1434 lines
36 KiB
C
1434 lines
36 KiB
C
|
/*
|
||
|
* CARMA DATA-FPGA Access Driver
|
||
|
*
|
||
|
* Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2 of the License, or (at your
|
||
|
* option) any later version.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* FPGA Memory Dump Format
|
||
|
*
|
||
|
* FPGA #0 control registers (32 x 32-bit words)
|
||
|
* FPGA #1 control registers (32 x 32-bit words)
|
||
|
* FPGA #2 control registers (32 x 32-bit words)
|
||
|
* FPGA #3 control registers (32 x 32-bit words)
|
||
|
* SYSFPGA control registers (32 x 32-bit words)
|
||
|
* FPGA #0 correlation array (NUM_CORL0 correlation blocks)
|
||
|
* FPGA #1 correlation array (NUM_CORL1 correlation blocks)
|
||
|
* FPGA #2 correlation array (NUM_CORL2 correlation blocks)
|
||
|
* FPGA #3 correlation array (NUM_CORL3 correlation blocks)
|
||
|
*
|
||
|
* Each correlation array consists of:
|
||
|
*
|
||
|
* Correlation Data (2 x NUM_LAGSn x 32-bit words)
|
||
|
* Pipeline Metadata (2 x NUM_METAn x 32-bit words)
|
||
|
* Quantization Counters (2 x NUM_QCNTn x 32-bit words)
|
||
|
*
|
||
|
* The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
|
||
|
* the FPGA configuration registers. They do not change once the FPGA's
|
||
|
* have been programmed, they only change on re-programming.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Basic Description:
|
||
|
*
|
||
|
* This driver is used to capture correlation spectra off of the four data
|
||
|
* processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
|
||
|
* this driver supports dynamic enable/disable of capture while the device
|
||
|
* remains open.
|
||
|
*
|
||
|
* The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
|
||
|
* capture rate, all buffers are pre-allocated to avoid any potentially long
|
||
|
* running memory allocations while capturing.
|
||
|
*
|
||
|
* There are two lists and one pointer which are used to keep track of the
|
||
|
* different states of data buffers.
|
||
|
*
|
||
|
* 1) free list
|
||
|
* This list holds all empty data buffers which are ready to receive data.
|
||
|
*
|
||
|
* 2) inflight pointer
|
||
|
* This pointer holds the currently inflight data buffer. This buffer is having
|
||
|
* data copied into it by the DMA engine.
|
||
|
*
|
||
|
* 3) used list
|
||
|
* This list holds data buffers which have been filled, and are waiting to be
|
||
|
* read by userspace.
|
||
|
*
|
||
|
* All buffers start life on the free list, then move successively to the
|
||
|
* inflight pointer, and then to the used list. After they have been read by
|
||
|
* userspace, they are moved back to the free list. The cycle repeats as long
|
||
|
* as necessary.
|
||
|
*
|
||
|
* It should be noted that all buffers are mapped and ready for DMA when they
|
||
|
* are on any of the three lists. They are only unmapped when they are in the
|
||
|
* process of being read by userspace.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Notes on the IRQ masking scheme:
|
||
|
*
|
||
|
* The IRQ masking scheme here is different than most other hardware. The only
|
||
|
* way for the DATA-FPGAs to detect if the kernel has taken too long to copy
|
||
|
* the data is if the status registers are not cleared before the next
|
||
|
* correlation data dump is ready.
|
||
|
*
|
||
|
* The interrupt line is connected to the status registers, such that when they
|
||
|
* are cleared, the interrupt is de-asserted. Therein lies our problem. We need
|
||
|
* to schedule a long-running DMA operation and return from the interrupt
|
||
|
* handler quickly, but we cannot clear the status registers.
|
||
|
*
|
||
|
* To handle this, the system controller FPGA has the capability to connect the
|
||
|
* interrupt line to a user-controlled GPIO pin. This pin is driven high
|
||
|
* (unasserted) and left that way. To mask the interrupt, we change the
|
||
|
* interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
|
||
|
*/
|
||
|
|
||
|
#include <linux/of_platform.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/miscdevice.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/seq_file.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/poll.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/kref.h>
|
||
|
#include <linux/io.h>
|
||
|
|
||
|
#include <media/videobuf-dma-sg.h>
|
||
|
|
||
|
/* system controller registers */
|
||
|
#define SYS_IRQ_SOURCE_CTL 0x24
|
||
|
#define SYS_IRQ_OUTPUT_EN 0x28
|
||
|
#define SYS_IRQ_OUTPUT_DATA 0x2C
|
||
|
#define SYS_IRQ_INPUT_DATA 0x30
|
||
|
#define SYS_FPGA_CONFIG_STATUS 0x44
|
||
|
|
||
|
/* GPIO IRQ line assignment */
|
||
|
#define IRQ_CORL_DONE 0x10
|
||
|
|
||
|
/* FPGA registers */
|
||
|
#define MMAP_REG_VERSION 0x00
|
||
|
#define MMAP_REG_CORL_CONF1 0x08
|
||
|
#define MMAP_REG_CORL_CONF2 0x0C
|
||
|
#define MMAP_REG_STATUS 0x48
|
||
|
|
||
|
#define SYS_FPGA_BLOCK 0xF0000000
|
||
|
|
||
|
#define DATA_FPGA_START 0x400000
|
||
|
#define DATA_FPGA_SIZE 0x80000
|
||
|
|
||
|
static const char drv_name[] = "carma-fpga";
|
||
|
|
||
|
#define NUM_FPGA 4
|
||
|
|
||
|
#define MIN_DATA_BUFS 8
|
||
|
