linux/drivers/tty/serial/8250/8250_port.c

3395 lines
85 KiB
C
Raw Normal View History

tty: add SPDX identifiers to all remaining files in drivers/tty/ It's good to have SPDX identifiers in all files to make it easier to audit the kernel tree for correct licenses. Update the drivers/tty files files with the correct SPDX license identifier based on the license text in the file itself. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This work is based on a script and data from Thomas Gleixner, Philippe Ombredanne, and Kate Stewart. Cc: Jiri Slaby <jslaby@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: James Hogan <jhogan@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Eric Anholt <eric@anholt.net> Cc: Stefan Wahren <stefan.wahren@i2se.com> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Ray Jui <rjui@broadcom.com> Cc: Scott Branden <sbranden@broadcom.com> Cc: bcm-kernel-feedback-list@broadcom.com Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Joachim Eastwood <manabian@gmail.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Russell King <linux@armlinux.org.uk> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Richard Genoud <richard.genoud@gmail.com> Cc: Alexander Shiyan <shc_work@mail.ru> Cc: Baruch Siach <baruch@tkos.co.il> Cc: "Maciej W. Rozycki" <macro@linux-mips.org> Cc: "Uwe Kleine-König" <kernel@pengutronix.de> Cc: Pat Gefre <pfg@sgi.com> Cc: "Guilherme G. Piccoli" <gpiccoli@linux.vnet.ibm.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Vladimir Zapolskiy <vz@mleia.com> Cc: Sylvain Lemieux <slemieux.tyco@gmail.com> Cc: Carlo Caione <carlo@caione.org> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Liviu Dudau <liviu.dudau@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Andy Gross <andy.gross@linaro.org> Cc: David Brown <david.brown@linaro.org> Cc: "Andreas Färber" <afaerber@suse.de> Cc: Kevin Cernekee <cernekee@gmail.com> Cc: Laxman Dewangan <ldewangan@nvidia.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Jonathan Hunter <jonathanh@nvidia.com> Cc: Barry Song <baohua@kernel.org> Cc: Patrice Chotard <patrice.chotard@st.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Peter Korsgaard <jacmet@sunsite.dk> Cc: Timur Tabi <timur@tabi.org> Cc: Tony Prisk <linux@prisktech.co.nz> Cc: Michal Simek <michal.simek@xilinx.com> Cc: "Sören Brinkmann" <soren.brinkmann@xilinx.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Jiri Slaby <jslaby@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-06 18:11:51 +01:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Base port operations for 8250/16550-type serial ports
*
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
* Split from 8250_core.c, Copyright (C) 2001 Russell King.
*
* A note about mapbase / membase
*
* mapbase is the physical address of the IO port.
* membase is an 'ioremapped' cookie.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/gpio/consumer.h>
#include <linux/sysrq.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/ratelimit.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <linux/nmi.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/pm_runtime.h>
#include <linux/ktime.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "8250.h"
/* Nuvoton NPCM timeout register */
#define UART_NPCM_TOR 7
#define UART_NPCM_TOIE BIT(7) /* Timeout Interrupt Enable */
/*
* Debugging.
*/
#if 0
#define DEBUG_AUTOCONF(fmt...) printk(fmt)
#else
#define DEBUG_AUTOCONF(fmt...) do { } while (0)
#endif
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
/*
* Here we define the default xmit fifo size used for each type of UART.
*/
static const struct serial8250_config uart_config[] = {
[PORT_UNKNOWN] = {
.name = "unknown",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_8250] = {
.name = "8250",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_16450] = {
.name = "16450",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_16550] = {
.name = "16550",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_16550A] = {
.name = "16550A",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 4, 8, 14},
.flags = UART_CAP_FIFO,
},
[PORT_CIRRUS] = {
.name = "Cirrus",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_16650] = {
.name = "ST16650",
.fifo_size = 1,
.tx_loadsz = 1,
.flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
},
[PORT_16650V2] = {
.name = "ST16650V2",
.fifo_size = 32,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
UART_FCR_T_TRIG_00,
.rxtrig_bytes = {8, 16, 24, 28},
.flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
},
[PORT_16750] = {
.name = "TI16750",
.fifo_size = 64,
.tx_loadsz = 64,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
UART_FCR7_64BYTE,
.rxtrig_bytes = {1, 16, 32, 56},
.flags = UART_CAP_FIFO | UART_CAP_SLEEP | UART_CAP_AFE,
},
[PORT_STARTECH] = {
.name = "Startech",
.fifo_size = 1,
.tx_loadsz = 1,
},
[PORT_16C950] = {
.name = "16C950/954",
.fifo_size = 128,
.tx_loadsz = 128,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
/* UART_CAP_EFR breaks billionon CF bluetooth card. */
.flags = UART_CAP_FIFO | UART_CAP_SLEEP,
},
[PORT_16654] = {
.name = "ST16654",
.fifo_size = 64,
.tx_loadsz = 32,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
UART_FCR_T_TRIG_10,
.rxtrig_bytes = {8, 16, 56, 60},
.flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
},
[PORT_16850] = {
.name = "XR16850",
.fifo_size = 128,
.tx_loadsz = 128,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO | UART_CAP_EFR | UART_CAP_SLEEP,
},
[PORT_RSA] = {
.name = "RSA",
.fifo_size = 2048,
.tx_loadsz = 2048,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11,
.flags = UART_CAP_FIFO,
},
[PORT_NS16550A] = {
.name = "NS16550A",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO | UART_NATSEMI,
},
[PORT_XSCALE] = {
.name = "XScale",
.fifo_size = 32,
.tx_loadsz = 32,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO | UART_CAP_UUE | UART_CAP_RTOIE,
},
[PORT_OCTEON] = {
.name = "OCTEON",
.fifo_size = 64,
.tx_loadsz = 64,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO,
},
[PORT_AR7] = {
.name = "AR7",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_00,
.flags = UART_CAP_FIFO /* | UART_CAP_AFE */,
},
[PORT_U6_16550A] = {
.name = "U6_16550A",
.fifo_size = 64,
.tx_loadsz = 64,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO | UART_CAP_AFE,
},
[PORT_TEGRA] = {
.name = "Tegra",
.fifo_size = 32,
.tx_loadsz = 8,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_01 |
UART_FCR_T_TRIG_01,
.rxtrig_bytes = {1, 4, 8, 14},
.flags = UART_CAP_FIFO | UART_CAP_RTOIE,
},
[PORT_XR17D15X] = {
.name = "XR17D15X",
.fifo_size = 64,
.tx_loadsz = 64,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.flags = UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR |
UART_CAP_SLEEP,
},
[PORT_XR17V35X] = {
.name = "XR17V35X",
.fifo_size = 256,
.tx_loadsz = 256,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_11 |
UART_FCR_T_TRIG_11,
.flags = UART_CAP_FIFO | UART_CAP_AFE | UART_CAP_EFR |
UART_CAP_SLEEP,
},
[PORT_LPC3220] = {
.name = "LPC3220",
.fifo_size = 64,
.tx_loadsz = 32,
.fcr = UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO |
UART_FCR_R_TRIG_00 | UART_FCR_T_TRIG_00,
.flags = UART_CAP_FIFO,
},
[PORT_BRCM_TRUMANAGE] = {
.name = "TruManage",
.fifo_size = 1,
.tx_loadsz = 1024,
.flags = UART_CAP_HFIFO,
},
[PORT_8250_CIR] = {
.name = "CIR port"
},
[PORT_ALTR_16550_F32] = {
.name = "Altera 16550 FIFO32",
.fifo_size = 32,
.tx_loadsz = 32,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 8, 16, 30},
.flags = UART_CAP_FIFO | UART_CAP_AFE,
},
[PORT_ALTR_16550_F64] = {
.name = "Altera 16550 FIFO64",
.fifo_size = 64,
.tx_loadsz = 64,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 16, 32, 62},
.flags = UART_CAP_FIFO | UART_CAP_AFE,
},
[PORT_ALTR_16550_F128] = {
.name = "Altera 16550 FIFO128",
.fifo_size = 128,
.tx_loadsz = 128,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 32, 64, 126},
.flags = UART_CAP_FIFO | UART_CAP_AFE,
},
/*
* tx_loadsz is set to 63-bytes instead of 64-bytes to implement
* workaround of errata A-008006 which states that tx_loadsz should
* be configured less than Maximum supported fifo bytes.
*/
[PORT_16550A_FSL64] = {
.name = "16550A_FSL64",
.fifo_size = 64,
.tx_loadsz = 63,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
UART_FCR7_64BYTE,
.flags = UART_CAP_FIFO,
},
[PORT_RT2880] = {
.name = "Palmchip BK-3103",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 4, 8, 14},
.flags = UART_CAP_FIFO,
},
[PORT_DA830] = {
.name = "TI DA8xx/66AK2x",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_DMA_SELECT | UART_FCR_ENABLE_FIFO |
UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 4, 8, 14},
.flags = UART_CAP_FIFO | UART_CAP_AFE,
},
[PORT_MTK_BTIF] = {
.name = "MediaTek BTIF",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
.flags = UART_CAP_FIFO,
},
[PORT_NPCM] = {
.name = "Nuvoton 16550",
.fifo_size = 16,
.tx_loadsz = 16,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10 |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT,
.rxtrig_bytes = {1, 4, 8, 14},
.flags = UART_CAP_FIFO,
},
[PORT_SUNIX] = {
.name = "Sunix",
.fifo_size = 128,
.tx_loadsz = 128,
.fcr = UART_FCR_ENABLE_FIFO | UART_FCR_R_TRIG_10,
.rxtrig_bytes = {1, 32, 64, 112},
.flags = UART_CAP_FIFO | UART_CAP_SLEEP,
},
};
/* Uart divisor latch read */
static int default_serial_dl_read(struct uart_8250_port *up)
{
return serial_in(up, UART_DLL) | serial_in(up, UART_DLM) << 8;
}
/* Uart divisor latch write */
static void default_serial_dl_write(struct uart_8250_port *up, int value)
{
serial_out(up, UART_DLL, value & 0xff);
serial_out(up, UART_DLM, value >> 8 & 0xff);
}
#ifdef CONFIG_SERIAL_8250_RT288X
/* Au1x00/RT288x UART hardware has a weird register layout */
static const s8 au_io_in_map[8] = {
0, /* UART_RX */
2, /* UART_IER */
3, /* UART_IIR */
5, /* UART_LCR */
6, /* UART_MCR */
7, /* UART_LSR */
8, /* UART_MSR */
-1, /* UART_SCR (unmapped) */
};
static const s8 au_io_out_map[8] = {
1, /* UART_TX */
2, /* UART_IER */
4, /* UART_FCR */
5, /* UART_LCR */
6, /* UART_MCR */
-1, /* UART_LSR (unmapped) */
-1, /* UART_MSR (unmapped) */
-1, /* UART_SCR (unmapped) */
};
unsigned int au_serial_in(struct uart_port *p, int offset)
{
if (offset >= ARRAY_SIZE(au_io_in_map))
return UINT_MAX;
offset = au_io_in_map[offset];
if (offset < 0)
return UINT_MAX;
return __raw_readl(p->membase + (offset << p->regshift));
}
void au_serial_out(struct uart_port *p, int offset, int value)
{
if (offset >= ARRAY_SIZE(au_io_out_map))
return;
offset = au_io_out_map[offset];
if (offset < 0)
return;
__raw_writel(value, p->membase + (offset << p->regshift));
}
/* Au1x00 haven't got a standard divisor latch */
static int au_serial_dl_read(struct uart_8250_port *up)
{
return __raw_readl(up->port.membase + 0x28);
}
static void au_serial_dl_write(struct uart_8250_port *up, int value)
{
__raw_writel(value, up->port.membase + 0x28);
}
#endif
static unsigned int hub6_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
outb(p->hub6 - 1 + offset, p->iobase);
return inb(p->iobase + 1);
}
static void hub6_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
outb(p->hub6 - 1 + offset, p->iobase);
outb(value, p->iobase + 1);
}
static unsigned int mem_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return readb(p->membase + offset);
}
static void mem_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
writeb(value, p->membase + offset);
}
static void mem16_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
writew(value, p->membase + offset);
}
static unsigned int mem16_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return readw(p->membase + offset);
}
static void mem32_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
writel(value, p->membase + offset);
}
static unsigned int mem32_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return readl(p->membase + offset);
}
static void mem32be_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
iowrite32be(value, p->membase + offset);
}
static unsigned int mem32be_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return ioread32be(p->membase + offset);
}
static unsigned int io_serial_in(struct uart_port *p, int offset)
{
offset = offset << p->regshift;
return inb(p->iobase + offset);
}
static void io_serial_out(struct uart_port *p, int offset, int value)
{
offset = offset << p->regshift;
outb(value, p->iobase + offset);
}
static int serial8250_default_handle_irq(struct uart_port *port);
static void set_io_from_upio(struct uart_port *p)
{
struct uart_8250_port *up = up_to_u8250p(p);
up->dl_read = default_serial_dl_read;
up->dl_write = default_serial_dl_write;
switch (p->iotype) {
case UPIO_HUB6:
p->serial_in = hub6_serial_in;
p->serial_out = hub6_serial_out;
break;
case UPIO_MEM:
p->serial_in = mem_serial_in;
p->serial_out = mem_serial_out;
break;
case UPIO_MEM16:
p->serial_in = mem16_serial_in;
p->serial_out = mem16_serial_out;
break;
case UPIO_MEM32:
p->serial_in = mem32_serial_in;
p->serial_out = mem32_serial_out;
break;
case UPIO_MEM32BE:
p->serial_in = mem32be_serial_in;
p->serial_out = mem32be_serial_out;
break;
#ifdef CONFIG_SERIAL_8250_RT288X
case UPIO_AU:
p->serial_in = au_serial_in;
p->serial_out = au_serial_out;
up->dl_read = au_serial_dl_read;
up->dl_write = au_serial_dl_write;
break;
#endif
default:
p->serial_in = io_serial_in;
p->serial_out = io_serial_out;
break;
}
/* Remember loaded iotype */
up->cur_iotype = p->iotype;
p->handle_irq = serial8250_default_handle_irq;
}
static void
serial_port_out_sync(struct uart_port *p, int offset, int value)
{
switch (p->iotype) {
case UPIO_MEM:
case UPIO_MEM16:
case UPIO_MEM32:
case UPIO_MEM32BE:
case UPIO_AU:
p->serial_out(p, offset, value);
p->serial_in(p, UART_LCR); /* safe, no side-effects */
break;
default:
p->serial_out(p, offset, value);
}
}
/*
* For the 16C950
*/
static void serial_icr_write(struct uart_8250_port *up, int offset, int value)
{
serial_out(up, UART_SCR, offset);
serial_out(up, UART_ICR, value);
}
static unsigned int serial_icr_read(struct uart_8250_port *up, int offset)
{
unsigned int value;
serial_icr_write(up, UART_ACR, up->acr | UART_ACR_ICRRD);
serial_out(up, UART_SCR, offset);
value = serial_in(up, UART_ICR);
serial_icr_write(up, UART_ACR, up->acr);
return value;
}
/*
* FIFO support.
