2008-10-23 09:26:29 +04:00
# ifndef _ASM_X86_PERCPU_H
# define _ASM_X86_PERCPU_H
2008-01-30 15:32:53 +03:00
2009-01-13 14:41:35 +03:00
# ifdef CONFIG_X86_64
2009-01-13 14:41:35 +03:00
# define __percpu_seg gs
# define __percpu_mov_op movq
2009-01-13 14:41:35 +03:00
# else
2009-01-13 14:41:35 +03:00
# define __percpu_seg fs
# define __percpu_mov_op movl
2007-10-11 13:20:03 +04:00
# endif
2008-01-30 15:32:53 +03:00
# ifdef __ASSEMBLY__
/*
* PER_CPU finds an address of a per - cpu variable .
*
* Args :
* var - variable name
* reg - 32 bit register
*
* The resulting address is stored in the " reg " argument .
*
* Example :
* PER_CPU ( cpu_gdt_descr , % ebx )
*/
# ifdef CONFIG_SMP
2009-01-13 14:41:35 +03:00
# define PER_CPU(var, reg) \
__percpu_mov_op % __percpu_seg : per_cpu__this_cpu_off , reg ; \
2008-01-30 15:32:53 +03:00
lea per_cpu__ # # var ( reg ) , reg
2009-01-13 14:41:35 +03:00
# define PER_CPU_VAR(var) %__percpu_seg:per_cpu__##var
2008-01-30 15:32:53 +03:00
# else /* ! SMP */
2009-01-13 14:41:35 +03:00
# define PER_CPU(var, reg) \
__percpu_mov_op $ per_cpu__ # # var , reg
2008-01-30 15:32:53 +03:00
# define PER_CPU_VAR(var) per_cpu__##var
# endif /* SMP */
# else /* ...!ASSEMBLY */
2009-01-13 14:41:35 +03:00
# include <linux/stringify.h>
2008-01-30 15:32:53 +03:00
2009-01-13 14:41:35 +03:00
# ifdef CONFIG_SMP
# define __percpu_seg_str "%%"__stringify(__percpu_seg)":"
percpu: add optimized generic percpu accessors
It is an optimization and a cleanup, and adds the following new
generic percpu methods:
percpu_read()
percpu_write()
percpu_add()
percpu_sub()
percpu_and()
percpu_or()
percpu_xor()
and implements support for them on x86. (other architectures will fall
back to a default implementation)
The advantage is that for example to read a local percpu variable,
instead of this sequence:
return __get_cpu_var(var);
ffffffff8102ca2b: 48 8b 14 fd 80 09 74 mov -0x7e8bf680(,%rdi,8),%rdx
ffffffff8102ca32: 81
ffffffff8102ca33: 48 c7 c0 d8 59 00 00 mov $0x59d8,%rax
ffffffff8102ca3a: 48 8b 04 10 mov (%rax,%rdx,1),%rax
We can get a single instruction by using the optimized variants:
return percpu_read(var);
ffffffff8102ca3f: 65 48 8b 05 91 8f fd mov %gs:0x7efd8f91(%rip),%rax
I also cleaned up the x86-specific APIs and made the x86 code use
these new generic percpu primitives.