#define MAX_DATA_BUFS 64
|
||
|
|
||
|
struct fpga_info {
|
||
|
unsigned int num_lag_ram;
|
||
|
unsigned int blk_size;
|
||
|
};
|
||
|
|
||
|
struct data_buf {
|
||
|
struct list_head entry;
|
||
|
struct videobuf_dmabuf vb;
|
||
|
size_t size;
|
||
|
};
|
||
|
|
||
|
struct fpga_device {
|
||
|
/* character device */
|
||
|
struct miscdevice miscdev;
|
||
|
struct device *dev;
|
||
|
struct mutex mutex;
|
||
|
|
||
|
/* reference count */
|
||
|
struct kref ref;
|
||
|
|
||
|
/* FPGA registers and information */
|
||
|
struct fpga_info info[NUM_FPGA];
|
||
|
void __iomem *regs;
|
||
|
int irq;
|
||
|
|
||
|
/* FPGA Physical Address/Size Information */
|
||
|
resource_size_t phys_addr;
|
||
|
size_t phys_size;
|
||
|
|
||
|
/* DMA structures */
|
||
|
struct sg_table corl_table;
|
||
|
unsigned int corl_nents;
|
||
|
struct dma_chan *chan;
|
||
|
|
||
|
/* Protection for all members below */
|
||
|
spinlock_t lock;
|
||
|
|
||
|
/* Device enable/disable flag */
|
||
|
bool enabled;
|
||
|
|
||
|
/* Correlation data buffers */
|
||
|
wait_queue_head_t wait;
|
||
|
struct list_head free;
|
||
|
struct list_head used;
|
||
|
struct data_buf *inflight;
|
||
|
|
||
|
/* Information about data buffers */
|
||
|
unsigned int num_dropped;
|
||
|
unsigned int num_buffers;
|
||
|
size_t bufsize;
|
||
|
struct dentry *dbg_entry;
|
||
|
};
|
||
|
|
||
|
struct fpga_reader {
|
||
|
struct fpga_device *priv;
|
||
|
struct data_buf *buf;
|
||
|
off_t buf_start;
|
||
|
};
|
||
|
|
||
|
static void fpga_device_release(struct kref *ref)
|
||
|
{
|
||
|
struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
|
||
|
|
||
|
/* the last reader has exited, cleanup the last bits */
|
||
|
mutex_destroy(&priv->mutex);
|
||
|
kfree(priv);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Data Buffer Allocation Helpers
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* data_free_buffer() - free a single data buffer and all allocated memory
|
||
|
* @buf: the buffer to free
|
||
|
*
|
||
|
* This will free all of the pages allocated to the given data buffer, and
|
||
|
* then free the structure itself
|
||
|
*/
|
||
|
static void data_free_buffer(struct data_buf *buf)
|
||
|
{
|
||
|
/* It is ok to free a NULL buffer */
|
||
|
if (!buf)
|
||
|
return;
|
||
|
|
||
|
/* free all memory */
|
||
|
videobuf_dma_free(&buf->vb);
|
||
|
kfree(buf);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_alloc_buffer() - allocate and fill a data buffer with pages
|
||
|
* @bytes: the number of bytes required
|
||
|
*
|
||
|
* This allocates all space needed for a data buffer. It must be mapped before
|
||
|
* use in a DMA transaction using videobuf_dma_map().
|
||
|
*
|
||
|
* Returns NULL on failure
|
||
|
*/
|
||
|
static struct data_buf *data_alloc_buffer(const size_t bytes)
|
||
|
{
|
||
|
unsigned int nr_pages;
|
||
|
struct data_buf *buf;
|
||
|
int ret;
|
||
|
|
||
|
/* calculate the number of pages necessary */
|
||
|
nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
|
||
|
|
||
|
/* allocate the buffer structure */
|
||
|
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
goto out_return;
|
||
|
|
||
|
/* initialize internal fields */
|
||
|
INIT_LIST_HEAD(&buf->entry);
|
||
|
buf->size = bytes;
|
||
|
|
||
|
/* allocate the videobuf */
|
||
|
videobuf_dma_init(&buf->vb);
|
||
|
ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
|
||
|
if (ret)
|
||
|
goto out_free_buf;
|
||
|
|
||
|
return buf;
|
||
|
|
||
|
out_free_buf:
|
||
|
kfree(buf);
|
||
|
out_return:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_free_buffers() - free all allocated buffers
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Free all buffers allocated by the driver (except those currently in the
|
||
|
* process of being read by userspace).
|
||
|
*
|
||
|
* LOCKING: must hold dev->mutex
|
||
|
* CONTEXT: user
|
||
|
*/
|
||
|
static void data_free_buffers(struct fpga_device *priv)
|
||
|
{
|
||
|
struct data_buf *buf, *tmp;
|
||
|
|
||
|
/* the device should be stopped, no DMA in progress */
|
||
|
BUG_ON(priv->inflight != NULL);
|
||
|
|
||
|
list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
|
||
|
list_del_init(&buf->entry);
|
||
|
videobuf_dma_unmap(priv->dev, &buf->vb);
|
||
|
data_free_buffer(buf);
|
||
|
}
|
||
|
|
||
|
list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
|
||
|
list_del_init(&buf->entry);
|
||
|
videobuf_dma_unmap(priv->dev, &buf->vb);
|
||
|
data_free_buffer(buf);
|
||
|
}
|
||
|
|
||
|
priv->num_buffers = 0;
|
||
|
priv->bufsize = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_alloc_buffers() - allocate 1 seconds worth of data buffers
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Allocate enough buffers for a whole second worth of data
|
||
|
*
|
||
|
* This routine will attempt to degrade nicely by succeeding even if a full
|
||
|
* second worth of data buffers could not be allocated, as long as a minimum
|
||
|
* number were allocated. In this case, it will print a message to the kernel
|
||
|
* log.
|
||
|
*
|
||
|
* The device must not be modifying any lists when this is called.