*/
static void serial8250_clear_fifos(struct uart_8250_port *p)
{
if (p->capabilities & UART_CAP_FIFO) {
Revert "serial: 8250: Fix clearing FIFOs in RS485 mode again" Commit f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again") makes a change to FIFO clearing code which its commit message suggests was intended to be specific to use with RS485 mode, however: 1) The change made does not just affect __do_stop_tx_rs485(), it also affects other uses of serial8250_clear_fifos() including paths for starting up, shutting down or auto-configuring a port regardless of whether it's an RS485 port or not. 2) It makes the assumption that resetting the FIFOs is a no-op when FIFOs are disabled, and as such it checks for this case & explicitly avoids setting the FIFO reset bits when the FIFO enable bit is clear. A reading of the PC16550D manual would suggest that this is OK since the FIFO should automatically be reset if it is later enabled, but we support many 16550-compatible devices and have never required this auto-reset behaviour for at least the whole git era. Starting to rely on it now seems risky, offers no benefit, and indeed breaks at least the Ingenic JZ4780's UARTs which reads garbage when the RX FIFO is enabled if we don't explicitly reset it. 3) By only resetting the FIFOs if they're enabled, the behaviour of serial8250_do_startup() during boot now depends on what the value of FCR is before the 8250 driver is probed. This in itself seems questionable and leaves us with FCR=0 & no FIFO reset if the UART was used by 8250_early, otherwise it depends upon what the bootloader left behind. 4) Although the naming of serial8250_clear_fifos() may be unclear, it is clear that callers of it expect that it will disable FIFOs. Both serial8250_do_startup() & serial8250_do_shutdown() contain comments to that effect, and other callers explicitly re-enable the FIFOs after calling serial8250_clear_fifos(). The premise of that patch that disabling the FIFOs is incorrect therefore seems wrong. For these reasons, this reverts commit f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again"). Signed-off-by: Paul Burton <paul.burton@mips.com> Fixes: f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again"). Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Jedrychowski <avistel@gmail.com> Cc: Marek Vasut <marex@denx.de> Cc: linux-mips@vger.kernel.org Cc: linux-serial@vger.kernel.org Cc: stable <stable@vger.kernel.org> # 4.10+ Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-16 20:10:01 +00:00
serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_out(p, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
serial_out(p, UART_FCR, 0);
}
}
static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t);
static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t);
void serial8250_clear_and_reinit_fifos(struct uart_8250_port *p)
{
serial8250_clear_fifos(p);
serial_out(p, UART_FCR, p->fcr);
}
EXPORT_SYMBOL_GPL(serial8250_clear_and_reinit_fifos);
void serial8250_rpm_get(struct uart_8250_port *p)
{
if (!(p->capabilities & UART_CAP_RPM))
return;
pm_runtime_get_sync(p->port.dev);
}
EXPORT_SYMBOL_GPL(serial8250_rpm_get);
void serial8250_rpm_put(struct uart_8250_port *p)
{
if (!(p->capabilities & UART_CAP_RPM))
return;
pm_runtime_mark_last_busy(p->port.dev);
pm_runtime_put_autosuspend(p->port.dev);
}
EXPORT_SYMBOL_GPL(serial8250_rpm_put);
/**
* serial8250_em485_init() - put uart_8250_port into rs485 emulating
* @p: uart_8250_port port instance
*
* The function is used to start rs485 software emulating on the
* &struct uart_8250_port* @p. Namely, RTS is switched before/after
* transmission. The function is idempotent, so it is safe to call it
* multiple times.
*
* The caller MUST enable interrupt on empty shift register before
* calling serial8250_em485_init(). This interrupt is not a part of
* 8250 standard, but implementation defined.
*
* The function is supposed to be called from .rs485_config callback
* or from any other callback protected with p->port.lock spinlock.
*
* See also serial8250_em485_destroy()
*
* Return 0 - success, -errno - otherwise
*/
static int serial8250_em485_init(struct uart_8250_port *p)
{
if (p->em485)
return 0;
p->em485 = kmalloc(sizeof(struct uart_8250_em485), GFP_ATOMIC);
if (!p->em485)
return -ENOMEM;
hrtimer_init(&p->em485->stop_tx_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
hrtimer_init(&p->em485->start_tx_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
p->em485->stop_tx_timer.function = &serial8250_em485_handle_stop_tx;
p->em485->start_tx_timer.function = &serial8250_em485_handle_start_tx;
p->em485->port = p;
p->em485->active_timer = NULL;
p->em485->tx_stopped = true;
p->rs485_stop_tx(p);
return 0;
}
/**
* serial8250_em485_destroy() - put uart_8250_port into normal state
* @p: uart_8250_port port instance
*
* The function is used to stop rs485 software emulating on the
* &struct uart_8250_port* @p. The function is idempotent, so it is safe to
* call it multiple times.
*
* The function is supposed to be called from .rs485_config callback
* or from any other callback protected with p->port.lock spinlock.
*
* See also serial8250_em485_init()
*/
void serial8250_em485_destroy(struct uart_8250_port *p)
{
if (!p->em485)
return;
hrtimer_cancel(&p->em485->start_tx_timer);
hrtimer_cancel(&p->em485->stop_tx_timer);
kfree(p->em485);
p->em485 = NULL;
}
EXPORT_SYMBOL_GPL(serial8250_em485_destroy);
/**
* serial8250_em485_config() - generic ->rs485_config() callback
* @port: uart port
* @rs485: rs485 settings
*
* Generic callback usable by 8250 uart drivers to activate rs485 settings
* if the uart is incapable of driving RTS as a Transmit Enable signal in
* hardware, relying on software emulation instead.
*/
int serial8250_em485_config(struct uart_port *port, struct serial_rs485 *rs485)
{
struct uart_8250_port *up = up_to_u8250p(port);
/* pick sane settings if the user hasn't */
if (!!(rs485->flags & SER_RS485_RTS_ON_SEND) ==
!!(rs485->flags & SER_RS485_RTS_AFTER_SEND)) {
rs485->flags |= SER_RS485_RTS_ON_SEND;
rs485->flags &= ~SER_RS485_RTS_AFTER_SEND;
}
/* clamp the delays to [0, 100ms] */
rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
memset(rs485->padding, 0, sizeof(rs485->padding));
port->rs485 = *rs485;
gpiod_set_value(port->rs485_term_gpio,
rs485->flags & SER_RS485_TERMINATE_BUS);
/*
* Both serial8250_em485_init() and serial8250_em485_destroy()
* are idempotent.
*/
if (rs485->flags & SER_RS485_ENABLED) {
int ret = serial8250_em485_init(up);
if (ret) {
rs485->flags &= ~SER_RS485_ENABLED;
port->rs485.flags &= ~SER_RS485_ENABLED;
}
return ret;
}
serial8250_em485_destroy(up);
return 0;
}
EXPORT_SYMBOL_GPL(serial8250_em485_config);
/*
* These two wrappers ensure that enable_runtime_pm_tx() can be called more than
* once and disable_runtime_pm_tx() will still disable RPM because the fifo is
* empty and the HW can idle again.
*/
void serial8250_rpm_get_tx(struct uart_8250_port *p)
{
unsigned char rpm_active;
if (!(p->capabilities & UART_CAP_RPM))
return;
rpm_active = xchg(&p->rpm_tx_active, 1);
if (rpm_active)
return;
pm_runtime_get_sync(p->port.dev);
}
EXPORT_SYMBOL_GPL(serial8250_rpm_get_tx);
void serial8250_rpm_put_tx(struct uart_8250_port *p)
{
unsigned char rpm_active;
if (!(p->capabilities & UART_CAP_RPM))
return;
rpm_active = xchg(&p->rpm_tx_active, 0);
if (!rpm_active)
return;
pm_runtime_mark_last_busy(p->port.dev);
pm_runtime_put_autosuspend(p->port.dev);
}
EXPORT_SYMBOL_GPL(serial8250_rpm_put_tx);
/*
* IER sleep support. UARTs which have EFRs need the "extended
* capability" bit enabled. Note that on XR16C850s, we need to
* reset LCR to write to IER.
*/
static void serial8250_set_sleep(struct uart_8250_port *p, int sleep)
{
unsigned char lcr = 0, efr = 0;
serial8250_rpm_get(p);
if (p->capabilities & UART_CAP_SLEEP) {
if (p->capabilities & UART_CAP_EFR) {
lcr = serial_in(p, UART_LCR);
efr = serial_in(p, UART_EFR);
serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B);
serial_out(p, UART_EFR, UART_EFR_ECB);
serial_out(p, UART_LCR, 0);
}
serial_out(p, UART_IER, sleep ? UART_IERX_SLEEP : 0);
if (p->capabilities & UART_CAP_EFR) {
serial_out(p, UART_LCR, UART_LCR_CONF_MODE_B);
serial_out(p, UART_EFR, efr);
serial_out(p, UART_LCR, lcr);
}
}
serial8250_rpm_put(p);
}
#ifdef CONFIG_SERIAL_8250_RSA
/*
* Attempts to turn on the RSA FIFO. Returns zero on failure.
* We set the port uart clock rate if we succeed.
*/
static int __enable_rsa(struct uart_8250_port *up)
{
unsigned char mode;
int result;
mode = serial_in(up, UART_RSA_MSR);
result = mode & UART_RSA_MSR_FIFO;
if (!result) {
serial_out(up, UART_RSA_MSR, mode | UART_RSA_MSR_FIFO);
mode = serial_in(up, UART_RSA_MSR);
result = mode & UART_RSA_MSR_FIFO;
}
if (result)
up->port.uartclk = SERIAL_RSA_BAUD_BASE * 16;
return result;
}
static void enable_rsa(struct uart_8250_port *up)
{
if (up->port.type == PORT_RSA) {
if (up->port.uartclk != SERIAL_RSA_BAUD_BASE * 16) {
spin_lock_irq(&up->port.lock);
__enable_rsa(up);
spin_unlock_irq(&up->port.lock);
}
if (up->port.uartclk == SERIAL_RSA_BAUD_BASE * 16)
serial_out(up, UART_RSA_FRR, 0);
}
}
/*
* Attempts to turn off the RSA FIFO. Returns zero on failure.
* It is unknown why interrupts were disabled in here. However,
* the caller is expected to preserve this behaviour by grabbing
* the spinlock before calling this function.
*/
static void disable_rsa(struct uart_8250_port *up)
{
unsigned char mode;
int result;
if (up->port.type == PORT_RSA &&
up->port.uartclk == SERIAL_RSA_BAUD_BASE * 16) {
spin_lock_irq(&up->port.lock);
mode = serial_in(up, UART_RSA_MSR);
result = !(mode & UART_RSA_MSR_FIFO);
if (!result) {
serial_out(up, UART_RSA_MSR, mode & ~UART_RSA_MSR_FIFO);
mode = serial_in(up, UART_RSA_MSR);
result = !(mode & UART_RSA_MSR_FIFO);
}
if (result)
up->port.uartclk = SERIAL_RSA_BAUD_BASE_LO * 16;
spin_unlock_irq(&up->port.lock);
}
}
#endif /* CONFIG_SERIAL_8250_RSA */
/*
* This is a quickie test to see how big the FIFO is.
* It doesn't work at all the time, more's the pity.
*/
static int size_fifo(struct uart_8250_port *up)
{
unsigned char old_fcr, old_mcr, old_lcr;
unsigned short old_dl;
int count;
old_lcr = serial_in(up, UART_LCR);
serial_out(up, UART_LCR, 0);
old_fcr = serial_in(up, UART_FCR);
old_mcr = serial8250_in_MCR(up);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
serial8250_out_MCR(up, UART_MCR_LOOP);
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
old_dl = serial_dl_read(up);
serial_dl_write(up, 0x0001);
serial_out(up, UART_LCR, 0x03);
for (count = 0; count < 256; count++)
serial_out(up, UART_TX, count);
mdelay(20);/* FIXME - schedule_timeout */
for (count = 0; (serial_in(up, UART_LSR) & UART_LSR_DR) &&
(count < 256); count++)
serial_in(up, UART_RX);
serial_out(up, UART_FCR, old_fcr);
serial8250_out_MCR(up, old_mcr);
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
serial_dl_write(up, old_dl);
serial_out(up, UART_LCR, old_lcr);
return count;
}
/*
* Read UART ID using the divisor method - set DLL and DLM to zero
* and the revision will be in DLL and device type in DLM. We
* preserve the device state across this.
*/
static unsigned int autoconfig_read_divisor_id(struct uart_8250_port *p)
{
unsigned char old_lcr;
unsigned int id, old_dl;
old_lcr = serial_in(p, UART_LCR);
serial_out(p, UART_LCR, UART_LCR_CONF_MODE_A);
old_dl = serial_dl_read(p);
serial_dl_write(p, 0);
id = serial_dl_read(p);
serial_dl_write(p, old_dl);
serial_out(p, UART_LCR, old_lcr);
return id;
}
/*
* This is a helper routine to autodetect StarTech/Exar/Oxsemi UART's.
* When this function is called we know it is at least a StarTech
* 16650 V2, but it might be one of several StarTech UARTs, or one of
* its clones. (We treat the broken original StarTech 16650 V1 as a
* 16550, and why not? Startech doesn't seem to even acknowledge its
* existence.)
*
* What evil have men's minds wrought...
*/
static void autoconfig_has_efr(struct uart_8250_port *up)
{
unsigned int id1, id2, id3, rev;
/*
* Everything with an EFR has SLEEP
*/
up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP;
/*
* First we check to see if it's an Oxford Semiconductor UART.
*
* If we have to do this here because some non-National
* Semiconductor clone chips lock up if you try writing to the
* LSR register (which serial_icr_read does)
*/
/*
* Check for Oxford Semiconductor 16C950.
*
* EFR [4] must be set else this test fails.
*
* This shouldn't be necessary, but Mike Hudson (Exoray@isys.ca)
* claims that it's needed for 952 dual UART's (which are not
* recommended for new designs).
*/
up->acr = 0;
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
serial_out(up, UART_EFR, UART_EFR_ECB);
serial_out(up, UART_LCR, 0x00);
id1 = serial_icr_read(up, UART_ID1);
id2 = serial_icr_read(up, UART_ID2);
id3 = serial_icr_read(up, UART_ID3);
rev = serial_icr_read(up, UART_REV);
DEBUG_AUTOCONF("950id=%02x:%02x:%02x:%02x ", id1, id2, id3, rev);
if (id1 == 0x16 && id2 == 0xC9 &&
(id3 == 0x50 || id3 == 0x52 || id3 == 0x54)) {
up->port.type = PORT_16C950;
/*
* Enable work around for the Oxford Semiconductor 952 rev B
* chip which causes it to seriously miscalculate baud rates
* when DLL is 0.
*/
if (id3 == 0x52 && rev == 0x01)
up->bugs |= UART_BUG_QUOT;
return;
}
/*
* We check for a XR16C850 by setting DLL and DLM to 0, and then
* reading back DLL and DLM. The chip type depends on the DLM
* value read back:
* 0x10 - XR16C850 and the DLL contains the chip revision.
* 0x12 - XR16C2850.
* 0x14 - XR16C854.
*/
id1 = autoconfig_read_divisor_id(up);
DEBUG_AUTOCONF("850id=%04x ", id1);
id2 = id1 >> 8;
if (id2 == 0x10 || id2 == 0x12 || id2 == 0x14) {
up->port.type = PORT_16850;
return;
}
/*
* It wasn't an XR16C850.
*
* We distinguish between the '654 and the '650 by counting
* how many bytes are in the FIFO. I'm using this for now,
* since that's the technique that was sent to me in the
* serial driver update, but I'm not convinced this works.
* I've had problems doing this in the past. -TYT
*/
if (size_fifo(up) == 64)
up->port.type = PORT_16654;
else
up->port.type = PORT_16650V2;
}
/*
* We detected a chip without a FIFO. Only two fall into
* this category - the original 8250 and the 16450. The
* 16450 has a scratch register (accessible with LCR=0)
*/
static void autoconfig_8250(struct uart_8250_port *up)
{
unsigned char scratch, status1, status2;
up->port.type = PORT_8250;
scratch = serial_in(up, UART_SCR);
serial_out(up, UART_SCR, 0xa5);
status1 = serial_in(up, UART_SCR);
serial_out(up, UART_SCR, 0x5a);
status2 = serial_in(up, UART_SCR);
serial_out(up, UART_SCR, scratch);
if (status1 == 0xa5 && status2 == 0x5a)
up->port.type = PORT_16450;
}
static int broken_efr(struct uart_8250_port *up)
{
/*
* Exar ST16C2550 "A2" devices incorrectly detect as
* having an EFR, and report an ID of 0x0201. See
* http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-11/4812.html
*/
if (autoconfig_read_divisor_id(up) == 0x0201 && size_fifo(up) == 16)
return 1;
return 0;
}
/*
* We know that the chip has FIFOs. Does it have an EFR? The
* EFR is located in the same register position as the IIR and
* we know the top two bits of the IIR are currently set. The
* EFR should contain zero. Try to read the EFR.
*/
static void autoconfig_16550a(struct uart_8250_port *up)
{
unsigned char status1, status2;
unsigned int iersave;
up->port.type = PORT_16550A;
up->capabilities |= UART_CAP_FIFO;
if (!IS_ENABLED(CONFIG_SERIAL_8250_16550A_VARIANTS))
return;
/*
* Check for presence of the EFR when DLAB is set.
* Only ST16C650V1 UARTs pass this test.
*/
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
if (serial_in(up, UART_EFR) == 0) {
serial_out(up, UART_EFR, 0xA8);
if (serial_in(up, UART_EFR) != 0) {
DEBUG_AUTOCONF("EFRv1 ");
up->port.type = PORT_16650;
up->capabilities |= UART_CAP_EFR | UART_CAP_SLEEP;
} else {
serial_out(up, UART_LCR, 0);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR7_64BYTE);
status1 = serial_in(up, UART_IIR) >> 5;
serial_out(up, UART_FCR, 0);
serial_out(up, UART_LCR, 0);
if (status1 == 7)
up->port.type = PORT_16550A_FSL64;
else
DEBUG_AUTOCONF("Motorola 8xxx DUART ");
}
serial_out(up, UART_EFR, 0);
return;
}
/*
* Maybe it requires 0xbf to be written to the LCR.