tj: * fixed generic percpu_sub() definition as Roel Kluin pointed out
* added percpu_and() for completeness's sake
* made generic percpu ops atomic against preemption
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Tejun Heo <tj@kernel.org>
2009-01-15 16:15:53 +03:00
# define __my_cpu_offset percpu_read(this_cpu_off)
2009-01-13 14:41:35 +03:00
# else
# define __percpu_seg_str
# endif
2008-01-30 15:32:53 +03:00
/* For arch-specific code, we can use direct single-insn ops (they
* don ' t give an lvalue though ) . */
extern void __bad_percpu_size ( void ) ;
2008-03-23 11:03:06 +03:00
# define percpu_to_op(op, var, val) \
do { \
typedef typeof ( var ) T__ ; \
if ( 0 ) { \
T__ tmp__ ; \
tmp__ = ( val ) ; \
} \
switch ( sizeof ( var ) ) { \
case 1 : \
2009-01-13 14:41:35 +03:00
asm ( op " b %1, " __percpu_seg_str " %0 " \
2008-03-23 11:03:06 +03:00
: " +m " ( var ) \
: " ri " ( ( T__ ) val ) ) ; \
break ; \
case 2 : \
2009-01-13 14:41:35 +03:00
asm ( op " w %1, " __percpu_seg_str " %0 " \
2008-03-23 11:03:06 +03:00
: " +m " ( var ) \
: " ri " ( ( T__ ) val ) ) ; \
break ; \
case 4 : \
2009-01-13 14:41:35 +03:00
asm ( op " l %1, " __percpu_seg_str " %0 " \
2008-03-23 11:03:06 +03:00
: " +m " ( var ) \
: " ri " ( ( T__ ) val ) ) ; \
break ; \
2009-01-13 14:41:35 +03:00
case 8 : \
asm ( op " q %1, " __percpu_seg_str " %0 " \
: " +m " ( var ) \
: " r " ( ( T__ ) val ) ) ; \
break ; \
2008-03-23 11:03:06 +03:00
default : __bad_percpu_size ( ) ; \
} \
} while ( 0 )
# define percpu_from_op(op, var) \
( { \
typeof ( var ) ret__ ; \
switch ( sizeof ( var ) ) { \
case 1 : \
2009-01-13 14:41:35 +03:00
asm ( op " b " __percpu_seg_str " %1,%0 " \
2008-03-23 11:03:06 +03:00
: " =r " ( ret__ ) \
: " m " ( var ) ) ; \
break ; \
case 2 : \
2009-01-13 14:41:35 +03:00
asm ( op " w " __percpu_seg_str " %1,%0 " \
2008-03-23 11:03:06 +03:00
: " =r " ( ret__ ) \
: " m " ( var ) ) ; \
break ; \
case 4 : \
2009-01-13 14:41:35 +03:00
asm ( op " l " __percpu_seg_str " %1,%0 " \
: " =r " ( ret__ ) \
: " m " ( var ) ) ; \
break ; \
case 8 : \
asm ( op " q " __percpu_seg_str " %1,%0 " \
2008-03-23 11:03:06 +03:00
: " =r " ( ret__ ) \
: " m " ( var ) ) ; \
break ; \
default : __bad_percpu_size ( ) ; \
} \
ret__ ; \
} )
2008-01-30 15:32:53 +03:00
percpu: add optimized generic percpu accessors
It is an optimization and a cleanup, and adds the following new
generic percpu methods:
percpu_read()
percpu_write()
percpu_add()
percpu_sub()
percpu_and()
percpu_or()
percpu_xor()
and implements support for them on x86. (other architectures will fall
back to a default implementation)
The advantage is that for example to read a local percpu variable,
instead of this sequence:
return __get_cpu_var(var);
ffffffff8102ca2b: 48 8b 14 fd 80 09 74 mov -0x7e8bf680(,%rdi,8),%rdx
ffffffff8102ca32: 81
ffffffff8102ca33: 48 c7 c0 d8 59 00 00 mov $0x59d8,%rax
ffffffff8102ca3a: 48 8b 04 10 mov (%rax,%rdx,1),%rax
We can get a single instruction by using the optimized variants:
return percpu_read(var);
ffffffff8102ca3f: 65 48 8b 05 91 8f fd mov %gs:0x7efd8f91(%rip),%rax
I also cleaned up the x86-specific APIs and made the x86 code use
these new generic percpu primitives.