|
||
|
*
|
||
|
* CONTEXT: user
|
||
|
* LOCKING: must hold dev->mutex
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_alloc_buffers(struct fpga_device *priv)
|
||
|
{
|
||
|
struct data_buf *buf;
|
||
|
int i, ret;
|
||
|
|
||
|
for (i = 0; i < MAX_DATA_BUFS; i++) {
|
||
|
|
||
|
/* allocate a buffer */
|
||
|
buf = data_alloc_buffer(priv->bufsize);
|
||
|
if (!buf)
|
||
|
break;
|
||
|
|
||
|
/* map it for DMA */
|
||
|
ret = videobuf_dma_map(priv->dev, &buf->vb);
|
||
|
if (ret) {
|
||
|
data_free_buffer(buf);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* add it to the list of free buffers */
|
||
|
list_add_tail(&buf->entry, &priv->free);
|
||
|
priv->num_buffers++;
|
||
|
}
|
||
|
|
||
|
/* Make sure we allocated the minimum required number of buffers */
|
||
|
if (priv->num_buffers < MIN_DATA_BUFS) {
|
||
|
dev_err(priv->dev, "Unable to allocate enough data buffers\n");
|
||
|
data_free_buffers(priv);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* Warn if we are running in a degraded state, but do not fail */
|
||
|
if (priv->num_buffers < MAX_DATA_BUFS) {
|
||
|
dev_warn(priv->dev,
|
||
|
"Unable to allocate %d buffers, using %d buffers instead\n",
|
||
|
MAX_DATA_BUFS, i);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* DMA Operations Helpers
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* fpga_start_addr() - get the physical address a DATA-FPGA
|
||
|
* @priv: the driver's private data structure
|
||
|
* @fpga: the DATA-FPGA number (zero based)
|
||
|
*/
|
||
|
static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
|
||
|
{
|
||
|
return priv->phys_addr + 0x400000 + (0x80000 * fpga);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* fpga_block_addr() - get the physical address of a correlation data block
|
||
|
* @priv: the driver's private data structure
|
||
|
* @fpga: the DATA-FPGA number (zero based)
|
||
|
* @blknum: the correlation block number (zero based)
|
||
|
*/
|
||
|
static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
|
||
|
unsigned int blknum)
|
||
|
{
|
||
|
return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
|
||
|
}
|
||
|
|
||
|
#define REG_BLOCK_SIZE (32 * 4)
|
||
|
|
||
|
/**
|
||
|
* data_setup_corl_table() - create the scatterlist for correlation dumps
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Create the scatterlist for transferring a correlation dump from the
|
||
|
* DATA FPGAs. This structure will be reused for each buffer than needs
|
||
|
* to be filled with correlation data.
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_setup_corl_table(struct fpga_device *priv)
|
||
|
{
|
||
|
struct sg_table *table = &priv->corl_table;
|
||
|
struct scatterlist *sg;
|
||
|
struct fpga_info *info;
|
||
|
int i, j, ret;
|
||
|
|
||
|
/* Calculate the number of entries needed */
|
||
|
priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
|
||
|
for (i = 0; i < NUM_FPGA; i++)
|
||
|
priv->corl_nents += priv->info[i].num_lag_ram;
|
||
|
|
||
|
/* Allocate the scatterlist table */
|
||
|
ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to allocate DMA table\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Add the DATA FPGA registers to the scatterlist */
|
||
|
sg = table->sgl;
|
||
|
for (i = 0; i < NUM_FPGA; i++) {
|
||
|
sg_dma_address(sg) = fpga_start_addr(priv, i);
|
||
|
sg_dma_len(sg) = REG_BLOCK_SIZE;
|
||
|
sg = sg_next(sg);
|
||
|
}
|
||
|
|
||
|
/* Add the SYS-FPGA registers to the scatterlist */
|
||
|
sg_dma_address(sg) = SYS_FPGA_BLOCK;
|
||
|
sg_dma_len(sg) = REG_BLOCK_SIZE;
|
||
|
sg = sg_next(sg);
|
||
|
|
||
|
/* Add the FPGA correlation data blocks to the scatterlist */
|
||
|
for (i = 0; i < NUM_FPGA; i++) {
|
||
|
info = &priv->info[i];
|
||
|
for (j = 0; j < info->num_lag_ram; j++) {
|
||
|
sg_dma_address(sg) = fpga_block_addr(priv, i, j);
|
||
|
sg_dma_len(sg) = info->blk_size;
|
||
|
sg = sg_next(sg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* All physical addresses and lengths are present in the structure
|
||
|
* now. It can be reused for every FPGA DATA interrupt
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* FPGA Register Access Helpers
|
||
|
*/
|
||
|
|
||
|
static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
|
||
|
unsigned int reg, u32 val)
|
||
|
{
|
||
|
const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
|
||
|
iowrite32be(val, priv->regs + fpga_start + reg);
|
||
|
}
|
||
|
|
||
|
static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
|
||
|
unsigned int reg)
|
||
|
{
|
||
|
const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
|
||
|
return ioread32be(priv->regs + fpga_start + reg);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_calculate_bufsize() - calculate the data buffer size required
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Calculate the total buffer size needed to hold a single block
|
||
|
* of correlation data
|
||
|
*
|
||
|
* CONTEXT: user
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_calculate_bufsize(struct fpga_device *priv)
|
||
|
{
|
||
|
u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
|
||
|
u32 conf1, conf2, version;
|
||
|
u32 num_lag_ram, blk_size;
|
||
|
int i;
|
||
|
|
||
|
/* Each buffer starts with the 5 FPGA register areas */
|
||
|
priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
|
||
|
|
||
|
/* Read and store the configuration data for each FPGA */
|
||
|
for (i = 0; i < NUM_FPGA; i++) {
|
||
|
version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
|
||
|
conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
|
||
|
conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
|
||
|
|
||
|
/* minor version 2 and later */
|
||
|
if ((version & 0x000000FF) >= 2) {
|
||
|
num_corl = (conf1 & 0x000000F0) >> 4;
|
||
|
num_pack = (conf1 & 0x00000F00) >> 8;
|
||
|
num_lags = (conf1 & 0x00FFF000) >> 12;
|
||
|
num_meta = (conf1 & 0x7F000000) >> 24;
|
||
|
num_qcnt = (conf2 & 0x00000FFF) >> 0;
|
||
|
} else {
|
||
|
num_corl = (conf1 & 0x000000F0) >> 4;
|
||
|
num_pack = 1; /* implied */
|
||
|
num_lags = (conf1 & 0x000FFF00) >> 8;
|
||
|
num_meta = (conf1 & 0x7FF00000) >> 20;
|
||
|
num_qcnt = (conf2 & 0x00000FFF) >> 0;
|
||
|
}
|
||
|
|
||
|
num_lag_ram = (num_corl + num_pack - 1) / num_pack;
|
||
|
blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
|
||
|
|
||
|
priv->info[i].num_lag_ram = num_lag_ram;
|
||
|
priv->info[i].blk_size = blk_size;
|
||
|
priv->bufsize += num_lag_ram * blk_size;
|
||
|
|
||
|
dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
|
||
|
dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
|
||
|
dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
|
||
|
dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
|
||
|
dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
|
||
|
dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
|
||
|
}
|
||
|
|
||
|
dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interrupt Handling
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* data_disable_interrupts() - stop the device from generating interrupts
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Hide interrupts by switching to GPIO interrupt source
|
||
|
*
|
||
|
* LOCKING: must hold dev->lock
|
||
|
*/
|
||
|
static void data_disable_interrupts(struct fpga_device *priv)
|
||
|
{
|
||
|
/* hide the interrupt by switching the IRQ driver to GPIO */
|
||
|
iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_enable_interrupts() - allow the device to generate interrupts
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Unhide interrupts by switching to the FPGA interrupt source. At the
|
||
|
* same time, clear the DATA-FPGA status registers.