* (other ST16C650V2 UARTs, TI16C752A, etc)
*/
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
if (serial_in(up, UART_EFR) == 0 && !broken_efr(up)) {
DEBUG_AUTOCONF("EFRv2 ");
autoconfig_has_efr(up);
return;
}
/*
* Check for a National Semiconductor SuperIO chip.
* Attempt to switch to bank 2, read the value of the LOOP bit
* from EXCR1. Switch back to bank 0, change it in MCR. Then
* switch back to bank 2, read it from EXCR1 again and check
* it's changed. If so, set baud_base in EXCR2 to 921600. -- dwmw2
*/
serial_out(up, UART_LCR, 0);
status1 = serial8250_in_MCR(up);
serial_out(up, UART_LCR, 0xE0);
status2 = serial_in(up, 0x02); /* EXCR1 */
if (!((status2 ^ status1) & UART_MCR_LOOP)) {
serial_out(up, UART_LCR, 0);
serial8250_out_MCR(up, status1 ^ UART_MCR_LOOP);
serial_out(up, UART_LCR, 0xE0);
status2 = serial_in(up, 0x02); /* EXCR1 */
serial_out(up, UART_LCR, 0);
serial8250_out_MCR(up, status1);
if ((status2 ^ status1) & UART_MCR_LOOP) {
unsigned short quot;
serial_out(up, UART_LCR, 0xE0);
quot = serial_dl_read(up);
quot <<= 3;
if (ns16550a_goto_highspeed(up))
serial_dl_write(up, quot);
serial_out(up, UART_LCR, 0);
up->port.uartclk = 921600*16;
up->port.type = PORT_NS16550A;
up->capabilities |= UART_NATSEMI;
return;
}
}
/*
* No EFR. Try to detect a TI16750, which only sets bit 5 of
* the IIR when 64 byte FIFO mode is enabled when DLAB is set.
* Try setting it with and without DLAB set. Cheap clones
* set bit 5 without DLAB set.
*/
serial_out(up, UART_LCR, 0);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
status1 = serial_in(up, UART_IIR) >> 5;
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE);
status2 = serial_in(up, UART_IIR) >> 5;
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_out(up, UART_LCR, 0);
DEBUG_AUTOCONF("iir1=%d iir2=%d ", status1, status2);
if (status1 == 6 && status2 == 7) {
up->port.type = PORT_16750;
up->capabilities |= UART_CAP_AFE | UART_CAP_SLEEP;
return;
}
/*
* Try writing and reading the UART_IER_UUE bit (b6).
* If it works, this is probably one of the Xscale platform's
* internal UARTs.
* We're going to explicitly set the UUE bit to 0 before
* trying to write and read a 1 just to make sure it's not
* already a 1 and maybe locked there before we even start start.
*/
iersave = serial_in(up, UART_IER);
serial_out(up, UART_IER, iersave & ~UART_IER_UUE);
if (!(serial_in(up, UART_IER) & UART_IER_UUE)) {
/*
* OK it's in a known zero state, try writing and reading
* without disturbing the current state of the other bits.
*/
serial_out(up, UART_IER, iersave | UART_IER_UUE);
if (serial_in(up, UART_IER) & UART_IER_UUE) {
/*
* It's an Xscale.
* We'll leave the UART_IER_UUE bit set to 1 (enabled).
*/
DEBUG_AUTOCONF("Xscale ");
up->port.type = PORT_XSCALE;
up->capabilities |= UART_CAP_UUE | UART_CAP_RTOIE;
return;
}
} else {
/*
* If we got here we couldn't force the IER_UUE bit to 0.
* Log it and continue.
*/
DEBUG_AUTOCONF("Couldn't force IER_UUE to 0 ");
}
serial_out(up, UART_IER, iersave);
/*
* We distinguish between 16550A and U6 16550A by counting
* how many bytes are in the FIFO.
*/
if (up->port.type == PORT_16550A && size_fifo(up) == 64) {
up->port.type = PORT_U6_16550A;
up->capabilities |= UART_CAP_AFE;
}
}
/*
* This routine is called by rs_init() to initialize a specific serial
* port. It determines what type of UART chip this serial port is
* using: 8250, 16450, 16550, 16550A. The important question is
* whether or not this UART is a 16550A or not, since this will
* determine whether or not we can use its FIFO features or not.
*/
static void autoconfig(struct uart_8250_port *up)
{
unsigned char status1, scratch, scratch2, scratch3;
unsigned char save_lcr, save_mcr;
struct uart_port *port = &up->port;
unsigned long flags;
unsigned int old_capabilities;
if (!port->iobase && !port->mapbase && !port->membase)
return;
DEBUG_AUTOCONF("%s: autoconf (0x%04lx, 0x%p): ",
port->name, port->iobase, port->membase);
/*
* We really do need global IRQs disabled here - we're going to
* be frobbing the chips IRQ enable register to see if it exists.
*/
spin_lock_irqsave(&port->lock, flags);
up->capabilities = 0;
up->bugs = 0;
if (!(port->flags & UPF_BUGGY_UART)) {
/*
* Do a simple existence test first; if we fail this,
* there's no point trying anything else.
*
* 0x80 is used as a nonsense port to prevent against
* false positives due to ISA bus float. The
* assumption is that 0x80 is a non-existent port;
* which should be safe since include/asm/io.h also
* makes this assumption.
*
* Note: this is safe as long as MCR bit 4 is clear
* and the device is in "PC" mode.
*/
scratch = serial_in(up, UART_IER);
serial_out(up, UART_IER, 0);
#ifdef __i386__
outb(0xff, 0x080);
#endif
/*
* Mask out IER[7:4] bits for test as some UARTs (e.g. TL
* 16C754B) allow only to modify them if an EFR bit is set.
*/
scratch2 = serial_in(up, UART_IER) & 0x0f;
serial_out(up, UART_IER, 0x0F);
#ifdef __i386__
outb(0, 0x080);
#endif
scratch3 = serial_in(up, UART_IER) & 0x0f;
serial_out(up, UART_IER, scratch);
if (scratch2 != 0 || scratch3 != 0x0F) {
/*
* We failed; there's nothing here
*/
spin_unlock_irqrestore(&port->lock, flags);
DEBUG_AUTOCONF("IER test failed (%02x, %02x) ",
scratch2, scratch3);
goto out;
}
}
save_mcr = serial8250_in_MCR(up);
save_lcr = serial_in(up, UART_LCR);
/*
* Check to see if a UART is really there. Certain broken
* internal modems based on the Rockwell chipset fail this
* test, because they apparently don't implement the loopback
* test mode. So this test is skipped on the COM 1 through
* COM 4 ports. This *should* be safe, since no board
* manufacturer would be stupid enough to design a board
* that conflicts with COM 1-4 --- we hope!
*/
if (!(port->flags & UPF_SKIP_TEST)) {
serial8250_out_MCR(up, UART_MCR_LOOP | 0x0A);
status1 = serial_in(up, UART_MSR) & 0xF0;
serial8250_out_MCR(up, save_mcr);
if (status1 != 0x90) {
spin_unlock_irqrestore(&port->lock, flags);
DEBUG_AUTOCONF("LOOP test failed (%02x) ",
status1);
goto out;
}
}
/*
* We're pretty sure there's a port here. Lets find out what
* type of port it is. The IIR top two bits allows us to find
* out if it's 8250 or 16450, 16550, 16550A or later. This
* determines what we test for next.
*
* We also initialise the EFR (if any) to zero for later. The
* EFR occupies the same register location as the FCR and IIR.
*/
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
serial_out(up, UART_EFR, 0);
serial_out(up, UART_LCR, 0);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
scratch = serial_in(up, UART_IIR) >> 6;
switch (scratch) {
case 0:
autoconfig_8250(up);
break;
case 1:
port->type = PORT_UNKNOWN;
break;
case 2:
port->type = PORT_16550;
break;
case 3:
autoconfig_16550a(up);
break;
}
#ifdef CONFIG_SERIAL_8250_RSA
/*
* Only probe for RSA ports if we got the region.
*/
if (port->type == PORT_16550A && up->probe & UART_PROBE_RSA &&
__enable_rsa(up))
port->type = PORT_RSA;
#endif
serial_out(up, UART_LCR, save_lcr);
port->fifosize = uart_config[up->port.type].fifo_size;
old_capabilities = up->capabilities;
up->capabilities = uart_config[port->type].flags;
up->tx_loadsz = uart_config[port->type].tx_loadsz;
if (port->type == PORT_UNKNOWN)
goto out_lock;
/*
* Reset the UART.
*/
#ifdef CONFIG_SERIAL_8250_RSA
if (port->type == PORT_RSA)
serial_out(up, UART_RSA_FRR, 0);
#endif
serial8250_out_MCR(up, save_mcr);
serial8250_clear_fifos(up);
serial_in(up, UART_RX);
if (up->capabilities & UART_CAP_UUE)
serial_out(up, UART_IER, UART_IER_UUE);
else
serial_out(up, UART_IER, 0);
out_lock:
spin_unlock_irqrestore(&port->lock, flags);
/*
* Check if the device is a Fintek F81216A
*/
if (port->type == PORT_16550A && port->iotype == UPIO_PORT)
fintek_8250_probe(up);
if (up->capabilities != old_capabilities) {
dev_warn(port->dev, "detected caps %08x should be %08x\n",
old_capabilities, up->capabilities);
}
out:
DEBUG_AUTOCONF("iir=%d ", scratch);
DEBUG_AUTOCONF("type=%s\n", uart_config[port->type].name);
}
static void autoconfig_irq(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
unsigned char save_mcr, save_ier;
unsigned char save_ICP = 0;
unsigned int ICP = 0;
unsigned long irqs;
int irq;
if (port->flags & UPF_FOURPORT) {
ICP = (port->iobase & 0xfe0) | 0x1f;
save_ICP = inb_p(ICP);
outb_p(0x80, ICP);
inb_p(ICP);
}
serial: 8250: Fix autoconfig_irq() to avoid race conditions The following race conditions can happen when a serial port is used as console. Case1: CPU_B is used to detect an interrupt from a serial port, but it can have interrupts disabled during the waiting time. Case2: CPU_B clears UART_IER just after CPU_A sets UART_IER and then a serial port may not make an interrupt. Case3: CPU_A sets UART_IER just after CPU_B clears UART_IER. This is an unexpected behavior for serial8250_console_write(). CPU_A [autoconfig_irq] | CPU_B [serial8250_console_write] ----------------------------|--------------------------------------- | probe_irq_on() | spin_lock_irqsave(&port->lock,) serial_outp(,UART_IER,0x0f) | serial_out(,UART_IER,0) udelay(20); | uart_console_write() probe_irq_off() | | spin_unlock_irqrestore(&port->lock,) Case1 and 2 can make autoconfig_irq() failed. In these cases, the console doesn't work in interrupt mode and "input overrun" (which can make operation mistakes) can happen on some systems. Especially in the Case1, It is known that the problem happens with high rate every boot once it occurs because the boot sequence is always almost same. port mutex makes sure that the autoconfig operation is exclusive of any other concurrent HW access except by the console operation. console lock is required in autoconfig_irq(). Signed-off-by: Taichi Kageyama <t-kageyama@cp.jp.nec.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-08-17 02:45:29 +00:00
if (uart_console(port))
console_lock();
/* forget possible initially masked and pending IRQ */
probe_irq_off(probe_irq_on());
save_mcr = serial8250_in_MCR(up);
save_ier = serial_in(up, UART_IER);
serial8250_out_MCR(up, UART_MCR_OUT1 | UART_MCR_OUT2);
irqs = probe_irq_on();
serial8250_out_MCR(up, 0);
udelay(10);
if (port->flags & UPF_FOURPORT) {
serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS);
} else {
serial8250_out_MCR(up,
UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2);
}
serial_out(up, UART_IER, 0x0f); /* enable all intrs */
serial_in(up, UART_LSR);
serial_in(up, UART_RX);
serial_in(up, UART_IIR);
serial_in(up, UART_MSR);
serial_out(up, UART_TX, 0xFF);
udelay(20);
irq = probe_irq_off(irqs);
serial8250_out_MCR(up, save_mcr);
serial_out(up, UART_IER, save_ier);
if (port->flags & UPF_FOURPORT)
outb_p(save_ICP, ICP);
serial: 8250: Fix autoconfig_irq() to avoid race conditions The following race conditions can happen when a serial port is used as console. Case1: CPU_B is used to detect an interrupt from a serial port, but it can have interrupts disabled during the waiting time. Case2: CPU_B clears UART_IER just after CPU_A sets UART_IER and then a serial port may not make an interrupt. Case3: CPU_A sets UART_IER just after CPU_B clears UART_IER. This is an unexpected behavior for serial8250_console_write(). CPU_A [autoconfig_irq] | CPU_B [serial8250_console_write] ----------------------------|--------------------------------------- | probe_irq_on() | spin_lock_irqsave(&port->lock,) serial_outp(,UART_IER,0x0f) | serial_out(,UART_IER,0) udelay(20); | uart_console_write() probe_irq_off() | | spin_unlock_irqrestore(&port->lock,) Case1 and 2 can make autoconfig_irq() failed. In these cases, the console doesn't work in interrupt mode and "input overrun" (which can make operation mistakes) can happen on some systems. Especially in the Case1, It is known that the problem happens with high rate every boot once it occurs because the boot sequence is always almost same. port mutex makes sure that the autoconfig operation is exclusive of any other concurrent HW access except by the console operation. console lock is required in autoconfig_irq(). Signed-off-by: Taichi Kageyama <t-kageyama@cp.jp.nec.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Peter Hurley <peter@hurleysoftware.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-08-17 02:45:29 +00:00
if (uart_console(port))
console_unlock();
port->irq = (irq > 0) ? irq : 0;
}
static void serial8250_stop_rx(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
serial8250_rpm_get(up);
up->ier &= ~(UART_IER_RLSI | UART_IER_RDI);
up->port.read_status_mask &= ~UART_LSR_DR;
serial_port_out(port, UART_IER, up->ier);
serial8250_rpm_put(up);
}
/**
* serial8250_em485_stop_tx() - generic ->rs485_stop_tx() callback
* @p: uart 8250 port
*
* Generic callback usable by 8250 uart drivers to stop rs485 transmission.
*/
void serial8250_em485_stop_tx(struct uart_8250_port *p)
{
unsigned char mcr = serial8250_in_MCR(p);
if (p->port.rs485.flags & SER_RS485_RTS_AFTER_SEND)
mcr |= UART_MCR_RTS;
else
mcr &= ~UART_MCR_RTS;
serial8250_out_MCR(p, mcr);
/*
* Empty the RX FIFO, we are not interested in anything
* received during the half-duplex transmission.
* Enable previously disabled RX interrupts.