tj: * fixed generic percpu_sub() definition as Roel Kluin pointed out
* added percpu_and() for completeness's sake
* made generic percpu ops atomic against preemption
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Tejun Heo <tj@kernel.org>
2009-01-15 16:15:53 +03:00
# define percpu_read(var) percpu_from_op("mov", per_cpu__##var)
# define percpu_write(var, val) percpu_to_op("mov", per_cpu__##var, val)
# define percpu_add(var, val) percpu_to_op("add", per_cpu__##var, val)
# define percpu_sub(var, val) percpu_to_op("sub", per_cpu__##var, val)
# define percpu_and(var, val) percpu_to_op("and", per_cpu__##var, val)
# define percpu_or(var, val) percpu_to_op("or", per_cpu__##var, val)
# define percpu_xor(var, val) percpu_to_op("xor", per_cpu__##var, val)
2009-01-13 14:41:35 +03:00
2009-01-13 14:41:35 +03:00
/* This is not atomic against other CPUs -- CPU preemption needs to be off */
# define x86_test_and_clear_bit_percpu(bit, var) \
( { \
int old__ ; \
asm volatile ( " btr %1, " __percpu_seg_str " %c2 \n \t sbbl %0,%0 " \
: " =r " ( old__ ) \
: " dIr " ( bit ) , " i " ( & per_cpu__ # # var ) : " memory " ) ; \
old__ ; \
} )
percpu: add optimized generic percpu accessors
It is an optimization and a cleanup, and adds the following new
generic percpu methods:
percpu_read()
percpu_write()
percpu_add()
percpu_sub()
percpu_and()
percpu_or()
percpu_xor()
and implements support for them on x86. (other architectures will fall
back to a default implementation)
The advantage is that for example to read a local percpu variable,
instead of this sequence:
return __get_cpu_var(var);
ffffffff8102ca2b: 48 8b 14 fd 80 09 74 mov -0x7e8bf680(,%rdi,8),%rdx
ffffffff8102ca32: 81
ffffffff8102ca33: 48 c7 c0 d8 59 00 00 mov $0x59d8,%rax
ffffffff8102ca3a: 48 8b 04 10 mov (%rax,%rdx,1),%rax
We can get a single instruction by using the optimized variants:
return percpu_read(var);
ffffffff8102ca3f: 65 48 8b 05 91 8f fd mov %gs:0x7efd8f91(%rip),%rax
I also cleaned up the x86-specific APIs and made the x86 code use
these new generic percpu primitives.
tj: * fixed generic percpu_sub() definition as Roel Kluin pointed out
* added percpu_and() for completeness's sake
* made generic percpu ops atomic against preemption
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Tejun Heo <tj@kernel.org>
2009-01-15 16:15:53 +03:00
# include <asm-generic/percpu.h>
/* We can use this directly for local CPU (faster). */
DECLARE_PER_CPU ( unsigned long , this_cpu_off ) ;
2009-01-13 14:41:35 +03:00
# ifdef CONFIG_X86_64
extern void load_pda_offset ( int cpu ) ;
# else
static inline void load_pda_offset ( int cpu ) { }
# endif
2008-01-30 15:32:53 +03:00
# endif /* !__ASSEMBLY__ */
x86: cleanup early per cpu variables/accesses v4
* Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is
used by some per_cpu variables that are initialized and accessed
before there are per_cpu areas allocated.
["Early" in respect to per_cpu variables is "earlier than the per_cpu
areas have been setup".]
This patchset adds these new macros:
DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)
EXPORT_EARLY_PER_CPU_SYMBOL(_name)
DECLARE_EARLY_PER_CPU(_type, _name)
early_per_cpu_ptr(_name)
early_per_cpu_map(_name, _idx)
early_per_cpu(_name, _cpu)
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
The early_per_cpu() macro is not very efficient but does show how to
access the variable if you have a function that can be called both
"early" and "late". It tests the early ptr to be NULL, and if not
then it's still valid. Otherwise, the per_cpu variable is used
instead:
#define early_per_cpu(_name, _cpu) \
(early_per_cpu_ptr(_name) ? \
early_per_cpu_ptr(_name)[_cpu] : \
per_cpu(_name, _cpu))
A better method is to actually check the pointer manually. In the
case below, numa_set_node can be called both "early" and "late":
void __cpuinit numa_set_node(int cpu, int node)
{
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
if (cpu_to_node_map)
cpu_to_node_map[cpu] = node;
else
per_cpu(x86_cpu_to_node_map, cpu) = node;
}
* Add a flag "arch_provides_topology_pointers" that indicates pointers
to topology cpumask_t maps are available. Otherwise, use the function
returning the cpumask_t value. This is useful if cpumask_t set size
is very large to avoid copying data on to/off of the stack.