|
||
|
*
|
||
|
* LOCKING: must hold dev->lock
|
||
|
*/
|
||
|
static void data_enable_interrupts(struct fpga_device *priv)
|
||
|
{
|
||
|
/* clear the actual FPGA corl_done interrupt */
|
||
|
fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
|
||
|
fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
|
||
|
fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
|
||
|
fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
|
||
|
|
||
|
/* flush the writes */
|
||
|
fpga_read_reg(priv, 0, MMAP_REG_STATUS);
|
||
|
|
||
|
/* switch back to the external interrupt source */
|
||
|
iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_dma_cb() - DMAEngine callback for DMA completion
|
||
|
* @data: the driver's private data structure
|
||
|
*
|
||
|
* Complete a DMA transfer from the DATA-FPGA's
|
||
|
*
|
||
|
* This is called via the DMA callback mechanism, and will handle moving the
|
||
|
* completed DMA transaction to the used list, and then wake any processes
|
||
|
* waiting for new data
|
||
|
*
|
||
|
* CONTEXT: any, softirq expected
|
||
|
*/
|
||
|
static void data_dma_cb(void *data)
|
||
|
{
|
||
|
struct fpga_device *priv = data;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&priv->lock, flags);
|
||
|
|
||
|
/* If there is no inflight buffer, we've got a bug */
|
||
|
BUG_ON(priv->inflight == NULL);
|
||
|
|
||
|
/* Move the inflight buffer onto the used list */
|
||
|
list_move_tail(&priv->inflight->entry, &priv->used);
|
||
|
priv->inflight = NULL;
|
||
|
|
||
|
/* clear the FPGA status and re-enable interrupts */
|
||
|
data_enable_interrupts(priv);
|
||
|
|
||
|
spin_unlock_irqrestore(&priv->lock, flags);
|
||
|
|
||
|
/*
|
||
|
* We've changed both the inflight and used lists, so we need
|
||
|
* to wake up any processes that are blocking for those events
|
||
|
*/
|
||
|
wake_up(&priv->wait);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_submit_dma() - prepare and submit the required DMA to fill a buffer
|
||
|
* @priv: the driver's private data structure
|
||
|
* @buf: the data buffer
|
||
|
*
|
||
|
* Prepare and submit the necessary DMA transactions to fill a correlation
|
||
|
* data buffer.
|
||
|
*
|
||
|
* LOCKING: must hold dev->lock
|
||
|
* CONTEXT: hardirq only
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
|
||
|
{
|
||
|
struct scatterlist *dst_sg, *src_sg;
|
||
|
unsigned int dst_nents, src_nents;
|
||
|
struct dma_chan *chan = priv->chan;
|
||
|
struct dma_async_tx_descriptor *tx;
|
||
|
dma_cookie_t cookie;
|
||
|
dma_addr_t dst, src;
|
||
|
|
||
|
dst_sg = buf->vb.sglist;
|
||
|
dst_nents = buf->vb.sglen;
|
||
|
|
||
|
src_sg = priv->corl_table.sgl;
|
||
|
src_nents = priv->corl_nents;
|
||
|
|
||
|
/*
|
||
|
* All buffers passed to this function should be ready and mapped
|
||
|
* for DMA already. Therefore, we don't need to do anything except
|
||
|
* submit it to the Freescale DMA Engine for processing
|
||
|
*/
|
||
|
|
||
|
/* setup the scatterlist to scatterlist transfer */
|
||
|
tx = chan->device->device_prep_dma_sg(chan,
|
||
|
dst_sg, dst_nents,
|
||
|
src_sg, src_nents,
|
||
|
0);
|
||
|
if (!tx) {
|
||
|
dev_err(priv->dev, "unable to prep scatterlist DMA\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* submit the transaction to the DMA controller */
|
||
|
cookie = tx->tx_submit(tx);
|
||
|
if (dma_submit_error(cookie)) {
|
||
|
dev_err(priv->dev, "unable to submit scatterlist DMA\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* Prepare the re-read of the SYS-FPGA block */
|
||
|
dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
|
||
|
src = SYS_FPGA_BLOCK;
|
||
|
tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
|
||
|
REG_BLOCK_SIZE,
|
||
|
DMA_PREP_INTERRUPT);
|
||
|
if (!tx) {
|
||
|
dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
/* Setup the callback */
|
||
|
tx->callback = data_dma_cb;
|
||
|
tx->callback_param = priv;
|
||
|
|
||
|
/* submit the transaction to the DMA controller */
|
||
|
cookie = tx->tx_submit(tx);
|
||
|
if (dma_submit_error(cookie)) {
|
||
|
dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define CORL_DONE 0x1
|
||
|
#define CORL_ERR 0x2
|
||
|
|
||
|
static irqreturn_t data_irq(int irq, void *dev_id)
|
||
|
{
|
||
|
struct fpga_device *priv = dev_id;
|
||
|
bool submitted = false;
|
||
|
struct data_buf *buf;
|
||
|
u32 status;
|
||
|
int i;
|
||
|
|
||
|
/* detect spurious interrupts via FPGA status */
|
||
|
for (i = 0; i < 4; i++) {
|
||
|
status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
|
||
|
if (!(status & (CORL_DONE | CORL_ERR))) {
|
||
|
dev_err(priv->dev, "spurious irq detected (FPGA)\n");
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* detect spurious interrupts via raw IRQ pin readback */
|
||
|
status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
|
||
|
if (status & IRQ_CORL_DONE) {
|
||