*/
if (!(p->port.rs485.flags & SER_RS485_RX_DURING_TX)) {
Revert "serial: 8250: Fix clearing FIFOs in RS485 mode again" Commit f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again") makes a change to FIFO clearing code which its commit message suggests was intended to be specific to use with RS485 mode, however: 1) The change made does not just affect __do_stop_tx_rs485(), it also affects other uses of serial8250_clear_fifos() including paths for starting up, shutting down or auto-configuring a port regardless of whether it's an RS485 port or not. 2) It makes the assumption that resetting the FIFOs is a no-op when FIFOs are disabled, and as such it checks for this case & explicitly avoids setting the FIFO reset bits when the FIFO enable bit is clear. A reading of the PC16550D manual would suggest that this is OK since the FIFO should automatically be reset if it is later enabled, but we support many 16550-compatible devices and have never required this auto-reset behaviour for at least the whole git era. Starting to rely on it now seems risky, offers no benefit, and indeed breaks at least the Ingenic JZ4780's UARTs which reads garbage when the RX FIFO is enabled if we don't explicitly reset it. 3) By only resetting the FIFOs if they're enabled, the behaviour of serial8250_do_startup() during boot now depends on what the value of FCR is before the 8250 driver is probed. This in itself seems questionable and leaves us with FCR=0 & no FIFO reset if the UART was used by 8250_early, otherwise it depends upon what the bootloader left behind. 4) Although the naming of serial8250_clear_fifos() may be unclear, it is clear that callers of it expect that it will disable FIFOs. Both serial8250_do_startup() & serial8250_do_shutdown() contain comments to that effect, and other callers explicitly re-enable the FIFOs after calling serial8250_clear_fifos(). The premise of that patch that disabling the FIFOs is incorrect therefore seems wrong. For these reasons, this reverts commit f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again"). Signed-off-by: Paul Burton <paul.burton@mips.com> Fixes: f6aa5beb45be ("serial: 8250: Fix clearing FIFOs in RS485 mode again"). Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Daniel Jedrychowski <avistel@gmail.com> Cc: Marek Vasut <marex@denx.de> Cc: linux-mips@vger.kernel.org Cc: linux-serial@vger.kernel.org Cc: stable <stable@vger.kernel.org> # 4.10+ Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-16 20:10:01 +00:00
serial8250_clear_and_reinit_fifos(p);
p->ier |= UART_IER_RLSI | UART_IER_RDI;
serial_port_out(&p->port, UART_IER, p->ier);
}
}
EXPORT_SYMBOL_GPL(serial8250_em485_stop_tx);
static enum hrtimer_restart serial8250_em485_handle_stop_tx(struct hrtimer *t)
{
struct uart_8250_em485 *em485;
struct uart_8250_port *p;
unsigned long flags;
em485 = container_of(t, struct uart_8250_em485, stop_tx_timer);
p = em485->port;
serial8250_rpm_get(p);
spin_lock_irqsave(&p->port.lock, flags);
if (em485->active_timer == &em485->stop_tx_timer) {
p->rs485_stop_tx(p);
em485->active_timer = NULL;
em485->tx_stopped = true;
}
spin_unlock_irqrestore(&p->port.lock, flags);
serial8250_rpm_put(p);
return HRTIMER_NORESTART;
}
static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
{
long sec = msec / 1000;
long nsec = (msec % 1000) * 1000000;
ktime_t t = ktime_set(sec, nsec);
hrtimer_start(hrt, t, HRTIMER_MODE_REL);
}
static void __stop_tx_rs485(struct uart_8250_port *p)
{
struct uart_8250_em485 *em485 = p->em485;
/*
* rs485_stop_tx() is going to set RTS according to config
* AND flush RX FIFO if required.
*/
if (p->port.rs485.delay_rts_after_send > 0) {
em485->active_timer = &em485->stop_tx_timer;
start_hrtimer_ms(&em485->stop_tx_timer,
p->port.rs485.delay_rts_after_send);
} else {
p->rs485_stop_tx(p);
em485->active_timer = NULL;
em485->tx_stopped = true;
}
}
static inline void __do_stop_tx(struct uart_8250_port *p)
{
if (serial8250_clear_THRI(p))
serial8250_rpm_put_tx(p);
}
static inline void __stop_tx(struct uart_8250_port *p)
{
struct uart_8250_em485 *em485 = p->em485;
if (em485) {
unsigned char lsr = serial_in(p, UART_LSR);
/*
* To provide required timeing and allow FIFO transfer,
* __stop_tx_rs485() must be called only when both FIFO and
* shift register are empty. It is for device driver to enable
* interrupt on TEMT.
*/
if ((lsr & BOTH_EMPTY) != BOTH_EMPTY)
return;
__stop_tx_rs485(p);
}
__do_stop_tx(p);
}
static void serial8250_stop_tx(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
serial8250_rpm_get(up);
__stop_tx(up);
/*
* We really want to stop the transmitter from sending.
*/
if (port->type == PORT_16C950) {
up->acr |= UART_ACR_TXDIS;
serial_icr_write(up, UART_ACR, up->acr);
}
serial8250_rpm_put(up);
}
static inline void __start_tx(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
if (up->dma && !up->dma->tx_dma(up))
return;
if (serial8250_set_THRI(up)) {
if (up->bugs & UART_BUG_TXEN) {
unsigned char lsr;
lsr = serial_in(up, UART_LSR);
up->lsr_saved_flags |= lsr & LSR_SAVE_FLAGS;
if (lsr & UART_LSR_THRE)
serial8250_tx_chars(up);
}
}
/*
* Re-enable the transmitter if we disabled it.
*/
if (port->type == PORT_16C950 && up->acr & UART_ACR_TXDIS) {
up->acr &= ~UART_ACR_TXDIS;
serial_icr_write(up, UART_ACR, up->acr);
}
}
/**
* serial8250_em485_start_tx() - generic ->rs485_start_tx() callback
* @up: uart 8250 port
*
* Generic callback usable by 8250 uart drivers to start rs485 transmission.
* Assumes that setting the RTS bit in the MCR register means RTS is high.
* (Some chips use inverse semantics.) Further assumes that reception is
* stoppable by disabling the UART_IER_RDI interrupt. (Some chips set the
* UART_LSR_DR bit even when UART_IER_RDI is disabled, foiling this approach.)
*/
void serial8250_em485_start_tx(struct uart_8250_port *up)
{
unsigned char mcr = serial8250_in_MCR(up);
if (!(up->port.rs485.flags & SER_RS485_RX_DURING_TX))
serial8250_stop_rx(&up->port);
if (up->port.rs485.flags & SER_RS485_RTS_ON_SEND)
mcr |= UART_MCR_RTS;
else
mcr &= ~UART_MCR_RTS;
serial8250_out_MCR(up, mcr);
}
EXPORT_SYMBOL_GPL(serial8250_em485_start_tx);
static inline void start_tx_rs485(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
struct uart_8250_em485 *em485 = up->em485;
em485->active_timer = NULL;
if (em485->tx_stopped) {
em485->tx_stopped = false;
up->rs485_start_tx(up);
if (up->port.rs485.delay_rts_before_send > 0) {
em485->active_timer = &em485->start_tx_timer;
start_hrtimer_ms(&em485->start_tx_timer,
up->port.rs485.delay_rts_before_send);
return;
}
}
__start_tx(port);
}
static enum hrtimer_restart serial8250_em485_handle_start_tx(struct hrtimer *t)
{
struct uart_8250_em485 *em485;
struct uart_8250_port *p;
unsigned long flags;
em485 = container_of(t, struct uart_8250_em485, start_tx_timer);
p = em485->port;
spin_lock_irqsave(&p->port.lock, flags);
if (em485->active_timer == &em485->start_tx_timer) {
__start_tx(&p->port);
em485->active_timer = NULL;
}
spin_unlock_irqrestore(&p->port.lock, flags);
return HRTIMER_NORESTART;
}
static void serial8250_start_tx(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
struct uart_8250_em485 *em485 = up->em485;
serial8250_rpm_get_tx(up);
if (em485 &&
em485->active_timer == &em485->start_tx_timer)
return;
if (em485)
start_tx_rs485(port);
else
__start_tx(port);
}
static void serial8250_throttle(struct uart_port *port)
{
port->throttle(port);
}
static void serial8250_unthrottle(struct uart_port *port)
{
port->unthrottle(port);
}
static void serial8250_disable_ms(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
/* no MSR capabilities */
if (up->bugs & UART_BUG_NOMSR)
return;
mctrl_gpio_disable_ms(up->gpios);
up->ier &= ~UART_IER_MSI;
serial_port_out(port, UART_IER, up->ier);
}
static void serial8250_enable_ms(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
/* no MSR capabilities */
if (up->bugs & UART_BUG_NOMSR)
return;
mctrl_gpio_enable_ms(up->gpios);
up->ier |= UART_IER_MSI;
serial8250_rpm_get(up);
serial_port_out(port, UART_IER, up->ier);
serial8250_rpm_put(up);
}
void serial8250_read_char(struct uart_8250_port *up, unsigned char lsr)
{
struct uart_port *port = &up->port;
unsigned char ch;
char flag = TTY_NORMAL;
if (likely(lsr & UART_LSR_DR))
ch = serial_in(up, UART_RX);
else
/*
* Intel 82571 has a Serial Over Lan device that will
* set UART_LSR_BI without setting UART_LSR_DR when
* it receives a break. To avoid reading from the
* receive buffer without UART_LSR_DR bit set, we
* just force the read character to be 0
*/
ch = 0;
port->icount.rx++;
lsr |= up->lsr_saved_flags;
up->lsr_saved_flags = 0;
if (unlikely(lsr & UART_LSR_BRK_ERROR_BITS)) {
if (lsr & UART_LSR_BI) {
lsr &= ~(UART_LSR_FE | UART_LSR_PE);
port->icount.brk++;
/*
* We do the SysRQ and SAK checking
* here because otherwise the break
* may get masked by ignore_status_mask
* or read_status_mask.
*/
if (uart_handle_break(port))
return;
} else if (lsr & UART_LSR_PE)
port->icount.parity++;
else if (lsr & UART_LSR_FE)
port->icount.frame++;
if (lsr & UART_LSR_OE)
port->icount.overrun++;
/*
* Mask off conditions which should be ignored.
*/
lsr &= port->read_status_mask;
if (lsr & UART_LSR_BI) {
dev_dbg(port->dev, "handling break\n");
flag = TTY_BREAK;
} else if (lsr & UART_LSR_PE)
flag = TTY_PARITY;
else if (lsr & UART_LSR_FE)
flag = TTY_FRAME;
}
if (uart_prepare_sysrq_char(port, ch))
return;
uart_insert_char(port, lsr, UART_LSR_OE, ch, flag);
}
EXPORT_SYMBOL_GPL(serial8250_read_char);
/*
* serial8250_rx_chars: processes according to the passed in LSR
* value, and returns the remaining LSR bits not handled
* by this Rx routine.
*/
unsigned char serial8250_rx_chars(struct uart_8250_port *up, unsigned char lsr)
{
struct uart_port *port = &up->port;
int max_count = 256;
do {
serial8250_read_char(up, lsr);
if (--max_count == 0)
break;
lsr = serial_in(up, UART_LSR);
} while (lsr & (UART_LSR_DR | UART_LSR_BI));
tty_flip_buffer_push(&port->state->port);
return lsr;
}
EXPORT_SYMBOL_GPL(serial8250_rx_chars);
void serial8250_tx_chars(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
struct circ_buf *xmit = &port->state->xmit;
int count;
if (port->x_char) {
serial_out(up, UART_TX, port->x_char);
port->icount.tx++;
port->x_char = 0;
return;
}
if (uart_tx_stopped(port)) {
serial8250_stop_tx(port);
return;
}
if (uart_circ_empty(xmit)) {
__stop_tx(up);
return;
}
count = up->tx_loadsz;
do {
serial_out(up, UART_TX, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
if (uart_circ_empty(xmit))
break;
if ((up->capabilities & UART_CAP_HFIFO) &&
(serial_in(up, UART_LSR) & BOTH_EMPTY) != BOTH_EMPTY)
break;
/* The BCM2835 MINI UART THRE bit is really a not-full bit. */
if ((up->capabilities & UART_CAP_MINI) &&
!(serial_in(up, UART_LSR) & UART_LSR_THRE))
break;
} while (--count > 0);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
/*
* With RPM enabled, we have to wait until the FIFO is empty before the
* HW can go idle. So we get here once again with empty FIFO and disable
* the interrupt and RPM in __stop_tx()
*/
if (uart_circ_empty(xmit) && !(up->capabilities & UART_CAP_RPM))
__stop_tx(up);
}
EXPORT_SYMBOL_GPL(serial8250_tx_chars);
/* Caller holds uart port lock */
unsigned int serial8250_modem_status(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
unsigned int status = serial_in(up, UART_MSR);
status |= up->msr_saved_flags;
up->msr_saved_flags = 0;
if (status & UART_MSR_ANY_DELTA && up->ier & UART_IER_MSI &&
port->state != NULL) {
if (status & UART_MSR_TERI)
port->icount.rng++;
if (status & UART_MSR_DDSR)
port->icount.dsr++;
if (status & UART_MSR_DDCD)
uart_handle_dcd_change(port, status & UART_MSR_DCD);
if (status & UART_MSR_DCTS)
uart_handle_cts_change(port, status & UART_MSR_CTS);
wake_up_interruptible(&port->state->port.delta_msr_wait);
}
return status;
}
EXPORT_SYMBOL_GPL(serial8250_modem_status);
static bool handle_rx_dma(struct uart_8250_port *up, unsigned int iir)
{
switch (iir & 0x3f) {
case UART_IIR_RX_TIMEOUT:
serial8250_rx_dma_flush(up);
fallthrough;
case UART_IIR_RLSI:
return true;
}
return up->dma->rx_dma(up);
}
/*
* This handles the interrupt from one port.
*/
int serial8250_handle_irq(struct uart_port *port, unsigned int iir)
{
unsigned char status;
unsigned long flags;
struct uart_8250_port *up = up_to_u8250p(port);
bool skip_rx = false;
if (iir & UART_IIR_NO_INT)
return 0;
spin_lock_irqsave(&port->lock, flags);
status = serial_port_in(port, UART_LSR);
/*
* If port is stopped and there are no error conditions in the
* FIFO, then don't drain the FIFO, as this may lead to TTY buffer
* overflow. Not servicing, RX FIFO would trigger auto HW flow
* control when FIFO occupancy reaches preset threshold, thus
* halting RX. This only works when auto HW flow control is
* available.
*/
if (!(status & (UART_LSR_FIFOE | UART_LSR_BRK_ERROR_BITS)) &&
(port->status & (UPSTAT_AUTOCTS | UPSTAT_AUTORTS)) &&
!(port->read_status_mask & UART_LSR_DR))
skip_rx = true;
if (status & (UART_LSR_DR | UART_LSR_BI) && !skip_rx) {
if (!up->dma || handle_rx_dma(up, iir))
status = serial8250_rx_chars(up, status);
}
serial8250_modem_status(up);
if ((!up->dma || up->dma->tx_err) && (status & UART_LSR_THRE) &&
(up->ier & UART_IER_THRI))
serial8250_tx_chars(up);
uart_unlock_and_check_sysrq(port, flags);
return 1;
}
EXPORT_SYMBOL_GPL(serial8250_handle_irq);
static int serial8250_default_handle_irq(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned int iir;
int ret;
serial8250_rpm_get(up);
iir = serial_port_in(port, UART_IIR);
ret = serial8250_handle_irq(port, iir);
serial8250_rpm_put(up);
return ret;
}
/*
* Newer 16550 compatible parts such as the SC16C650 & Altera 16550 Soft IP
* have a programmable TX threshold that triggers the THRE interrupt in
* the IIR register. In this case, the THRE interrupt indicates the FIFO
* has space available. Load it up with tx_loadsz bytes.