* The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while
the non-debug case has been optimized a bit.
* Remove an unreferenced compiler warning in drivers/base/topology.c
* Clean up #ifdef in setup.c
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 23:21:12 +04:00
# ifdef CONFIG_SMP
/*
* Define the " EARLY_PER_CPU " macros . These are used for some per_cpu
* variables that are initialized and accessed before there are per_cpu
* areas allocated .
*/
# define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
DEFINE_PER_CPU ( _type , _name ) = _initvalue ; \
__typeof__ ( _type ) _name # # _early_map [ NR_CPUS ] __initdata = \
{ [ 0 . . . NR_CPUS - 1 ] = _initvalue } ; \
x86, percpu: silence section mismatch warnings related to EARLY_PER_CPU variables
Quoting Mike Travis in "x86: cleanup early per cpu variables/accesses v4"
(23ca4bba3e20c6c3cb11c1bb0ab4770b724d39ac):
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
As these variables are NULL'ed before __init sections are dropped
(in setup_per_cpu_maps), they can be safely annotated as __ref.
This change silences following section mismatch warnings:
WARNING: vmlinux.o(.data+0x46c0): Section mismatch in reference from the variable x86_cpu_to_apicid_early_ptr to the variable .init.data:x86_cpu_to_apicid_early_map
The variable x86_cpu_to_apicid_early_ptr references
the variable __initdata x86_cpu_to_apicid_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
WARNING: vmlinux.o(.data+0x46c8): Section mismatch in reference from the variable x86_bios_cpu_apicid_early_ptr to the variable .init.data:x86_bios_cpu_apicid_early_map
The variable x86_bios_cpu_apicid_early_ptr references
the variable __initdata x86_bios_cpu_apicid_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
WARNING: vmlinux.o(.data+0x46d0): Section mismatch in reference from the variable x86_cpu_to_node_map_early_ptr to the variable .init.data:x86_cpu_to_node_map_early_map
The variable x86_cpu_to_node_map_early_ptr references
the variable __initdata x86_cpu_to_node_map_early_map
If the reference is valid then annotate the
variable with __init* (see linux/init.h) or name the variable:
*driver, *_template, *_timer, *_sht, *_ops, *_probe, *_probe_one, *_console,
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-08-17 19:50:50 +04:00
__typeof__ ( _type ) * _name # # _early_ptr __refdata = _name # # _early_map
x86: cleanup early per cpu variables/accesses v4
* Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is
used by some per_cpu variables that are initialized and accessed
before there are per_cpu areas allocated.
["Early" in respect to per_cpu variables is "earlier than the per_cpu
areas have been setup".]
This patchset adds these new macros:
DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)
EXPORT_EARLY_PER_CPU_SYMBOL(_name)
DECLARE_EARLY_PER_CPU(_type, _name)
early_per_cpu_ptr(_name)
early_per_cpu_map(_name, _idx)
early_per_cpu(_name, _cpu)
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
The early_per_cpu() macro is not very efficient but does show how to
access the variable if you have a function that can be called both
"early" and "late". It tests the early ptr to be NULL, and if not
then it's still valid. Otherwise, the per_cpu variable is used
instead:
#define early_per_cpu(_name, _cpu) \
(early_per_cpu_ptr(_name) ? \
early_per_cpu_ptr(_name)[_cpu] : \
per_cpu(_name, _cpu))
A better method is to actually check the pointer manually. In the
case below, numa_set_node can be called both "early" and "late":
void __cpuinit numa_set_node(int cpu, int node)
{
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
if (cpu_to_node_map)
cpu_to_node_map[cpu] = node;
else
per_cpu(x86_cpu_to_node_map, cpu) = node;
}
* Add a flag "arch_provides_topology_pointers" that indicates pointers
to topology cpumask_t maps are available. Otherwise, use the function
returning the cpumask_t value. This is useful if cpumask_t set size
is very large to avoid copying data on to/off of the stack.