|
dev_err(priv->dev, "spurious irq detected (IRQ)\n");
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
spin_lock(&priv->lock);
|
||
|
|
||
|
/* hide the interrupt by switching the IRQ driver to GPIO */
|
||
|
data_disable_interrupts(priv);
|
||
|
|
||
|
/* If there are no free buffers, drop this data */
|
||
|
if (list_empty(&priv->free)) {
|
||
|
priv->num_dropped++;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
buf = list_first_entry(&priv->free, struct data_buf, entry);
|
||
|
list_del_init(&buf->entry);
|
||
|
BUG_ON(buf->size != priv->bufsize);
|
||
|
|
||
|
/* Submit a DMA transfer to get the correlation data */
|
||
|
if (data_submit_dma(priv, buf)) {
|
||
|
dev_err(priv->dev, "Unable to setup DMA transfer\n");
|
||
|
list_move_tail(&buf->entry, &priv->free);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Save the buffer for the DMA callback */
|
||
|
priv->inflight = buf;
|
||
|
submitted = true;
|
||
|
|
||
|
/* Start the DMA Engine */
|
||
|
dma_async_memcpy_issue_pending(priv->chan);
|
||
|
|
||
|
out:
|
||
|
/* If no DMA was submitted, re-enable interrupts */
|
||
|
if (!submitted)
|
||
|
data_enable_interrupts(priv);
|
||
|
|
||
|
spin_unlock(&priv->lock);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Realtime Device Enable Helpers
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* data_device_enable() - enable the device for buffered dumping
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Enable the device for buffered dumping. Allocates buffers and hooks up
|
||
|
* the interrupt handler. When this finishes, data will come pouring in.
|
||
|
*
|
||
|
* LOCKING: must hold dev->mutex
|
||
|
* CONTEXT: user context only
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_device_enable(struct fpga_device *priv)
|
||
|
{
|
||
|
u32 val;
|
||
|
int ret;
|
||
|
|
||
|
/* multiple enables are safe: they do nothing */
|
||
|
if (priv->enabled)
|
||
|
return 0;
|
||
|
|
||
|
/* check that the FPGAs are programmed */
|
||
|
val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
|
||
|
if (!(val & (1 << 18))) {
|
||
|
dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
|
||
|
return -ENODATA;
|
||
|
}
|
||
|
|
||
|
/* read the FPGAs to calculate the buffer size */
|
||
|
ret = data_calculate_bufsize(priv);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to calculate buffer size\n");
|
||
|
goto out_error;
|
||
|
}
|
||
|
|
||
|
/* allocate the correlation data buffers */
|
||
|
ret = data_alloc_buffers(priv);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to allocate buffers\n");
|
||
|
goto out_error;
|
||
|
}
|
||
|
|
||
|
/* setup the source scatterlist for dumping correlation data */
|
||
|
ret = data_setup_corl_table(priv);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to setup correlation DMA table\n");
|
||
|
goto out_error;
|
||
|
}
|
||
|
|
||
|
/* hookup the irq handler */
|
||
|
ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to request IRQ handler\n");
|
||
|
goto out_error;
|
||
|
}
|
||
|
|
||
|
/* switch to the external FPGA IRQ line */
|
||
|
data_enable_interrupts(priv);
|
||
|
|
||
|
/* success, we're enabled */
|
||
|
priv->enabled = true;
|
||
|
return 0;
|
||
|
|
||
|
out_error:
|
||
|
sg_free_table(&priv->corl_table);
|
||
|
priv->corl_nents = 0;
|
||
|
|
||
|
data_free_buffers(priv);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* data_device_disable() - disable the device for buffered dumping
|
||
|
* @priv: the driver's private data structure
|
||
|
*
|
||
|
* Disable the device for buffered dumping. Stops new DMA transactions from
|
||
|
* being generated, waits for all outstanding DMA to complete, and then frees
|
||
|
* all buffers.
|
||
|
*
|
||
|
* LOCKING: must hold dev->mutex
|
||
|
* CONTEXT: user only
|
||
|
*
|
||
|
* Returns 0 on success, -ERRNO otherwise
|
||
|
*/
|
||
|
static int data_device_disable(struct fpga_device *priv)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/* allow multiple disable */
|
||
|
if (!priv->enabled)
|
||
|
return 0;
|
||
|
|
||
|
/* switch to the internal GPIO IRQ line */
|
||
|
data_disable_interrupts(priv);
|
||
|
|
||
|
/* unhook the irq handler */
|
||
|
free_irq(priv->irq, priv);
|
||
|
|
||
|
/*
|
||
|
* wait for all outstanding DMA to complete
|
||
|
*
|
||
|
* Device interrupts are disabled, therefore another buffer cannot
|
||
|
* be marked inflight.
|
||
|
*/
|
||
|
ret = wait_event_interruptible(priv->wait, priv->inflight == NULL);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* free the correlation table */
|
||
|
sg_free_table(&priv->corl_table);
|
||
|
priv->corl_nents = 0;
|
||
|
|
||
|
/*
|
||
|
* We are taking the spinlock not to protect priv->enabled, but instead
|
||
|
* to make sure that there are no readers in the process of altering
|
||
|
* the free or used lists while we are setting this flag.