*/
static int serial8250_tx_threshold_handle_irq(struct uart_port *port)
{
unsigned long flags;
unsigned int iir = serial_port_in(port, UART_IIR);
/* TX Threshold IRQ triggered so load up FIFO */
if ((iir & UART_IIR_ID) == UART_IIR_THRI) {
struct uart_8250_port *up = up_to_u8250p(port);
spin_lock_irqsave(&port->lock, flags);
serial8250_tx_chars(up);
spin_unlock_irqrestore(&port->lock, flags);
}
iir = serial_port_in(port, UART_IIR);
return serial8250_handle_irq(port, iir);
}
static unsigned int serial8250_tx_empty(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned long flags;
unsigned int lsr;
serial8250_rpm_get(up);
spin_lock_irqsave(&port->lock, flags);
lsr = serial_port_in(port, UART_LSR);
up->lsr_saved_flags |= lsr & LSR_SAVE_FLAGS;
spin_unlock_irqrestore(&port->lock, flags);
serial8250_rpm_put(up);
return (lsr & BOTH_EMPTY) == BOTH_EMPTY ? TIOCSER_TEMT : 0;
}
unsigned int serial8250_do_get_mctrl(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned int status;
unsigned int val;
serial8250_rpm_get(up);
status = serial8250_modem_status(up);
serial8250_rpm_put(up);
val = serial8250_MSR_to_TIOCM(status);
if (up->gpios)
return mctrl_gpio_get(up->gpios, &val);
return val;
}
EXPORT_SYMBOL_GPL(serial8250_do_get_mctrl);
static unsigned int serial8250_get_mctrl(struct uart_port *port)
{
if (port->get_mctrl)
return port->get_mctrl(port);
return serial8250_do_get_mctrl(port);
}
void serial8250_do_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned char mcr;
if (port->rs485.flags & SER_RS485_ENABLED) {
if (serial8250_in_MCR(up) & UART_MCR_RTS)
mctrl |= TIOCM_RTS;
else
mctrl &= ~TIOCM_RTS;
}
mcr = serial8250_TIOCM_to_MCR(mctrl);
mcr = (mcr & up->mcr_mask) | up->mcr_force | up->mcr;
serial8250_out_MCR(up, mcr);
}
EXPORT_SYMBOL_GPL(serial8250_do_set_mctrl);
static void serial8250_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
if (port->set_mctrl)
port->set_mctrl(port, mctrl);
else
serial8250_do_set_mctrl(port, mctrl);
}
static void serial8250_break_ctl(struct uart_port *port, int break_state)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned long flags;
serial8250_rpm_get(up);
spin_lock_irqsave(&port->lock, flags);
if (break_state == -1)
up->lcr |= UART_LCR_SBC;
else
up->lcr &= ~UART_LCR_SBC;
serial_port_out(port, UART_LCR, up->lcr);
spin_unlock_irqrestore(&port->lock, flags);
serial8250_rpm_put(up);
}
/*
* Wait for transmitter & holding register to empty
*/
static void wait_for_xmitr(struct uart_8250_port *up, int bits)
{
unsigned int status, tmout = 10000;
/* Wait up to 10ms for the character(s) to be sent. */
for (;;) {
status = serial_in(up, UART_LSR);
up->lsr_saved_flags |= status & LSR_SAVE_FLAGS;
if ((status & bits) == bits)
break;
if (--tmout == 0)
break;
udelay(1);
tty/serial/8250: Touch NMI watchdog in wait_for_xmitr First loop in wait_for_xmitr could also trigger NMI watchdog in case reading from the port is slow: PID: 0 TASK: ffffffff819c1460 CPU: 0 COMMAND: "swapper/0" #0 [ffff88019f405e58] crash_nmi_callback at ffffffff8104d382 #1 [ffff88019f405e68] nmi_handle at ffffffff8168ead9 #2 [ffff88019f405eb0] do_nmi at ffffffff8168ec53 #3 [ffff88019f405ef0] end_repeat_nmi at ffffffff8168df13 [exception RIP: delay_tsc+50] RIP: ffffffff81325642 RSP: ffff88019f403bb0 RFLAGS: 00000083 RAX: 00000000000005c8 RBX: ffffffff81f83000 RCX: 0000024e4fb88a8b RDX: 0000024e4fb89053 RSI: 0000000000000000 RDI: 00000000000007d1 RBP: ffff88019f403bb0 R8: 000000000000000a R9: 0000000000000000 R10: 0000000000000000 R11: ffff88019f403ad6 R12: 000000000000250f R13: 0000000000000020 R14: ffffffff81d360c7 R15: 0000000000000047 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 --- <NMI exception stack> --- #4 [ffff88019f403bb0] delay_tsc at ffffffff81325642 #5 [ffff88019f403bb8] __const_udelay at ffffffff813255a8 #6 [ffff88019f403bc8] wait_for_xmitr at ffffffff81404390 #7 [ffff88019f403bf0] serial8250_console_putchar at ffffffff8140455c #8 [ffff88019f403c10] uart_console_write at ffffffff813ff00a #9 [ffff88019f403c40] serial8250_console_write at ffffffff814044ae #10 [ffff88019f403c88] call_console_drivers.constprop.15 at ffffffff81086b01 #11 [ffff88019f403cb0] console_unlock at ffffffff8108842f #12 [ffff88019f403ce8] vprintk_emit at ffffffff81088834 #13 [ffff88019f403d58] vprintk_default at ffffffff81088ba9 #14 [ffff88019f403d68] printk at ffffffff8167f034 Adding touch_nmi_watchdog call to the first loop as well. Reported-by: Chunyu Hu <chuhu@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-21 16:43:15 +02:00
touch_nmi_watchdog();
}
/* Wait up to 1s for flow control if necessary */
if (up->port.flags & UPF_CONS_FLOW) {
for (tmout = 1000000; tmout; tmout--) {
unsigned int msr = serial_in(up, UART_MSR);
up->msr_saved_flags |= msr & MSR_SAVE_FLAGS;
if (msr & UART_MSR_CTS)
break;
udelay(1);
touch_nmi_watchdog();
}
}
}
#ifdef CONFIG_CONSOLE_POLL
/*
* Console polling routines for writing and reading from the uart while
* in an interrupt or debug context.
*/
static int serial8250_get_poll_char(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned char lsr;
int status;
serial8250_rpm_get(up);
lsr = serial_port_in(port, UART_LSR);
if (!(lsr & UART_LSR_DR)) {
status = NO_POLL_CHAR;
goto out;
}
status = serial_port_in(port, UART_RX);
out:
serial8250_rpm_put(up);
return status;
}
static void serial8250_put_poll_char(struct uart_port *port,
unsigned char c)
{
unsigned int ier;
struct uart_8250_port *up = up_to_u8250p(port);
serial8250_rpm_get(up);
/*
* First save the IER then disable the interrupts
*/
ier = serial_port_in(port, UART_IER);
if (up->capabilities & UART_CAP_UUE)
serial_port_out(port, UART_IER, UART_IER_UUE);
else
serial_port_out(port, UART_IER, 0);
wait_for_xmitr(up, BOTH_EMPTY);
/*
* Send the character out.
*/
serial_port_out(port, UART_TX, c);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(up, BOTH_EMPTY);
serial_port_out(port, UART_IER, ier);
serial8250_rpm_put(up);
}
#endif /* CONFIG_CONSOLE_POLL */
int serial8250_do_startup(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned long flags;
unsigned char lsr, iir;
int retval;
if (!port->fifosize)
port->fifosize = uart_config[port->type].fifo_size;
if (!up->tx_loadsz)
up->tx_loadsz = uart_config[port->type].tx_loadsz;
if (!up->capabilities)
up->capabilities = uart_config[port->type].flags;
up->mcr = 0;
if (port->iotype != up->cur_iotype)
set_io_from_upio(port);
serial8250_rpm_get(up);
if (port->type == PORT_16C950) {
/* Wake up and initialize UART */
up->acr = 0;
serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
serial_port_out(port, UART_EFR, UART_EFR_ECB);
serial_port_out(port, UART_IER, 0);
serial_port_out(port, UART_LCR, 0);
serial_icr_write(up, UART_CSR, 0); /* Reset the UART */
serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
serial_port_out(port, UART_EFR, UART_EFR_ECB);
serial_port_out(port, UART_LCR, 0);
}
if (port->type == PORT_DA830) {
/* Reset the port */
serial_port_out(port, UART_IER, 0);
serial_port_out(port, UART_DA830_PWREMU_MGMT, 0);
mdelay(10);
/* Enable Tx, Rx and free run mode */
serial_port_out(port, UART_DA830_PWREMU_MGMT,
UART_DA830_PWREMU_MGMT_UTRST |
UART_DA830_PWREMU_MGMT_URRST |
UART_DA830_PWREMU_MGMT_FREE);
}
if (port->type == PORT_NPCM) {
/*
* Nuvoton calls the scratch register 'UART_TOR' (timeout
* register). Enable it, and set TIOC (timeout interrupt
* comparator) to be 0x20 for correct operation.
*/
serial_port_out(port, UART_NPCM_TOR, UART_NPCM_TOIE | 0x20);
}
#ifdef CONFIG_SERIAL_8250_RSA
/*
* If this is an RSA port, see if we can kick it up to the
* higher speed clock.
*/
enable_rsa(up);
#endif
/*
* Clear the FIFO buffers and disable them.
* (they will be reenabled in set_termios())
*/
serial8250_clear_fifos(up);
/*
* Clear the interrupt registers.
*/
serial_port_in(port, UART_LSR);
serial_port_in(port, UART_RX);
serial_port_in(port, UART_IIR);
serial_port_in(port, UART_MSR);
/*
* At this point, there's no way the LSR could still be 0xff;
* if it is, then bail out, because there's likely no UART
* here.
*/
if (!(port->flags & UPF_BUGGY_UART) &&
(serial_port_in(port, UART_LSR) == 0xff)) {
dev_info_ratelimited(port->dev, "LSR safety check engaged!\n");
retval = -ENODEV;
goto out;
}
/*
* For a XR16C850, we need to set the trigger levels
*/
if (port->type == PORT_16850) {
unsigned char fctr;
serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B);
fctr = serial_in(up, UART_FCTR) & ~(UART_FCTR_RX|UART_FCTR_TX);
serial_port_out(port, UART_FCTR,
fctr | UART_FCTR_TRGD | UART_FCTR_RX);
serial_port_out(port, UART_TRG, UART_TRG_96);
serial_port_out(port, UART_FCTR,
fctr | UART_FCTR_TRGD | UART_FCTR_TX);
serial_port_out(port, UART_TRG, UART_TRG_96);
serial_port_out(port, UART_LCR, 0);
}
/*
* For the Altera 16550 variants, set TX threshold trigger level.
*/
if (((port->type == PORT_ALTR_16550_F32) ||
(port->type == PORT_ALTR_16550_F64) ||
(port->type == PORT_ALTR_16550_F128)) && (port->fifosize > 1)) {
/* Bounds checking of TX threshold (valid 0 to fifosize-2) */
if ((up->tx_loadsz < 2) || (up->tx_loadsz > port->fifosize)) {
dev_err(port->dev, "TX FIFO Threshold errors, skipping\n");
} else {
serial_port_out(port, UART_ALTR_AFR,
UART_ALTR_EN_TXFIFO_LW);
serial_port_out(port, UART_ALTR_TX_LOW,
port->fifosize - up->tx_loadsz);
port->handle_irq = serial8250_tx_threshold_handle_irq;
}
}
serial: 8250: Check UPF_IRQ_SHARED in advance The commit 54e53b2e8081 ("tty: serial: 8250: pass IRQ shared flag to UART ports") nicely explained the problem: ---8<---8<--- On some systems IRQ lines between multiple UARTs might be shared. If so, the irqflags have to be configured accordingly. The reason is: The 8250 port startup code performs IRQ tests *before* the IRQ handler for that particular port is registered. This is performed in serial8250_do_startup(). This function checks whether IRQF_SHARED is configured and only then disables the IRQ line while testing. This test is performed upon each open() of the UART device. Imagine two UARTs share the same IRQ line: On is already opened and the IRQ is active. When the second UART is opened, the IRQ line has to be disabled while performing IRQ tests. Otherwise an IRQ might handler might be invoked, but the IRQ itself cannot be handled, because the corresponding handler isn't registered, yet. That's because the 8250 code uses a chain-handler and invokes the corresponding port's IRQ handling routines himself. Unfortunately this IRQF_SHARED flag isn't configured for UARTs probed via device tree even if the IRQs are shared. This way, the actual and shared IRQ line isn't disabled while performing tests and the kernel correctly detects a spurious IRQ. So, adding this flag to the DT probe solves the issue. Note: The UPF_SHARE_IRQ flag is configured unconditionally. Therefore, the IRQF_SHARED flag can be set unconditionally as well. Example stack trace by performing `echo 1 > /dev/ttyS2` on a non-patched system: |irq 85: nobody cared (try booting with the "irqpoll" option) | [...] |handlers: |[<ffff0000080fc628>] irq_default_primary_handler threaded [<ffff00000855fbb8>] serial8250_interrupt |Disabling IRQ #85 ---8<---8<--- But unfortunately didn't fix the root cause. Let's try again here by moving IRQ flag assignment from serial_link_irq_chain() to serial8250_do_startup(). This should fix the similar issue reported for 8250_pnp case. Since this change we don't need to have custom solutions in 8250_aspeed_vuart and 8250_of drivers, thus, drop them. Fixes: 1c2f04937b3e ("serial: 8250: add IRQ trigger support") Reported-by: Li RongQing <lirongqing@baidu.com> Cc: Kurt Kanzenbach <kurt@linutronix.de> Cc: Vikram Pandita <vikram.pandita@ti.com> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: stable <stable@vger.kernel.org> Acked-by: Kurt Kanzenbach <kurt@linutronix.de> Link: https://lore.kernel.org/r/20200211135559.85960-1-andriy.shevchenko@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11 15:55:59 +02:00
/* Check if we need to have shared IRQs */
if (port->irq && (up->port.flags & UPF_SHARE_IRQ))
up->port.irqflags |= IRQF_SHARED;
if (port->irq && !(up->port.flags & UPF_NO_THRE_TEST)) {
unsigned char iir1;
serial: 8250: change lock order in serial8250_do_startup() We have a number of "uart.port->desc.lock vs desc.lock->uart.port" lockdep reports coming from 8250 driver; this causes a bit of trouble to people, so let's fix it. The problem is reverse lock order in two different call paths: chain #1: serial8250_do_startup() spin_lock_irqsave(&port->lock); disable_irq_nosync(port->irq); raw_spin_lock_irqsave(&desc->lock) chain #2: __report_bad_irq() raw_spin_lock_irqsave(&desc->lock) for_each_action_of_desc() printk() spin_lock_irqsave(&port->lock); Fix this by changing the order of locks in serial8250_do_startup(): do disable_irq_nosync() first, which grabs desc->lock, and grab uart->port after that, so that chain #1 and chain #2 have same lock order. Full lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.4.39 #55 Not tainted ====================================================== swapper/0/0 is trying to acquire lock: ffffffffab65b6c0 (console_owner){-...}, at: console_lock_spinning_enable+0x31/0x57 but task is already holding lock: ffff88810a8e34c0 (&irq_desc_lock_class){-.-.}, at: __report_bad_irq+0x5b/0xba which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&irq_desc_lock_class){-.-.}: _raw_spin_lock_irqsave+0x61/0x8d __irq_get_desc_lock+0x65/0x89 __disable_irq_nosync+0x3b/0x93 serial8250_do_startup+0x451/0x75c uart_startup+0x1b4/0x2ff uart_port_activate+0x73/0xa0 tty_port_open+0xae/0x10a uart_open+0x1b/0x26 tty_open+0x24d/0x3a0 chrdev_open+0xd5/0x1cc do_dentry_open+0x299/0x3c8 path_openat+0x434/0x1100 do_filp_open+0x9b/0x10a do_sys_open+0x15f/0x3d7 kernel_init_freeable+0x157/0x1dd kernel_init+0xe/0x105 ret_from_fork+0x27/0x50 -> #1 (&port_lock_key){-.-.}: _raw_spin_lock_irqsave+0x61/0x8d serial8250_console_write+0xa7/0x2a0 console_unlock+0x3b7/0x528 vprintk_emit+0x111/0x17f printk+0x59/0x73 register_console+0x336/0x3a4 uart_add_one_port+0x51b/0x5be serial8250_register_8250_port+0x454/0x55e dw8250_probe+0x4dc/0x5b9 platform_drv_probe+0x67/0x8b really_probe+0x14a/0x422 driver_probe_device+0x66/0x130 device_driver_attach+0x42/0x5b __driver_attach+0xca/0x139 bus_for_each_dev+0x97/0xc9 bus_add_driver+0x12b/0x228 driver_register+0x64/0xed do_one_initcall+0x20c/0x4a6 do_initcall_level+0xb5/0xc5 do_basic_setup+0x4c/0x58 kernel_init_freeable+0x13f/0x1dd kernel_init+0xe/0x105 ret_from_fork+0x27/0x50 -> #0 (console_owner){-...}: __lock_acquire+0x118d/0x2714 lock_acquire+0x203/0x258 console_lock_spinning_enable+0x51/0x57 console_unlock+0x25d/0x528 vprintk_emit+0x111/0x17f printk+0x59/0x73 __report_bad_irq+0xa3/0xba note_interrupt+0x19a/0x1d6 handle_irq_event_percpu+0x57/0x79 handle_irq_event+0x36/0x55 handle_fasteoi_irq+0xc2/0x18a do_IRQ+0xb3/0x157 ret_from_intr+0x0/0x1d cpuidle_enter_state+0x12f/0x1fd cpuidle_enter+0x2e/0x3d do_idle+0x1ce/0x2ce cpu_startup_entry+0x1d/0x1f start_kernel+0x406/0x46a secondary_startup_64+0xa4/0xb0 other info that might help us debug this: Chain exists of: console_owner --> &port_lock_key --> &irq_desc_lock_class Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&irq_desc_lock_class); lock(&port_lock_key); lock(&irq_desc_lock_class); lock(console_owner); *** DEADLOCK *** 2 locks held by swapper/0/0: #0: ffff88810a8e34c0 (&irq_desc_lock_class){-.-.}, at: __report_bad_irq+0x5b/0xba #1: ffffffffab65b5c0 (console_lock){+.+.}, at: console_trylock_spinning+0x20/0x181 stack backtrace: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.4.39 #55 Hardware name: XXXXXX Call Trace: <IRQ> dump_stack+0xbf/0x133 ? print_circular_bug+0xd6/0xe9 check_noncircular+0x1b9/0x1c3 __lock_acquire+0x118d/0x2714 lock_acquire+0x203/0x258 ? console_lock_spinning_enable+0x31/0x57 console_lock_spinning_enable+0x51/0x57 ? console_lock_spinning_enable+0x31/0x57 console_unlock+0x25d/0x528 ? console_trylock+0x18/0x4e vprintk_emit+0x111/0x17f ? lock_acquire+0x203/0x258 printk+0x59/0x73 __report_bad_irq+0xa3/0xba note_interrupt+0x19a/0x1d6 handle_irq_event_percpu+0x57/0x79 handle_irq_event+0x36/0x55 handle_fasteoi_irq+0xc2/0x18a do_IRQ+0xb3/0x157 common_interrupt+0xf/0xf </IRQ> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Fixes: 768aec0b5bcc ("serial: 8250: fix shared interrupts issues with SMP and RT kernels") Reported-by: Guenter Roeck <linux@roeck-us.net> Reported-by: Raul Rangel <rrangel@google.com> BugLink: https://bugs.chromium.org/p/chromium/issues/detail?id=1114800 Link: https://lore.kernel.org/lkml/CAHQZ30BnfX+gxjPm1DUd5psOTqbyDh4EJE=2=VAMW_VDafctkA@mail.gmail.com/T/#u Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Tested-by: Guenter Roeck <linux@roeck-us.net> Cc: stable <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20200817022646.1484638-1-sergey.senozhatsky@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-17 11:26:46 +09:00
if (port->irqflags & IRQF_SHARED)
disable_irq_nosync(port->irq);
/*
* Test for UARTs that do not reassert THRE when the
* transmitter is idle and the interrupt has already
* been cleared. Real 16550s should always reassert
* this interrupt whenever the transmitter is idle and
* the interrupt is enabled. Delays are necessary to
* allow register changes to become visible.
