZR
b.lo 0b
0: mov x0, x21
bl check_preg
add x21, x21, #1
cmp x21, #NZR + NPR
b.lo 0b
bl check_ffr
add x22, x22, #1
b .Ltest_loop
.Labort:
mov x0, #0
mov x1, #SIGABRT
mov x8, #__NR_kill
svc #0
endfunction
function barf
// fpsimd.c acitivty log dump hack
// ldr w0, =0xdeadc0de
// mov w8, #__NR_exit
// svc #0
// end hack
mov x10, x0 // expected data
mov x11, x1 // actual data
mov x12, x2 // data size
puts "Mismatch: PID="
mov x0, x20
bl putdec
puts ", iteration="
mov x0, x22
bl putdec
puts ", reg="
mov x0, x21
bl putdecn
puts "\tExpected ["
mov x0, x10
mov x1, x12
bl dumphex
puts "]\n\tGot ["
mov x0, x11
mov x1, x12
bl dumphex
puts "]\n"
mov x8, #__NR_getpid
svc #0
// fpsimd.c acitivty log dump hack
// ldr w0, =0xdeadc0de
// mov w8, #__NR_exit
// svc #0
// ^ end of hack
mov x1, #SIGABRT
mov x8, #__NR_kill
svc #0
// mov x8, #__NR_exit
// mov x1, #1
// svc #0
endfunction
function vl_barf
mov x10, x0
puts "Bad active VL: "
mov x0, x10
bl putdecn
mov x8, #__NR_exit
mov x1, #1
svc #0
endfunction