|
||
|
*/
|
||
|
spin_lock_irq(&priv->lock);
|
||
|
priv->enabled = false;
|
||
|
spin_unlock_irq(&priv->lock);
|
||
|
|
||
|
/* free all buffers: the free and used lists are not being changed */
|
||
|
data_free_buffers(priv);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* DEBUGFS Interface
|
||
|
*/
|
||
|
#ifdef CONFIG_DEBUG_FS
|
||
|
|
||
|
/*
|
||
|
* Count the number of entries in the given list
|
||
|
*/
|
||
|
static unsigned int list_num_entries(struct list_head *list)
|
||
|
{
|
||
|
struct list_head *entry;
|
||
|
unsigned int ret = 0;
|
||
|
|
||
|
list_for_each(entry, list)
|
||
|
ret++;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int data_debug_show(struct seq_file *f, void *offset)
|
||
|
{
|
||
|
struct fpga_device *priv = f->private;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Lock the mutex first, so that we get an accurate value for enable
|
||
|
* Lock the spinlock next, to get accurate list counts
|
||
|
*/
|
||
|
ret = mutex_lock_interruptible(&priv->mutex);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
spin_lock_irq(&priv->lock);
|
||
|
|
||
|
seq_printf(f, "enabled: %d\n", priv->enabled);
|
||
|
seq_printf(f, "bufsize: %d\n", priv->bufsize);
|
||
|
seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
|
||
|
seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
|
||
|
seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
|
||
|
seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
|
||
|
seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
|
||
|
|
||
|
spin_unlock_irq(&priv->lock);
|
||
|
mutex_unlock(&priv->mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int data_debug_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
return single_open(file, data_debug_show, inode->i_private);
|
||
|
}
|
||
|
|
||
|
static const struct file_operations data_debug_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.open = data_debug_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = single_release,
|
||
|
};
|
||
|
|
||
|
static int data_debugfs_init(struct fpga_device *priv)
|
||
|
{
|
||
|
priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
|
||
|
&data_debug_fops);
|
||
|
if (IS_ERR(priv->dbg_entry))
|
||
|
return PTR_ERR(priv->dbg_entry);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void data_debugfs_exit(struct fpga_device *priv)
|
||
|
{
|
||
|
debugfs_remove(priv->dbg_entry);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static inline int data_debugfs_init(struct fpga_device *priv)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void data_debugfs_exit(struct fpga_device *priv)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_DEBUG_FS */
|
||
|
|
||
|
/*
|
||
|
* SYSFS Attributes
|
||
|
*/
|
||
|
|
||
|
static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
|
||
|
char *buf)
|
||
|
{
|
||
|
struct fpga_device *priv = dev_get_drvdata(dev);
|
||
|
return snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
|
||
|
}
|
||
|
|
||
|
static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
|
||
|
const char *buf, size_t count)
|
||
|
{
|
||
|
struct fpga_device *priv = dev_get_drvdata(dev);
|
||
|
unsigned long enable;
|
||
|
int ret;
|
||
|
|
||
|
ret = strict_strtoul(buf, 0, &enable);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to parse enable input\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ret = mutex_lock_interruptible(&priv->mutex);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (enable)
|
||
|
ret = data_device_enable(priv);
|
||
|
else
|
||
|
ret = data_device_disable(priv);
|
||
|
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "device %s failed\n",
|
||
|
enable ? "enable" : "disable");
|
||
|
count = ret;
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
out_unlock:
|
||
|
mutex_unlock(&priv->mutex);
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
|
||
|
|
||
|
static struct attribute *data_sysfs_attrs[] = {
|
||
|
&dev_attr_enable.attr,
|
||
|
NULL,
|
||
|
};
|
||
|
|
||
|
static const struct attribute_group rt_sysfs_attr_group = {
|
||
|
.attrs = data_sysfs_attrs,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* FPGA Realtime Data Character Device
|
||
|
*/
|
||
|
|
||
|
static int data_open(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
/*
|
||
|
* The miscdevice layer puts our struct miscdevice into the
|
||
|
* filp->private_data field. We use this to find our private
|
||
|
* data and then overwrite it with our own private structure.
|
||
|
*/
|
||
|
struct fpga_device *priv = container_of(filp->private_data,
|
||
|
struct fpga_device, miscdev);
|
||
|
struct fpga_reader *reader;
|
||
|
int ret;
|
||
|
|
||
|
/* allocate private data */
|
||
|
reader = kzalloc(sizeof(*reader), GFP_KERNEL);
|
||
|
if (!reader)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
reader->priv = priv;
|
||
|
reader->buf = NULL;
|
||
|
|
||
|
filp->private_data = reader;
|
||
|
ret = nonseekable_open(inode, filp);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "nonseekable-open failed\n");
|
||
|
kfree(reader);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* success, increase the reference count of the private data structure
|
||
|
* so that it doesn't disappear if the device is unbound
|
||
|
*/
|
||
|
kref_get(&priv->ref);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int data_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct fpga_reader *reader = filp->private_data;
|
||
|
struct fpga_device *priv = reader->priv;
|
||
|
|
||
|
/* free the per-reader structure */
|
||
|
data_free_buffer(reader->buf);
|
||
|
kfree(reader);
|
||
|
filp->private_data = NULL;
|
||
|
|
||
|
/* decrement our reference count to the private data */
|
||
|
kref_put(&priv->ref, fpga_device_release);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
|
||
|
loff_t *f_pos)
|
||
|
{
|
||
|
struct fpga_reader *reader = filp->private_data;
|
||
|
struct fpga_device *priv = reader->priv;
|
||
|
struct list_head *used = &priv->used;
|
||
|
struct data_buf *dbuf;
|
||
|
size_t avail;
|
||
|
void *data;
|
||
|
int ret;
|
||
|
|
||
|
/* check if we already have a partial buffer */
|
||
|
if (reader->buf) {
|
||
|
dbuf = reader->buf;
|
||
|
goto have_buffer;
|
||
|
}
|
||
|
|
||
|
spin_lock_irq(&priv->lock);
|
||
|
|
||
|
/* Block until there is at least one buffer on the used list */
|
||
|
while (list_empty(used)) {
|
||
|
spin_unlock_irq(&priv->lock);
|
||
|
|
||
|
if (filp->f_flags & O_NONBLOCK)
|
||
|
return -EAGAIN;
|
||
|
|
||
|
ret = wait_event_interruptible(priv->wait, !list_empty(used));
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
spin_lock_irq(&priv->lock);
|
||
|
}
|
||
|
|
||
|
/* Grab the first buffer off of the used list */
|
||
|
dbuf = list_first_entry(used, struct data_buf, entry);
|
||
|
list_del_init(&dbuf->entry);
|
||
|
|
||
|
spin_unlock_irq(&priv->lock);
|
||
|
|
||
|
/* Buffers are always mapped: unmap it */
|
||
|
videobuf_dma_unmap(priv->dev, &dbuf->vb);
|
||
|
|
||
|
/* save the buffer for later */
|
||
|
reader->buf = dbuf;
|
||
|
reader->buf_start = 0;
|
||
|
|
||
|
have_buffer:
|
||
|
/* Get the number of bytes available */
|
||
|
avail = dbuf->size - reader->buf_start;
|
||
|
data = dbuf->vb.vaddr + reader->buf_start;
|
||
|
|
||
|
/* Get the number of bytes we can transfer */
|
||
|
count = min(count, avail);
|
||
|
|
||
|
/* Copy the data to the userspace buffer */
|
||
|
if (copy_to_user(ubuf, data, count))
|
||
|
return -EFAULT;
|
||
|
|
||
|
/* Update the amount of available space */
|
||
|
avail -= count;
|
||
|
|
||
|
/*
|
||
|
* If there is still some data available, save the buffer for the
|
||
|
* next userspace call to read() and return
|
||
|
*/
|
||
|
if (avail > 0) {
|
||
|
reader->buf_start += count;
|
||
|
reader->buf = dbuf;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get the buffer ready to be reused for DMA
|
||
|
*
|
||
|
* If it fails, we pretend that the read never happed and return
|
||
|
* -EFAULT to userspace. The read will be retried.