*/
spin_lock_irqsave(&port->lock, flags);
wait_for_xmitr(up, UART_LSR_THRE);
serial_port_out_sync(port, UART_IER, UART_IER_THRI);
udelay(1); /* allow THRE to set */
iir1 = serial_port_in(port, UART_IIR);
serial_port_out(port, UART_IER, 0);
serial_port_out_sync(port, UART_IER, UART_IER_THRI);
udelay(1); /* allow a working UART time to re-assert THRE */
iir = serial_port_in(port, UART_IIR);
serial_port_out(port, UART_IER, 0);
serial: 8250: change lock order in serial8250_do_startup() We have a number of "uart.port->desc.lock vs desc.lock->uart.port" lockdep reports coming from 8250 driver; this causes a bit of trouble to people, so let's fix it. The problem is reverse lock order in two different call paths: chain #1: serial8250_do_startup() spin_lock_irqsave(&port->lock); disable_irq_nosync(port->irq); raw_spin_lock_irqsave(&desc->lock) chain #2: __report_bad_irq() raw_spin_lock_irqsave(&desc->lock) for_each_action_of_desc() printk() spin_lock_irqsave(&port->lock); Fix this by changing the order of locks in serial8250_do_startup(): do disable_irq_nosync() first, which grabs desc->lock, and grab uart->port after that, so that chain #1 and chain #2 have same lock order. Full lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.4.39 #55 Not tainted ====================================================== swapper/0/0 is trying to acquire lock: ffffffffab65b6c0 (console_owner){-...}, at: console_lock_spinning_enable+0x31/0x57 but task is already holding lock: ffff88810a8e34c0 (&irq_desc_lock_class){-.-.}, at: __report_bad_irq+0x5b/0xba which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&irq_desc_lock_class){-.-.}: _raw_spin_lock_irqsave+0x61/0x8d __irq_get_desc_lock+0x65/0x89 __disable_irq_nosync+0x3b/0x93 serial8250_do_startup+0x451/0x75c uart_startup+0x1b4/0x2ff uart_port_activate+0x73/0xa0 tty_port_open+0xae/0x10a uart_open+0x1b/0x26 tty_open+0x24d/0x3a0 chrdev_open+0xd5/0x1cc do_dentry_open+0x299/0x3c8 path_openat+0x434/0x1100 do_filp_open+0x9b/0x10a do_sys_open+0x15f/0x3d7 kernel_init_freeable+0x157/0x1dd kernel_init+0xe/0x105 ret_from_fork+0x27/0x50 -> #1 (&port_lock_key){-.-.}: _raw_spin_lock_irqsave+0x61/0x8d serial8250_console_write+0xa7/0x2a0 console_unlock+0x3b7/0x528 vprintk_emit+0x111/0x17f printk+0x59/0x73 register_console+0x336/0x3a4 uart_add_one_port+0x51b/0x5be serial8250_register_8250_port+0x454/0x55e dw8250_probe+0x4dc/0x5b9 platform_drv_probe+0x67/0x8b really_probe+0x14a/0x422 driver_probe_device+0x66/0x130 device_driver_attach+0x42/0x5b __driver_attach+0xca/0x139 bus_for_each_dev+0x97/0xc9 bus_add_driver+0x12b/0x228 driver_register+0x64/0xed do_one_initcall+0x20c/0x4a6 do_initcall_level+0xb5/0xc5 do_basic_setup+0x4c/0x58 kernel_init_freeable+0x13f/0x1dd kernel_init+0xe/0x105 ret_from_fork+0x27/0x50 -> #0 (console_owner){-...}: __lock_acquire+0x118d/0x2714 lock_acquire+0x203/0x258 console_lock_spinning_enable+0x51/0x57 console_unlock+0x25d/0x528 vprintk_emit+0x111/0x17f printk+0x59/0x73 __report_bad_irq+0xa3/0xba note_interrupt+0x19a/0x1d6 handle_irq_event_percpu+0x57/0x79 handle_irq_event+0x36/0x55 handle_fasteoi_irq+0xc2/0x18a do_IRQ+0xb3/0x157 ret_from_intr+0x0/0x1d cpuidle_enter_state+0x12f/0x1fd cpuidle_enter+0x2e/0x3d do_idle+0x1ce/0x2ce cpu_startup_entry+0x1d/0x1f start_kernel+0x406/0x46a secondary_startup_64+0xa4/0xb0 other info that might help us debug this: Chain exists of: console_owner --> &port_lock_key --> &irq_desc_lock_class Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&irq_desc_lock_class); lock(&port_lock_key); lock(&irq_desc_lock_class); lock(console_owner); *** DEADLOCK *** 2 locks held by swapper/0/0: #0: ffff88810a8e34c0 (&irq_desc_lock_class){-.-.}, at: __report_bad_irq+0x5b/0xba #1: ffffffffab65b5c0 (console_lock){+.+.}, at: console_trylock_spinning+0x20/0x181 stack backtrace: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.4.39 #55 Hardware name: XXXXXX Call Trace: <IRQ> dump_stack+0xbf/0x133 ? print_circular_bug+0xd6/0xe9 check_noncircular+0x1b9/0x1c3 __lock_acquire+0x118d/0x2714 lock_acquire+0x203/0x258 ? console_lock_spinning_enable+0x31/0x57 console_lock_spinning_enable+0x51/0x57 ? console_lock_spinning_enable+0x31/0x57 console_unlock+0x25d/0x528 ? console_trylock+0x18/0x4e vprintk_emit+0x111/0x17f ? lock_acquire+0x203/0x258 printk+0x59/0x73 __report_bad_irq+0xa3/0xba note_interrupt+0x19a/0x1d6 handle_irq_event_percpu+0x57/0x79 handle_irq_event+0x36/0x55 handle_fasteoi_irq+0xc2/0x18a do_IRQ+0xb3/0x157 common_interrupt+0xf/0xf </IRQ> Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Fixes: 768aec0b5bcc ("serial: 8250: fix shared interrupts issues with SMP and RT kernels") Reported-by: Guenter Roeck <linux@roeck-us.net> Reported-by: Raul Rangel <rrangel@google.com> BugLink: https://bugs.chromium.org/p/chromium/issues/detail?id=1114800 Link: https://lore.kernel.org/lkml/CAHQZ30BnfX+gxjPm1DUd5psOTqbyDh4EJE=2=VAMW_VDafctkA@mail.gmail.com/T/#u Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Tested-by: Guenter Roeck <linux@roeck-us.net> Cc: stable <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20200817022646.1484638-1-sergey.senozhatsky@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-17 11:26:46 +09:00
spin_unlock_irqrestore(&port->lock, flags);
if (port->irqflags & IRQF_SHARED)
enable_irq(port->irq);
/*
* If the interrupt is not reasserted, or we otherwise
* don't trust the iir, setup a timer to kick the UART
* on a regular basis.
*/
if ((!(iir1 & UART_IIR_NO_INT) && (iir & UART_IIR_NO_INT)) ||
up->port.flags & UPF_BUG_THRE) {
up->bugs |= UART_BUG_THRE;
}
}
retval = up->ops->setup_irq(up);
if (retval)
goto out;
/*
* Now, initialize the UART
*/
serial_port_out(port, UART_LCR, UART_LCR_WLEN8);
spin_lock_irqsave(&port->lock, flags);
if (up->port.flags & UPF_FOURPORT) {
if (!up->port.irq)
up->port.mctrl |= TIOCM_OUT1;
} else
/*
* Most PC uarts need OUT2 raised to enable interrupts.
*/
if (port->irq)
up->port.mctrl |= TIOCM_OUT2;
serial8250_set_mctrl(port, port->mctrl);
/*
* Serial over Lan (SoL) hack:
* Intel 8257x Gigabit ethernet chips have a 16550 emulation, to be
* used for Serial Over Lan. Those chips take a longer time than a
* normal serial device to signalize that a transmission data was
* queued. Due to that, the above test generally fails. One solution
* would be to delay the reading of iir. However, this is not
* reliable, since the timeout is variable. So, let's just don't
* test if we receive TX irq. This way, we'll never enable
* UART_BUG_TXEN.
*/
if (up->port.quirks & UPQ_NO_TXEN_TEST)
goto dont_test_tx_en;
/*
* Do a quick test to see if we receive an interrupt when we enable
* the TX irq.
*/
serial_port_out(port, UART_IER, UART_IER_THRI);
lsr = serial_port_in(port, UART_LSR);
iir = serial_port_in(port, UART_IIR);
serial_port_out(port, UART_IER, 0);
if (lsr & UART_LSR_TEMT && iir & UART_IIR_NO_INT) {
if (!(up->bugs & UART_BUG_TXEN)) {
up->bugs |= UART_BUG_TXEN;
dev_dbg(port->dev, "enabling bad tx status workarounds\n");
}
} else {
up->bugs &= ~UART_BUG_TXEN;
}
dont_test_tx_en:
spin_unlock_irqrestore(&port->lock, flags);
/*
* Clear the interrupt registers again for luck, and clear the
* saved flags to avoid getting false values from polling
* routines or the previous session.
*/
serial_port_in(port, UART_LSR);
serial_port_in(port, UART_RX);
serial_port_in(port, UART_IIR);
serial_port_in(port, UART_MSR);
up->lsr_saved_flags = 0;
up->msr_saved_flags = 0;
/*
* Request DMA channels for both RX and TX.
*/
if (up->dma) {
const char *msg = NULL;
if (uart_console(port))
msg = "forbid DMA for kernel console";
else if (serial8250_request_dma(up))
msg = "failed to request DMA";
if (msg) {
dev_warn_ratelimited(port->dev, "%s\n", msg);
up->dma = NULL;
}
}
/*
* Set the IER shadow for rx interrupts but defer actual interrupt
* enable until after the FIFOs are enabled; otherwise, an already-
* active sender can swamp the interrupt handler with "too much work".
*/
up->ier = UART_IER_RLSI | UART_IER_RDI;
if (port->flags & UPF_FOURPORT) {
unsigned int icp;
/*
* Enable interrupts on the AST Fourport board
*/
icp = (port->iobase & 0xfe0) | 0x01f;
outb_p(0x80, icp);
inb_p(icp);
}
retval = 0;
out:
serial8250_rpm_put(up);
return retval;
}
EXPORT_SYMBOL_GPL(serial8250_do_startup);
static int serial8250_startup(struct uart_port *port)
{
if (port->startup)
return port->startup(port);
return serial8250_do_startup(port);
}
void serial8250_do_shutdown(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned long flags;
serial8250_rpm_get(up);
/*
* Disable interrupts from this port
*/
spin_lock_irqsave(&port->lock, flags);
up->ier = 0;
serial_port_out(port, UART_IER, 0);
spin_unlock_irqrestore(&port->lock, flags);
synchronize_irq(port->irq);
if (up->dma)
serial8250_release_dma(up);
spin_lock_irqsave(&port->lock, flags);
if (port->flags & UPF_FOURPORT) {
/* reset interrupts on the AST Fourport board */
inb((port->iobase & 0xfe0) | 0x1f);
port->mctrl |= TIOCM_OUT1;
} else
port->mctrl &= ~TIOCM_OUT2;
serial8250_set_mctrl(port, port->mctrl);
spin_unlock_irqrestore(&port->lock, flags);
/*
* Disable break condition and FIFOs
*/
serial_port_out(port, UART_LCR,
serial_port_in(port, UART_LCR) & ~UART_LCR_SBC);
serial8250_clear_fifos(up);
#ifdef CONFIG_SERIAL_8250_RSA
/*
* Reset the RSA board back to 115kbps compat mode.
*/
disable_rsa(up);
#endif
/*
* Read data port to reset things, and then unlink from
* the IRQ chain.
*/
serial_port_in(port, UART_RX);
serial8250_rpm_put(up);
up->ops->release_irq(up);
}
EXPORT_SYMBOL_GPL(serial8250_do_shutdown);
static void serial8250_shutdown(struct uart_port *port)
{
if (port->shutdown)
port->shutdown(port);
else
serial8250_do_shutdown(port);
}
/* Nuvoton NPCM UARTs have a custom divisor calculation */
static unsigned int npcm_get_divisor(struct uart_8250_port *up,
unsigned int baud)
{
struct uart_port *port = &up->port;
return DIV_ROUND_CLOSEST(port->uartclk, 16 * baud + 2) - 2;
}
static unsigned int serial8250_do_get_divisor(struct uart_port *port,
unsigned int baud,
unsigned int *frac)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned int quot;
/*
* Handle magic divisors for baud rates above baud_base on
* SMSC SuperIO chips.
*
*/
if ((port->flags & UPF_MAGIC_MULTIPLIER) &&
baud == (port->uartclk/4))
quot = 0x8001;
else if ((port->flags & UPF_MAGIC_MULTIPLIER) &&
baud == (port->uartclk/8))
quot = 0x8002;
else if (up->port.type == PORT_NPCM)
quot = npcm_get_divisor(up, baud);
else
quot = uart_get_divisor(port, baud);
/*
* Oxford Semi 952 rev B workaround
*/
if (up->bugs & UART_BUG_QUOT && (quot & 0xff) == 0)
quot++;
return quot;
}
static unsigned int serial8250_get_divisor(struct uart_port *port,
unsigned int baud,
unsigned int *frac)
{
if (port->get_divisor)
return port->get_divisor(port, baud, frac);
return serial8250_do_get_divisor(port, baud, frac);
}
static unsigned char serial8250_compute_lcr(struct uart_8250_port *up,
tcflag_t c_cflag)
{
unsigned char cval;
switch (c_cflag & CSIZE) {
case CS5:
cval = UART_LCR_WLEN5;
break;
case CS6:
cval = UART_LCR_WLEN6;
break;
case CS7:
cval = UART_LCR_WLEN7;
break;
default:
case CS8:
cval = UART_LCR_WLEN8;
break;
}
if (c_cflag & CSTOPB)
cval |= UART_LCR_STOP;
if (c_cflag & PARENB) {
cval |= UART_LCR_PARITY;
if (up->bugs & UART_BUG_PARITY)
up->fifo_bug = true;
}
if (!(c_cflag & PARODD))
cval |= UART_LCR_EPAR;
#ifdef CMSPAR
if (c_cflag & CMSPAR)
cval |= UART_LCR_SPAR;
#endif
return cval;
}
void serial8250_do_set_divisor(struct uart_port *port, unsigned int baud,
unsigned int quot, unsigned int quot_frac)
{
struct uart_8250_port *up = up_to_u8250p(port);
/* Workaround to enable 115200 baud on OMAP1510 internal ports */
if (is_omap1510_8250(up)) {
if (baud == 115200) {
quot = 1;
serial_port_out(port, UART_OMAP_OSC_12M_SEL, 1);
} else
serial_port_out(port, UART_OMAP_OSC_12M_SEL, 0);
}
/*
* For NatSemi, switch to bank 2 not bank 1, to avoid resetting EXCR2,
* otherwise just set DLAB
*/
if (up->capabilities & UART_NATSEMI)
serial_port_out(port, UART_LCR, 0xe0);
else
serial_port_out(port, UART_LCR, up->lcr | UART_LCR_DLAB);
serial_dl_write(up, quot);
}
EXPORT_SYMBOL_GPL(serial8250_do_set_divisor);
static void serial8250_set_divisor(struct uart_port *port, unsigned int baud,
unsigned int quot, unsigned int quot_frac)
{
if (port->set_divisor)
port->set_divisor(port, baud, quot, quot_frac);
else
serial8250_do_set_divisor(port, baud, quot, quot_frac);
}
static unsigned int serial8250_get_baud_rate(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
serial: 8250: Fix max baud limit in generic 8250 port Standard 8250 UART ports are designed in a way so they can communicate with baud rates up to 1/16 of a reference frequency. It's expected from most of the currently supported UART controllers. That's why the former version of serial8250_get_baud_rate() method called uart_get_baud_rate() with min and max baud rates passed as (port->uartclk / 16 / UART_DIV_MAX) and ((port->uartclk + tolerance) / 16) respectively. Doing otherwise, like it was suggested in commit ("serial: 8250_mtk: support big baud rate."), caused acceptance of bauds, which was higher than the normal UART controllers actually supported. As a result if some user-space program requested to set a baud greater than (uartclk / 16) it would have been permitted without truncation, but then serial8250_get_divisor(baud) (which calls uart_get_divisor() to get the reference clock divisor) would have returned a zero divisor. Setting zero divisor will cause an unpredictable effect varying from chip to chip. In case of DW APB UART the communications just stop. Lets fix this problem by getting back the limitation of (uartclk + tolerance) / 16 maximum baud supported by the generic 8250 port. Mediatek 8250 UART ports driver developer shouldn't have touched it in the first place notably seeing he already provided a custom version of set_termios() callback in that glue-driver which took into account the extended baud rate values and accordingly updated the standard and vendor-specific divisor latch registers anyway. Fixes: 81bb549fdf14 ("serial: 8250_mtk: support big baud rate.") Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Paul Burton <paulburton@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Long Cheng <long.cheng@mediatek.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: linux-mips@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mediatek@lists.infradead.org Link: https://lore.kernel.org/r/20200506233136.11842-2-Sergey.Semin@baikalelectronics.ru Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-07 02:31:32 +03:00
unsigned int tolerance = port->uartclk / 100;
/*
* Ask the core to calculate the divisor for us.