* The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while
the non-debug case has been optimized a bit.
* Remove an unreferenced compiler warning in drivers/base/topology.c
* Clean up #ifdef in setup.c
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 23:21:12 +04:00
# define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
EXPORT_PER_CPU_SYMBOL ( _name )
# define DECLARE_EARLY_PER_CPU(_type, _name) \
DECLARE_PER_CPU ( _type , _name ) ; \
extern __typeof__ ( _type ) * _name # # _early_ptr ; \
extern __typeof__ ( _type ) _name # # _early_map [ ]
# define early_per_cpu_ptr(_name) (_name##_early_ptr)
# define early_per_cpu_map(_name, _idx) (_name##_early_map[_idx])
# define early_per_cpu(_name, _cpu) \
2009-01-13 14:41:34 +03:00
* ( early_per_cpu_ptr ( _name ) ? \
& early_per_cpu_ptr ( _name ) [ _cpu ] : \
& per_cpu ( _name , _cpu ) )
x86: cleanup early per cpu variables/accesses v4
* Introduce a new PER_CPU macro called "EARLY_PER_CPU". This is
used by some per_cpu variables that are initialized and accessed
before there are per_cpu areas allocated.
["Early" in respect to per_cpu variables is "earlier than the per_cpu
areas have been setup".]
This patchset adds these new macros:
DEFINE_EARLY_PER_CPU(_type, _name, _initvalue)
EXPORT_EARLY_PER_CPU_SYMBOL(_name)
DECLARE_EARLY_PER_CPU(_type, _name)
early_per_cpu_ptr(_name)
early_per_cpu_map(_name, _idx)
early_per_cpu(_name, _cpu)
The DEFINE macro defines the per_cpu variable as well as the early
map and pointer. It also initializes the per_cpu variable and map
elements to "_initvalue". The early_* macros provide access to
the initial map (usually setup during system init) and the early
pointer. This pointer is initialized to point to the early map
but is then NULL'ed when the actual per_cpu areas are setup. After
that the per_cpu variable is the correct access to the variable.
The early_per_cpu() macro is not very efficient but does show how to
access the variable if you have a function that can be called both
"early" and "late". It tests the early ptr to be NULL, and if not
then it's still valid. Otherwise, the per_cpu variable is used
instead:
#define early_per_cpu(_name, _cpu) \
(early_per_cpu_ptr(_name) ? \
early_per_cpu_ptr(_name)[_cpu] : \
per_cpu(_name, _cpu))
A better method is to actually check the pointer manually. In the
case below, numa_set_node can be called both "early" and "late":
void __cpuinit numa_set_node(int cpu, int node)
{
int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
if (cpu_to_node_map)
cpu_to_node_map[cpu] = node;
else
per_cpu(x86_cpu_to_node_map, cpu) = node;
}
* Add a flag "arch_provides_topology_pointers" that indicates pointers
to topology cpumask_t maps are available. Otherwise, use the function
returning the cpumask_t value. This is useful if cpumask_t set size
is very large to avoid copying data on to/off of the stack.
* The coverage of CONFIG_DEBUG_PER_CPU_MAPS has been increased while
the non-debug case has been optimized a bit.
* Remove an unreferenced compiler warning in drivers/base/topology.c
* Clean up #ifdef in setup.c
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-12 23:21:12 +04:00
# else /* !CONFIG_SMP */
# define DEFINE_EARLY_PER_CPU(_type, _name, _initvalue) \
DEFINE_PER_CPU ( _type , _name ) = _initvalue
# define EXPORT_EARLY_PER_CPU_SYMBOL(_name) \
EXPORT_PER_CPU_SYMBOL ( _name )
# define DECLARE_EARLY_PER_CPU(_type, _name) \
DECLARE_PER_CPU ( _type , _name )
# define early_per_cpu(_name, _cpu) per_cpu(_name, _cpu)
# define early_per_cpu_ptr(_name) NULL
/* no early_per_cpu_map() */
# endif /* !CONFIG_SMP */
2008-10-23 09:26:29 +04:00
# endif /* _ASM_X86_PERCPU_H */