|
||
|
*/
|
||
|
ret = videobuf_dma_map(priv->dev, &dbuf->vb);
|
||
|
if (ret) {
|
||
|
dev_err(priv->dev, "unable to remap buffer for DMA\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
|
||
|
/* Lock against concurrent enable/disable */
|
||
|
spin_lock_irq(&priv->lock);
|
||
|
|
||
|
/* the reader is finished with this buffer */
|
||
|
reader->buf = NULL;
|
||
|
|
||
|
/*
|
||
|
* One of two things has happened, the device is disabled, or the
|
||
|
* device has been reconfigured underneath us. In either case, we
|
||
|
* should just throw away the buffer.
|
||
|
*/
|
||
|
if (!priv->enabled || dbuf->size != priv->bufsize) {
|
||
|
videobuf_dma_unmap(priv->dev, &dbuf->vb);
|
||
|
data_free_buffer(dbuf);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
|
||
|
/* The buffer is safe to reuse, so add it back to the free list */
|
||
|
list_add_tail(&dbuf->entry, &priv->free);
|
||
|
|
||
|
out_unlock:
|
||
|
spin_unlock_irq(&priv->lock);
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
|
||
|
{
|
||
|
struct fpga_reader *reader = filp->private_data;
|
||
|
struct fpga_device *priv = reader->priv;
|
||
|
unsigned int mask = 0;
|
||
|
|
||
|
poll_wait(filp, &priv->wait, tbl);
|
||
|
|
||
|
if (!list_empty(&priv->used))
|
||
|
mask |= POLLIN | POLLRDNORM;
|
||
|
|
||
|
return mask;
|
||
|
}
|
||
|
|
||
|
static int data_mmap(struct file *filp, struct vm_area_struct *vma)
|
||
|
{
|
||
|
struct fpga_reader *reader = filp->private_data;
|
||
|
struct fpga_device *priv = reader->priv;
|
||
|
unsigned long offset, vsize, psize, addr;
|
||
|
|
||
|
/* VMA properties */
|
||
|
offset = vma->vm_pgoff << PAGE_SHIFT;
|
||
|
vsize = vma->vm_end - vma->vm_start;
|
||
|
psize = priv->phys_size - offset;
|
||
|
addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
|
||
|
|
||
|
/* Check against the FPGA region's physical memory size */
|
||
|
if (vsize > psize) {
|
||
|
dev_err(priv->dev, "requested mmap mapping too large\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* IO memory (stop cacheing) */
|
||
|
vma->vm_flags |= VM_IO | VM_RESERVED;
|
||
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||
|
|
||
|
return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
|
||
|
vma->vm_page_prot);
|
||
|
}
|
||
|
|
||
|
static const struct file_operations data_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.open = data_open,
|
||
|
.release = data_release,
|
||
|
.read = data_read,
|
||
|
.poll = data_poll,
|
||
|
.mmap = data_mmap,
|
||
|
.llseek = no_llseek,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* OpenFirmware Device Subsystem
|
||
|
*/
|
||
|
|
||
|
static bool dma_filter(struct dma_chan *chan, void *data)
|
||
|
{
|
||
|
/*
|
||
|
* DMA Channel #0 is used for the FPGA Programmer, so ignore it
|
||
|
*
|
||
|
* This probably won't survive an unload/load cycle of the Freescale
|
||
|
* DMAEngine driver, but that won't be a problem
|
||
|
*/
|
||
|
if (chan->chan_id == 0 && chan->device->dev_id == 0)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static int data_of_probe(struct platform_device *op,
|
||
|
const struct of_device_id *match)
|
||
|
{
|
||
|
struct device_node *of_node = op->dev.of_node;
|
||
|
struct device *this_device;
|
||
|
struct fpga_device *priv;
|
||
|
struct resource res;
|
||
|
dma_cap_mask_t mask;
|
||
|
int ret;
|
||
|
|
||
|
/* Allocate private data */
|
||
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
||
|
if (!priv) {
|
||
|
dev_err(&op->dev, "Unable to allocate device private data\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto out_return;
|
||
|
}
|
||
|
|
||
|
dev_set_drvdata(&op->dev, priv);
|
||
|
priv->dev = &op->dev;
|
||
|
kref_init(&priv->ref);
|
||
|
mutex_init(&priv->mutex);
|
||
|
|
||
|
dev_set_drvdata(priv->dev, priv);
|
||
|
spin_lock_init(&priv->lock);
|
||
|
INIT_LIST_HEAD(&priv->free);
|
||
|
INIT_LIST_HEAD(&priv->used);
|
||
|
init_waitqueue_head(&priv->wait);
|
||
|
|
||
|
/* Setup the misc device */
|
||
|
priv->miscdev.minor = MISC_DYNAMIC_MINOR;
|
||
|
priv->miscdev.name = drv_name;
|
||
|
priv->miscdev.fops = &data_fops;
|
||
|
|
||
|
/* Get the physical address of the FPGA registers */
|
||
|
ret = of_address_to_resource(of_node, 0, &res);
|
||
|
if (ret) {
|
||
|
dev_err(&op->dev, "Unable to find FPGA physical address\n");
|