* Allow 1% tolerance at the upper limit so uart clks marginally
* slower than nominal still match standard baud rates without
* causing transmission errors.
*/
return uart_get_baud_rate(port, termios, old,
port->uartclk / 16 / UART_DIV_MAX,
serial: 8250: Fix max baud limit in generic 8250 port Standard 8250 UART ports are designed in a way so they can communicate with baud rates up to 1/16 of a reference frequency. It's expected from most of the currently supported UART controllers. That's why the former version of serial8250_get_baud_rate() method called uart_get_baud_rate() with min and max baud rates passed as (port->uartclk / 16 / UART_DIV_MAX) and ((port->uartclk + tolerance) / 16) respectively. Doing otherwise, like it was suggested in commit ("serial: 8250_mtk: support big baud rate."), caused acceptance of bauds, which was higher than the normal UART controllers actually supported. As a result if some user-space program requested to set a baud greater than (uartclk / 16) it would have been permitted without truncation, but then serial8250_get_divisor(baud) (which calls uart_get_divisor() to get the reference clock divisor) would have returned a zero divisor. Setting zero divisor will cause an unpredictable effect varying from chip to chip. In case of DW APB UART the communications just stop. Lets fix this problem by getting back the limitation of (uartclk + tolerance) / 16 maximum baud supported by the generic 8250 port. Mediatek 8250 UART ports driver developer shouldn't have touched it in the first place notably seeing he already provided a custom version of set_termios() callback in that glue-driver which took into account the extended baud rate values and accordingly updated the standard and vendor-specific divisor latch registers anyway. Fixes: 81bb549fdf14 ("serial: 8250_mtk: support big baud rate.") Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Paul Burton <paulburton@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Long Cheng <long.cheng@mediatek.com> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: linux-mips@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mediatek@lists.infradead.org Link: https://lore.kernel.org/r/20200506233136.11842-2-Sergey.Semin@baikalelectronics.ru Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-07 02:31:32 +03:00
(port->uartclk + tolerance) / 16);
}
/*
* Note in order to avoid the tty port mutex deadlock don't use the next method
* within the uart port callbacks. Primarily it's supposed to be utilized to
* handle a sudden reference clock rate change.
*/
void serial8250_update_uartclk(struct uart_port *port, unsigned int uartclk)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned int baud, quot, frac = 0;
struct ktermios *termios;
unsigned long flags;
mutex_lock(&port->state->port.mutex);
if (port->uartclk == uartclk)
goto out_lock;
port->uartclk = uartclk;
termios = &port->state->port.tty->termios;
baud = serial8250_get_baud_rate(port, termios, NULL);
quot = serial8250_get_divisor(port, baud, &frac);
serial8250_rpm_get(up);
spin_lock_irqsave(&port->lock, flags);
uart_update_timeout(port, termios->c_cflag, baud);
serial8250_set_divisor(port, baud, quot, frac);
serial_port_out(port, UART_LCR, up->lcr);
serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS);
spin_unlock_irqrestore(&port->lock, flags);
serial8250_rpm_put(up);
out_lock:
mutex_unlock(&port->state->port.mutex);
}
EXPORT_SYMBOL_GPL(serial8250_update_uartclk);
void
serial8250_do_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct uart_8250_port *up = up_to_u8250p(port);
unsigned char cval;
unsigned long flags;
unsigned int baud, quot, frac = 0;
if (up->capabilities & UART_CAP_MINI) {
termios->c_cflag &= ~(CSTOPB | PARENB | PARODD | CMSPAR);
if ((termios->c_cflag & CSIZE) == CS5 ||
(termios->c_cflag & CSIZE) == CS6)
termios->c_cflag = (termios->c_cflag & ~CSIZE) | CS7;
}
cval = serial8250_compute_lcr(up, termios->c_cflag);
baud = serial8250_get_baud_rate(port, termios, old);
quot = serial8250_get_divisor(port, baud, &frac);
/*
* Ok, we're now changing the port state. Do it with
* interrupts disabled.
*/
serial8250_rpm_get(up);
spin_lock_irqsave(&port->lock, flags);
up->lcr = cval; /* Save computed LCR */
if (up->capabilities & UART_CAP_FIFO && port->fifosize > 1) {
/* NOTE: If fifo_bug is not set, a user can set RX_trigger. */
if ((baud < 2400 && !up->dma) || up->fifo_bug) {
up->fcr &= ~UART_FCR_TRIGGER_MASK;
up->fcr |= UART_FCR_TRIGGER_1;
}
}
/*
* MCR-based auto flow control. When AFE is enabled, RTS will be
* deasserted when the receive FIFO contains more characters than
* the trigger, or the MCR RTS bit is cleared.
*/
if (up->capabilities & UART_CAP_AFE) {
up->mcr &= ~UART_MCR_AFE;
if (termios->c_cflag & CRTSCTS)
up->mcr |= UART_MCR_AFE;
}
/*
* Update the per-port timeout.
*/
uart_update_timeout(port, termios->c_cflag, baud);
port->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (termios->c_iflag & INPCK)
port->read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
port->read_status_mask |= UART_LSR_BI;
/*
* Characteres to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= UART_LSR_OE;
}
/*
* ignore all characters if CREAD is not set
*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= UART_LSR_DR;
/*
* CTS flow control flag and modem status interrupts
*/
up->ier &= ~UART_IER_MSI;
if (!(up->bugs & UART_BUG_NOMSR) &&
UART_ENABLE_MS(&up->port, termios->c_cflag))
up->ier |= UART_IER_MSI;
if (up->capabilities & UART_CAP_UUE)
up->ier |= UART_IER_UUE;
if (up->capabilities & UART_CAP_RTOIE)
up->ier |= UART_IER_RTOIE;
serial_port_out(port, UART_IER, up->ier);
if (up->capabilities & UART_CAP_EFR) {
unsigned char efr = 0;
/*
* TI16C752/Startech hardware flow control. FIXME:
* - TI16C752 requires control thresholds to be set.
* - UART_MCR_RTS is ineffective if auto-RTS mode is enabled.
*/
if (termios->c_cflag & CRTSCTS)
efr |= UART_EFR_CTS;
serial_port_out(port, UART_LCR, UART_LCR_CONF_MODE_B);
if (port->flags & UPF_EXAR_EFR)
serial_port_out(port, UART_XR_EFR, efr);
else
serial_port_out(port, UART_EFR, efr);
}
serial8250_set_divisor(port, baud, quot, frac);
/*
* LCR DLAB must be set to enable 64-byte FIFO mode. If the FCR
* is written without DLAB set, this mode will be disabled.
*/
if (port->type == PORT_16750)
serial_port_out(port, UART_FCR, up->fcr);
serial_port_out(port, UART_LCR, up->lcr); /* reset DLAB */
if (port->type != PORT_16750) {
/* emulated UARTs (Lucent Venus 167x) need two steps */
if (up->fcr & UART_FCR_ENABLE_FIFO)
serial_port_out(port, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_port_out(port, UART_FCR, up->fcr); /* set fcr */
}
serial8250_set_mctrl(port, port->mctrl);
spin_unlock_irqrestore(&port->lock, flags);
serial8250_rpm_put(up);
/* Don't rewrite B0 */
if (tty_termios_baud_rate(termios))
tty_termios_encode_baud_rate(termios, baud, baud);
}
EXPORT_SYMBOL(serial8250_do_set_termios);
static void
serial8250_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
if (port->set_termios)
port->set_termios(port, termios, old);
else
serial8250_do_set_termios(port, termios, old);
}
void serial8250_do_set_ldisc(struct uart_port *port, struct ktermios *termios)
{
if (termios->c_line == N_PPS) {
port->flags |= UPF_HARDPPS_CD;
spin_lock_irq(&port->lock);
serial8250_enable_ms(port);
spin_unlock_irq(&port->lock);
} else {
port->flags &= ~UPF_HARDPPS_CD;
if (!UART_ENABLE_MS(port, termios->c_cflag)) {
spin_lock_irq(&port->lock);
serial8250_disable_ms(port);
spin_unlock_irq(&port->lock);
}
}
}
EXPORT_SYMBOL_GPL(serial8250_do_set_ldisc);
static void
serial8250_set_ldisc(struct uart_port *port, struct ktermios *termios)
{
if (port->set_ldisc)
port->set_ldisc(port, termios);
else
serial8250_do_set_ldisc(port, termios);
}
void serial8250_do_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
struct uart_8250_port *p = up_to_u8250p(port);
serial8250_set_sleep(p, state != 0);
}
EXPORT_SYMBOL(serial8250_do_pm);
static void
serial8250_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
if (port->pm)
port->pm(port, state, oldstate);
else
serial8250_do_pm(port, state, oldstate);
}
static unsigned int serial8250_port_size(struct uart_8250_port *pt)
{
if (pt->port.mapsize)
return pt->port.mapsize;
if (pt->port.iotype == UPIO_AU) {
if (pt->port.type == PORT_RT2880)
return 0x100;
return 0x1000;
}
if (is_omap1_8250(pt))
return 0x16 << pt->port.regshift;
return 8 << pt->port.regshift;
}
/*
* Resource handling.
*/
static int serial8250_request_std_resource(struct uart_8250_port *up)
{
unsigned int size = serial8250_port_size(up);
struct uart_port *port = &up->port;
int ret = 0;
switch (port->iotype) {
case UPIO_AU:
case UPIO_TSI:
case UPIO_MEM32:
case UPIO_MEM32BE:
case UPIO_MEM16:
case UPIO_MEM:
if (!port->mapbase)
break;
if (!request_mem_region(port->mapbase, size, "serial")) {
ret = -EBUSY;
break;
}
if (port->flags & UPF_IOREMAP) {
port->membase = ioremap(port->mapbase, size);
if (!port->membase) {
release_mem_region(port->mapbase, size);
ret = -ENOMEM;
}
}
break;
case UPIO_HUB6:
case UPIO_PORT:
if (!request_region(port->iobase, size, "serial"))
ret = -EBUSY;
break;
}
return ret;
}
static void serial8250_release_std_resource(struct uart_8250_port *up)
{
unsigned int size = serial8250_port_size(up);
struct uart_port *port = &up->port;
switch (port->iotype) {
case UPIO_AU:
case UPIO_TSI:
case UPIO_MEM32:
case UPIO_MEM32BE:
case UPIO_MEM16:
case UPIO_MEM:
if (!port->mapbase)
break;
if (port->flags & UPF_IOREMAP) {
iounmap(port->membase);
port->membase = NULL;
}
release_mem_region(port->mapbase, size);
break;
case UPIO_HUB6:
case UPIO_PORT:
release_region(port->iobase, size);
break;
}
}
static void serial8250_release_port(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
serial8250_release_std_resource(up);
}
static int serial8250_request_port(struct uart_port *port)
{
struct uart_8250_port *up = up_to_u8250p(port);
return serial8250_request_std_resource(up);
}
static int fcr_get_rxtrig_bytes(struct uart_8250_port *up)
{
const struct serial8250_config *conf_type = &uart_config[up->port.type];
unsigned char bytes;
bytes = conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(up->fcr)];
return bytes ? bytes : -EOPNOTSUPP;
}
static int bytes_to_fcr_rxtrig(struct uart_8250_port *up, unsigned char bytes)
{
const struct serial8250_config *conf_type = &uart_config[up->port.type];
int i;
if (!conf_type->rxtrig_bytes[UART_FCR_R_TRIG_BITS(UART_FCR_R_TRIG_00)])
return -EOPNOTSUPP;
for (i = 1; i < UART_FCR_R_TRIG_MAX_STATE; i++) {
if (bytes < conf_type->rxtrig_bytes[i])
/* Use the nearest lower value */
return (--i) << UART_FCR_R_TRIG_SHIFT;
}
return UART_FCR_R_TRIG_11;
}
static int do_get_rxtrig(struct tty_port *port)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport = state->uart_port;
struct uart_8250_port *up = up_to_u8250p(uport);
if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1)
return -EINVAL;
return fcr_get_rxtrig_bytes(up);
}
static int do_serial8250_get_rxtrig(struct tty_port *port)
{
int rxtrig_bytes;
mutex_lock(&port->mutex);
rxtrig_bytes = do_get_rxtrig(port);
mutex_unlock(&port->mutex);
return rxtrig_bytes;
}
static ssize_t rx_trig_bytes_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tty_port *port = dev_get_drvdata(dev);
int rxtrig_bytes;
rxtrig_bytes = do_serial8250_get_rxtrig(port);
if (rxtrig_bytes < 0)
return rxtrig_bytes;
return snprintf(buf, PAGE_SIZE, "%d\n", rxtrig_bytes);
}
static int do_set_rxtrig(struct tty_port *port, unsigned char bytes)
{
struct uart_state *state = container_of(port, struct uart_state, port);
struct uart_port *uport = state->uart_port;
struct uart_8250_port *up = up_to_u8250p(uport);
int rxtrig;
if (!(up->capabilities & UART_CAP_FIFO) || uport->fifosize <= 1 ||
up->fifo_bug)
return -EINVAL;
rxtrig = bytes_to_fcr_rxtrig(up, bytes);
if (rxtrig < 0)
return rxtrig;
serial8250_clear_fifos(up);
up->fcr &= ~UART_FCR_TRIGGER_MASK;
up->fcr |= (unsigned char)rxtrig;
serial_out(up, UART_FCR, up->fcr);
return 0;
}
static int do_serial8250_set_rxtrig(struct tty_port *port, unsigned char bytes)
{
int ret;
mutex_lock(&port->mutex);
ret = do_set_rxtrig(port, bytes);
mutex_unlock(&port->mutex);
return ret;
}
static ssize_t rx_trig_bytes_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct tty_port *port = dev_get_drvdata(dev);
unsigned char bytes;
int ret;
if (!count)
return -EINVAL;
ret = kstrtou8(buf, 10, &bytes);
if (ret < 0)
return ret;
ret = do_serial8250_set_rxtrig(port, bytes);
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR_RW(rx_trig_bytes);
static struct attribute *serial8250_dev_attrs[] = {
&dev_attr_rx_trig_bytes.attr,
NULL
};
static struct attribute_group serial8250_dev_attr_group = {
.attrs = serial8250_dev_attrs,
};
static void register_dev_spec_attr_grp(struct uart_8250_port *up)
{
const struct serial8250_config *conf_type = &uart_config[up->port.type];
if (conf_type->rxtrig_bytes[0])
up->port.attr_group = &serial8250_dev_attr_group;
}
static void serial8250_config_port(struct uart_port *port, int flags)
{
struct uart_8250_port *up = up_to_u8250p(port);
int ret;
/*
* Find the region that we can probe for. This in turn
* tells us whether we can probe for the type of port.
