linux/drivers/firmware/sysfb_simplefb.c

134 lines
3.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
/*
* Generic System Framebuffers
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
* Copyright (c) 2012-2013 David Herrmann <dh.herrmann@gmail.com>
*/
/*
* simple-framebuffer probing
* Try to convert "screen_info" into a "simple-framebuffer" compatible mode.
* If the mode is incompatible, we return "false" and let the caller create
* legacy nodes instead.
*/
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/platform_data/simplefb.h>
#include <linux/platform_device.h>
#include <linux/screen_info.h>
#include <linux/sysfb.h>
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
static const char simplefb_resname[] = "BOOTFB";
static const struct simplefb_format formats[] = SIMPLEFB_FORMATS;
/* try parsing screen_info into a simple-framebuffer mode struct */
__init bool sysfb_parse_mode(const struct screen_info *si,
struct simplefb_platform_data *mode)
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
{
const struct simplefb_format *f;
__u8 type;
unsigned int i;
type = si->orig_video_isVGA;
if (type != VIDEO_TYPE_VLFB && type != VIDEO_TYPE_EFI)
return false;
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
f = &formats[i];
if (si->lfb_depth == f->bits_per_pixel &&
si->red_size == f->red.length &&
si->red_pos == f->red.offset &&
si->green_size == f->green.length &&
si->green_pos == f->green.offset &&
si->blue_size == f->blue.length &&
si->blue_pos == f->blue.offset &&
si->rsvd_size == f->transp.length &&
si->rsvd_pos == f->transp.offset) {
mode->format = f->name;
mode->width = si->lfb_width;
mode->height = si->lfb_height;
mode->stride = si->lfb_linelength;
return true;
}
}
return false;
}
__init int sysfb_create_simplefb(const struct screen_info *si,
const struct simplefb_platform_data *mode)
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
{
struct platform_device *pd;
struct resource res;
u64 base, size;
u32 length;
int ret;
/*
* If the 64BIT_BASE capability is set, ext_lfb_base will contain the
* upper half of the base address. Assemble the address, then make sure
* it is valid and we can actually access it.
*/
base = si->lfb_base;
if (si->capabilities & VIDEO_CAPABILITY_64BIT_BASE)
base |= (u64)si->ext_lfb_base << 32;
if (!base || (u64)(resource_size_t)base != base) {
printk(KERN_DEBUG "sysfb: inaccessible VRAM base\n");
return -EINVAL;
}
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
/*
* Don't use lfb_size as IORESOURCE size, since it may contain the
* entire VMEM, and thus require huge mappings. Use just the part we
* need, that is, the part where the framebuffer is located. But verify
* that it does not exceed the advertised VMEM.
* Note that in case of VBE, the lfb_size is shifted by 16 bits for
* historical reasons.
*/
size = si->lfb_size;
if (si->orig_video_isVGA == VIDEO_TYPE_VLFB)
size <<= 16;
length = mode->height * mode->stride;
if (length > size) {
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
printk(KERN_WARNING "sysfb: VRAM smaller than advertised\n");
return -EINVAL;
}
length = PAGE_ALIGN(length);
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
/* setup IORESOURCE_MEM as framebuffer memory */
memset(&res, 0, sizeof(res));
res.flags = IORESOURCE_MEM;
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
res.name = simplefb_resname;
res.start = base;
res.end = res.start + length - 1;
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
if (res.end <= res.start)
return -EINVAL;
pd = platform_device_alloc("simple-framebuffer", 0);
if (!pd)
return -ENOMEM;
sysfb_apply_efi_quirks(pd);
ret = platform_device_add_resources(pd, &res, 1);
if (ret)
goto err_put_device;
ret = platform_device_add_data(pd, mode, sizeof(*mode));
if (ret)
goto err_put_device;
ret = platform_device_add(pd);
if (ret)
goto err_put_device;
return 0;
err_put_device:
platform_device_put(pd);
return ret;
x86: provide platform-devices for boot-framebuffers The current situation regarding boot-framebuffers (VGA, VESA/VBE, EFI) on x86 causes troubles when loading multiple fbdev drivers. The global "struct screen_info" does not provide any state-tracking about which drivers use the FBs. request_mem_region() theoretically works, but unfortunately vesafb/efifb ignore it due to quirks for broken boards. Avoid this by creating a platform framebuffer devices with a pointer to the "struct screen_info" as platform-data. Drivers can now create platform-drivers and the driver-core will refuse multiple drivers being active simultaneously. We keep the screen_info available for backwards-compatibility. Drivers can be converted in follow-up patches. Different devices are created for VGA/VESA/EFI FBs to allow multiple drivers to be loaded on distro kernels. We create: - "vesa-framebuffer" for VBE/VESA graphics FBs - "efi-framebuffer" for EFI FBs - "platform-framebuffer" for everything else This allows to load vesafb, efifb and others simultaneously and each picks up only the supported FB types. Apart from platform-framebuffer devices, this also introduces a compatibility option for "simple-framebuffer" drivers which recently got introduced for OF based systems. If CONFIG_X86_SYSFB is selected, we try to match the screen_info against a simple-framebuffer supported format. If we succeed, we create a "simple-framebuffer" device instead of a platform-framebuffer. This allows to reuse the simplefb.c driver across architectures and also to introduce a SimpleDRM driver. There is no need to have vesafb.c, efifb.c, simplefb.c and more just to have architecture specific quirks in their setup-routines. Instead, we now move the architecture specific quirks into x86-setup and provide a generic simple-framebuffer. For backwards-compatibility (if strange formats are used), we still allow vesafb/efifb to be loaded simultaneously and pick up all remaining devices. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Link: http://lkml.kernel.org/r/1375445127-15480-4-git-send-email-dh.herrmann@gmail.com Tested-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2013-08-02 14:05:22 +02:00
}