||
|
ret = -ENODEV;
|
||
|
goto out_free_priv;
|
||
|
}
|
||
|
|
||
|
priv->phys_addr = res.start;
|
||
|
priv->phys_size = resource_size(&res);
|
||
|
|
||
|
/* ioremap the registers for use */
|
||
|
priv->regs = of_iomap(of_node, 0);
|
||
|
if (!priv->regs) {
|
||
|
dev_err(&op->dev, "Unable to ioremap registers\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto out_free_priv;
|
||
|
}
|
||
|
|
||
|
dma_cap_zero(mask);
|
||
|
dma_cap_set(DMA_MEMCPY, mask);
|
||
|
dma_cap_set(DMA_INTERRUPT, mask);
|
||
|
dma_cap_set(DMA_SLAVE, mask);
|
||
|
dma_cap_set(DMA_SG, mask);
|
||
|
|
||
|
/* Request a DMA channel */
|
||
|
priv->chan = dma_request_channel(mask, dma_filter, NULL);
|
||
|
if (!priv->chan) {
|
||
|
dev_err(&op->dev, "Unable to request DMA channel\n");
|
||
|
ret = -ENODEV;
|
||
|
goto out_unmap_regs;
|
||
|
}
|
||
|
|
||
|
/* Find the correct IRQ number */
|
||
|
priv->irq = irq_of_parse_and_map(of_node, 0);
|
||
|
if (priv->irq == NO_IRQ) {
|
||
|
dev_err(&op->dev, "Unable to find IRQ line\n");
|
||
|
ret = -ENODEV;
|
||
|
goto out_release_dma;
|
||
|
}
|
||
|
|
||
|
/* Drive the GPIO for FPGA IRQ high (no interrupt) */
|
||
|
iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
|
||
|
|
||
|
/* Register the miscdevice */
|
||
|
ret = misc_register(&priv->miscdev);
|
||
|
if (ret) {
|
||
|
dev_err(&op->dev, "Unable to register miscdevice\n");
|
||
|
goto out_irq_dispose_mapping;
|
||
|
}
|
||
|
|
||
|
/* Create the debugfs files */
|
||
|
ret = data_debugfs_init(priv);
|
||
|
if (ret) {
|
||
|
dev_err(&op->dev, "Unable to create debugfs files\n");
|
||
|
goto out_misc_deregister;
|
||
|
}
|
||
|
|
||
|
/* Create the sysfs files */
|
||
|
this_device = priv->miscdev.this_device;
|
||
|
dev_set_drvdata(this_device, priv);
|
||
|
ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
|
||
|
if (ret) {
|
||
|
dev_err(&op->dev, "Unable to create sysfs files\n");
|
||
|
goto out_data_debugfs_exit;
|
||
|
}
|
||
|
|
||
|
dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
|
||
|
return 0;
|
||
|
|
||
|
out_data_debugfs_exit:
|
||
|
data_debugfs_exit(priv);
|
||
|
out_misc_deregister:
|
||
|
misc_deregister(&priv->miscdev);
|
||
|
out_irq_dispose_mapping:
|
||
|
irq_dispose_mapping(priv->irq);
|
||
|
out_release_dma:
|
||
|
dma_release_channel(priv->chan);
|
||
|
out_unmap_regs:
|
||
|
iounmap(priv->regs);
|
||
|
out_free_priv:
|
||
|
kref_put(&priv->ref, fpga_device_release);
|
||
|
out_return:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int data_of_remove(struct platform_device *op)
|
||
|
{
|
||
|
struct fpga_device *priv = dev_get_drvdata(&op->dev);
|
||
|
struct device *this_device = priv->miscdev.this_device;
|
||
|
|
||
|
/* remove all sysfs files, now the device cannot be re-enabled */
|
||
|
sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
|
||
|
|
||
|
/* remove all debugfs files */
|
||
|
data_debugfs_exit(priv);
|
||
|
|
||
|
/* disable the device from generating data */
|
||
|
data_device_disable(priv);
|
||
|
|
||
|
/* remove the character device to stop new readers from appearing */
|
||
|
misc_deregister(&priv->miscdev);
|
||
|
|
||
|
/* cleanup everything not needed by readers */
|
||
|
irq_dispose_mapping(priv->irq);
|
||
|
dma_release_channel(priv->chan);
|
||
|
iounmap(priv->regs);
|
||
|
|
||
|
/* release our reference */
|
||
|
kref_put(&priv->ref, fpga_device_release);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct of_device_id data_of_match[] = {
|
||
|
{ .compatible = "carma,carma-fpga", },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static struct of_platform_driver data_of_driver = {
|
||
|
.probe = data_of_probe,
|
||
|
.remove = data_of_remove,
|
||
|
.driver = {
|
||
|
.name = drv_name,
|
||
|
.of_match_table = data_of_match,
|
||
|
.owner = THIS_MODULE,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Module Init / Exit
|
||
|
*/
|
||
|
|
||
|
static int __init data_init(void)
|
||
|
{
|
||
|
return of_register_platform_driver(&data_of_driver);
|
||
|
}
|
||
|
|
||
|
static void __exit data_exit(void)
|
||
|
{
|
||
|
of_unregister_platform_driver(&data_of_driver);
|
||
|
}
|
||
|
|
||
|
MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
|
||
|
MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
module_init(data_init);
|
||
|
module_exit(data_exit);
|