*/
ret = serial8250_request_std_resource(up);
if (ret < 0)
return;
if (port->iotype != up->cur_iotype)
set_io_from_upio(port);
if (flags & UART_CONFIG_TYPE)
autoconfig(up);
if (port->rs485.flags & SER_RS485_ENABLED)
port->rs485_config(port, &port->rs485);
/* if access method is AU, it is a 16550 with a quirk */
if (port->type == PORT_16550A && port->iotype == UPIO_AU)
up->bugs |= UART_BUG_NOMSR;
/* HW bugs may trigger IRQ while IIR == NO_INT */
if (port->type == PORT_TEGRA)
up->bugs |= UART_BUG_NOMSR;
if (port->type != PORT_UNKNOWN && flags & UART_CONFIG_IRQ)
autoconfig_irq(up);
if (port->type == PORT_UNKNOWN)
serial8250_release_std_resource(up);
register_dev_spec_attr_grp(up);
up->fcr = uart_config[up->port.type].fcr;
}
static int
serial8250_verify_port(struct uart_port *port, struct serial_struct *ser)
{
if (ser->irq >= nr_irqs || ser->irq < 0 ||
ser->baud_base < 9600 || ser->type < PORT_UNKNOWN ||
ser->type >= ARRAY_SIZE(uart_config) || ser->type == PORT_CIRRUS ||
ser->type == PORT_STARTECH)
return -EINVAL;
return 0;
}
static const char *serial8250_type(struct uart_port *port)
{
int type = port->type;
if (type >= ARRAY_SIZE(uart_config))
type = 0;
return uart_config[type].name;
}
static const struct uart_ops serial8250_pops = {
.tx_empty = serial8250_tx_empty,
.set_mctrl = serial8250_set_mctrl,
.get_mctrl = serial8250_get_mctrl,
.stop_tx = serial8250_stop_tx,
.start_tx = serial8250_start_tx,
.throttle = serial8250_throttle,
.unthrottle = serial8250_unthrottle,
.stop_rx = serial8250_stop_rx,
.enable_ms = serial8250_enable_ms,
.break_ctl = serial8250_break_ctl,
.startup = serial8250_startup,
.shutdown = serial8250_shutdown,
.set_termios = serial8250_set_termios,
.set_ldisc = serial8250_set_ldisc,
.pm = serial8250_pm,
.type = serial8250_type,
.release_port = serial8250_release_port,
.request_port = serial8250_request_port,
.config_port = serial8250_config_port,
.verify_port = serial8250_verify_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = serial8250_get_poll_char,
.poll_put_char = serial8250_put_poll_char,
#endif
};
void serial8250_init_port(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
spin_lock_init(&port->lock);
port->ops = &serial8250_pops;
port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_8250_CONSOLE);
up->cur_iotype = 0xFF;
}
EXPORT_SYMBOL_GPL(serial8250_init_port);
void serial8250_set_defaults(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
if (up->port.flags & UPF_FIXED_TYPE) {
unsigned int type = up->port.type;
if (!up->port.fifosize)
up->port.fifosize = uart_config[type].fifo_size;
if (!up->tx_loadsz)
up->tx_loadsz = uart_config[type].tx_loadsz;
if (!up->capabilities)
up->capabilities = uart_config[type].flags;
}
set_io_from_upio(port);
/* default dma handlers */
if (up->dma) {
if (!up->dma->tx_dma)
up->dma->tx_dma = serial8250_tx_dma;
if (!up->dma->rx_dma)
up->dma->rx_dma = serial8250_rx_dma;
}
}
EXPORT_SYMBOL_GPL(serial8250_set_defaults);
#ifdef CONFIG_SERIAL_8250_CONSOLE
static void serial8250_console_putchar(struct uart_port *port, int ch)
{
struct uart_8250_port *up = up_to_u8250p(port);
wait_for_xmitr(up, UART_LSR_THRE);
serial_port_out(port, UART_TX, ch);
}
/*
* Restore serial console when h/w power-off detected
*/
static void serial8250_console_restore(struct uart_8250_port *up)
{
struct uart_port *port = &up->port;
struct ktermios termios;
unsigned int baud, quot, frac = 0;
termios.c_cflag = port->cons->cflag;
if (port->state->port.tty && termios.c_cflag == 0)
termios.c_cflag = port->state->port.tty->termios.c_cflag;
baud = serial8250_get_baud_rate(port, &termios, NULL);
quot = serial8250_get_divisor(port, baud, &frac);
serial8250_set_divisor(port, baud, quot, frac);
serial_port_out(port, UART_LCR, up->lcr);
serial8250_out_MCR(up, UART_MCR_DTR | UART_MCR_RTS);
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*
* The console_lock must be held when we get here.
serial: 8250_port: Don't use power management for kernel console Doing any kind of power management for kernel console is really bad idea. First of all, it runs in poll and atomic mode. This fact attaches a limitation on the functions that might be called. For example, pm_runtime_get_sync() might sleep and thus can't be used. This call needs, for example, to bring the device to powered on state on the system, where the power on sequence may require on-atomic operations, such as Intel Cherrytrail with ACPI enumerated UARTs. That said, on ACPI enabled platforms it might even call firmware for a job. On the other hand pm_runtime_get() doesn't guarantee that device will become powered on fast enough. Besides that, imagine the case when console is about to print a kernel Oops and it's powered off. In such an emergency case calling the complex functions is not the best what we can do, taking into consideration that user wants to see at least something of the last kernel word before it passes away. Here we modify the 8250 console code to prevent runtime power management. Note, there is a behaviour change for OMAP boards. It will require to detach kernel console to become idle. Link: https://lists.openwall.net/linux-kernel/2018/09/29/65 Suggested-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20200217114016.49856-6-andriy.shevchenko@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-17 13:40:15 +02:00
*
* Doing runtime PM is really a bad idea for the kernel console.
* Thus, we assume the function is called when device is powered up.
*/
void serial8250_console_write(struct uart_8250_port *up, const char *s,
unsigned int count)
{
serial: 8250: Support console on software emulated rs485 ports Commit e490c9144cfa ("tty: Add software emulated RS485 support for 8250") introduced support to use RTS as an rs485 Transmit Enable signal if data is transmitted through the tty layer. Console messages bypass the tty layer and instead are emitted via serial8250_console_write(). Amend that function to drive RTS as well, allowing for a console on rs485 ports. Note that serial8250_console_write() may be called concurrently to the tty layer accessing the port. The two protect their accesses with the port lock, but serial8250_console_write() may find RTS still being asserted by the tty layer, in which case it shouldn't be deasserted after the console message has been printed. Recognize such situations by checking the em485->tx_stopped flag. If a delay_rts_before_send or delay_rts_after_send has been specified, serial8250_console_write() busy-waits for its duration. Optimizations for those wait times are conceivable: E.g. if RTS is already asserted, we could check whether em485->start_tx_timer is active and wait only for the remaining expire time. But this would require calling into the hrtimer infrastructure, which involves acquiring locks and potentially reprogramming timer hardware. Such operations seem too risky in the context of console printout, which needs to work even when the kernel has crashed and emits a BUG splat. So I've gone with a simplistic solution which just always waits for the full delay. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Matwey V. Kornilov <matwey@sai.msu.ru> Link: https://lore.kernel.org/r/65edffce4670a19e598015c03cbe46f1ffd93e43.1582895077.git.lukas@wunner.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 14:31:08 +01:00
struct uart_8250_em485 *em485 = up->em485;
struct uart_port *port = &up->port;
unsigned long flags;
unsigned int ier;
int locked = 1;
touch_nmi_watchdog();
if (oops_in_progress)
locked = spin_trylock_irqsave(&port->lock, flags);
else
spin_lock_irqsave(&port->lock, flags);
/*
* First save the IER then disable the interrupts
*/
ier = serial_port_in(port, UART_IER);
if (up->capabilities & UART_CAP_UUE)
serial_port_out(port, UART_IER, UART_IER_UUE);
else
serial_port_out(port, UART_IER, 0);
/* check scratch reg to see if port powered off during system sleep */
if (up->canary && (up->canary != serial_port_in(port, UART_SCR))) {
serial8250_console_restore(up);
up->canary = 0;
}
serial: 8250: Support console on software emulated rs485 ports Commit e490c9144cfa ("tty: Add software emulated RS485 support for 8250") introduced support to use RTS as an rs485 Transmit Enable signal if data is transmitted through the tty layer. Console messages bypass the tty layer and instead are emitted via serial8250_console_write(). Amend that function to drive RTS as well, allowing for a console on rs485 ports. Note that serial8250_console_write() may be called concurrently to the tty layer accessing the port. The two protect their accesses with the port lock, but serial8250_console_write() may find RTS still being asserted by the tty layer, in which case it shouldn't be deasserted after the console message has been printed. Recognize such situations by checking the em485->tx_stopped flag. If a delay_rts_before_send or delay_rts_after_send has been specified, serial8250_console_write() busy-waits for its duration. Optimizations for those wait times are conceivable: E.g. if RTS is already asserted, we could check whether em485->start_tx_timer is active and wait only for the remaining expire time. But this would require calling into the hrtimer infrastructure, which involves acquiring locks and potentially reprogramming timer hardware. Such operations seem too risky in the context of console printout, which needs to work even when the kernel has crashed and emits a BUG splat. So I've gone with a simplistic solution which just always waits for the full delay. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Matwey V. Kornilov <matwey@sai.msu.ru> Link: https://lore.kernel.org/r/65edffce4670a19e598015c03cbe46f1ffd93e43.1582895077.git.lukas@wunner.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 14:31:08 +01:00
if (em485) {
if (em485->tx_stopped)
up->rs485_start_tx(up);
mdelay(port->rs485.delay_rts_before_send);
}
uart_console_write(port, s, count, serial8250_console_putchar);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(up, BOTH_EMPTY);
serial: 8250: Support console on software emulated rs485 ports Commit e490c9144cfa ("tty: Add software emulated RS485 support for 8250") introduced support to use RTS as an rs485 Transmit Enable signal if data is transmitted through the tty layer. Console messages bypass the tty layer and instead are emitted via serial8250_console_write(). Amend that function to drive RTS as well, allowing for a console on rs485 ports. Note that serial8250_console_write() may be called concurrently to the tty layer accessing the port. The two protect their accesses with the port lock, but serial8250_console_write() may find RTS still being asserted by the tty layer, in which case it shouldn't be deasserted after the console message has been printed. Recognize such situations by checking the em485->tx_stopped flag. If a delay_rts_before_send or delay_rts_after_send has been specified, serial8250_console_write() busy-waits for its duration. Optimizations for those wait times are conceivable: E.g. if RTS is already asserted, we could check whether em485->start_tx_timer is active and wait only for the remaining expire time. But this would require calling into the hrtimer infrastructure, which involves acquiring locks and potentially reprogramming timer hardware. Such operations seem too risky in the context of console printout, which needs to work even when the kernel has crashed and emits a BUG splat. So I've gone with a simplistic solution which just always waits for the full delay. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Matwey V. Kornilov <matwey@sai.msu.ru> Link: https://lore.kernel.org/r/65edffce4670a19e598015c03cbe46f1ffd93e43.1582895077.git.lukas@wunner.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 14:31:08 +01:00
if (em485) {
mdelay(port->rs485.delay_rts_after_send);
serial: 8250: Support console on software emulated rs485 ports Commit e490c9144cfa ("tty: Add software emulated RS485 support for 8250") introduced support to use RTS as an rs485 Transmit Enable signal if data is transmitted through the tty layer. Console messages bypass the tty layer and instead are emitted via serial8250_console_write(). Amend that function to drive RTS as well, allowing for a console on rs485 ports. Note that serial8250_console_write() may be called concurrently to the tty layer accessing the port. The two protect their accesses with the port lock, but serial8250_console_write() may find RTS still being asserted by the tty layer, in which case it shouldn't be deasserted after the console message has been printed. Recognize such situations by checking the em485->tx_stopped flag. If a delay_rts_before_send or delay_rts_after_send has been specified, serial8250_console_write() busy-waits for its duration. Optimizations for those wait times are conceivable: E.g. if RTS is already asserted, we could check whether em485->start_tx_timer is active and wait only for the remaining expire time. But this would require calling into the hrtimer infrastructure, which involves acquiring locks and potentially reprogramming timer hardware. Such operations seem too risky in the context of console printout, which needs to work even when the kernel has crashed and emits a BUG splat. So I've gone with a simplistic solution which just always waits for the full delay. Signed-off-by: Lukas Wunner <lukas@wunner.de> Cc: Matwey V. Kornilov <matwey@sai.msu.ru> Link: https://lore.kernel.org/r/65edffce4670a19e598015c03cbe46f1ffd93e43.1582895077.git.lukas@wunner.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28 14:31:08 +01:00
if (em485->tx_stopped)
up->rs485_stop_tx(up);
}
serial_port_out(port, UART_IER, ier);
/*
* The receive handling will happen properly because the
* receive ready bit will still be set; it is not cleared
* on read. However, modem control will not, we must
* call it if we have saved something in the saved flags
* while processing with interrupts off.
*/
if (up->msr_saved_flags)
serial8250_modem_status(up);
if (locked)
spin_unlock_irqrestore(&port->lock, flags);
}
static unsigned int probe_baud(struct uart_port *port)
{
unsigned char lcr, dll, dlm;
unsigned int quot;
lcr = serial_port_in(port, UART_LCR);
serial_port_out(port, UART_LCR, lcr | UART_LCR_DLAB);
dll = serial_port_in(port, UART_DLL);
dlm = serial_port_in(port, UART_DLM);
serial_port_out(port, UART_LCR, lcr);
quot = (dlm << 8) | dll;
return (port->uartclk / 16) / quot;
}
int serial8250_console_setup(struct uart_port *port, char *options, bool probe)
{
int baud = 9600;
int bits = 8;
int parity = 'n';
int flow = 'n';
serial: 8250_port: Don't use power management for kernel console Doing any kind of power management for kernel console is really bad idea. First of all, it runs in poll and atomic mode. This fact attaches a limitation on the functions that might be called. For example, pm_runtime_get_sync() might sleep and thus can't be used. This call needs, for example, to bring the device to powered on state on the system, where the power on sequence may require on-atomic operations, such as Intel Cherrytrail with ACPI enumerated UARTs. That said, on ACPI enabled platforms it might even call firmware for a job. On the other hand pm_runtime_get() doesn't guarantee that device will become powered on fast enough. Besides that, imagine the case when console is about to print a kernel Oops and it's powered off. In such an emergency case calling the complex functions is not the best what we can do, taking into consideration that user wants to see at least something of the last kernel word before it passes away. Here we modify the 8250 console code to prevent runtime power management. Note, there is a behaviour change for OMAP boards. It will require to detach kernel console to become idle. Link: https://lists.openwall.net/linux-kernel/2018/09/29/65 Suggested-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20200217114016.49856-6-andriy.shevchenko@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-17 13:40:15 +02:00
int ret;
if (!port->iobase && !port->membase)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else if (probe)
baud = probe_baud(port);
serial: 8250_port: Don't use power management for kernel console Doing any kind of power management for kernel console is really bad idea. First of all, it runs in poll and atomic mode. This fact attaches a limitation on the functions that might be called. For example, pm_runtime_get_sync() might sleep and thus can't be used. This call needs, for example, to bring the device to powered on state on the system, where the power on sequence may require on-atomic operations, such as Intel Cherrytrail with ACPI enumerated UARTs. That said, on ACPI enabled platforms it might even call firmware for a job. On the other hand pm_runtime_get() doesn't guarantee that device will become powered on fast enough. Besides that, imagine the case when console is about to print a kernel Oops and it's powered off. In such an emergency case calling the complex functions is not the best what we can do, taking into consideration that user wants to see at least something of the last kernel word before it passes away. Here we modify the 8250 console code to prevent runtime power management. Note, there is a behaviour change for OMAP boards. It will require to detach kernel console to become idle. Link: https://lists.openwall.net/linux-kernel/2018/09/29/65 Suggested-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20200217114016.49856-6-andriy.shevchenko@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-17 13:40:15 +02:00
ret = uart_set_options(port, port->cons, baud, parity, bits, flow);
if (ret)
return ret;
if (port->dev)
pm_runtime_get_sync(port->dev);
return 0;
}
int serial8250_console_exit(struct uart_port *port)
{
if (port->dev)
pm_runtime_put_sync(port->dev);
return 0;
}
#endif /* CONFIG_SERIAL_8250_CONSOLE */
MODULE_LICENSE("GPL");