2011-08-13 23:34:56 +04:00
Ramoops oops/panic logger
=========================
Sergiu Iordache <sergiu@chromium.org>
2012-05-03 09:45:02 +04:00
Updated: 17 November 2011
2011-08-13 23:34:56 +04:00
0. Introduction
Ramoops is an oops/panic logger that writes its logs to RAM before the system
crashes. It works by logging oopses and panics in a circular buffer. Ramoops
needs a system with persistent RAM so that the content of that area can
survive after a restart.
1. Ramoops concepts
Ramoops uses a predefined memory area to store the dump. The start and size of
the memory area are set using two variables:
* "mem_address" for the start
* "mem_size" for the size. The memory size will be rounded down to a
power of two.
The memory area is divided into "record_size" chunks (also rounded down to
power of two) and each oops/panic writes a "record_size" chunk of
information.
Dumping both oopses and panics can be done by setting 1 in the "dump_oops"
variable while setting 0 in that variable dumps only the panics.
The module uses a counter to record multiple dumps but the counter gets reset
on restart (i.e. new dumps after the restart will overwrite old ones).
2012-05-17 11:15:34 +04:00
Ramoops also supports software ECC protection of persistent memory regions.
This might be useful when a hardware reset was used to bring the machine back
to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat
corrupt, but usually it is restorable.
2011-08-13 23:34:56 +04:00
2. Setting the parameters
Setting the ramoops parameters can be done in 2 different manners:
1. Use the module parameters (which have the names of the variables described
as before).
2012-05-26 17:20:25 +04:00
For quick debugging, you can also reserve parts of memory during boot
and then use the reserved memory for ramoops. For example, assuming a machine
with > 128 MB of memory, the following kernel command line will tell the
kernel to use only the first 128 MB of memory, and place ECC-protected ramoops
region at 128 MB boundary:
"mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1"
2011-08-13 23:34:56 +04:00
2. Use a platform device and set the platform data. The parameters can then
be set through that platform data. An example of doing that is:
2012-05-16 16:43:08 +04:00
#include <linux/pstore_ram.h>
2011-08-13 23:34:56 +04:00
[...]
static struct ramoops_platform_data ramoops_data = {
.mem_size = <...>,
.mem_address = <...>,
.record_size = <...>,
.dump_oops = <...>,
2012-05-17 11:15:34 +04:00
.ecc = <...>,
2011-08-13 23:34:56 +04:00
};
static struct platform_device ramoops_dev = {
.name = "ramoops",
.dev = {
.platform_data = &ramoops_data,
},
};
[... inside a function ...]
int ret;
ret = platform_device_register(&ramoops_dev);
if (ret) {
printk(KERN_ERR "unable to register platform device\n");
return ret;
}
2012-05-26 17:20:25 +04:00
You can specify either RAM memory or peripheral devices' memory. However, when
specifying RAM, be sure to reserve the memory by issuing memblock_reserve()
very early in the architecture code, e.g.:
#include <linux/memblock.h>
memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);
2011-08-13 23:34:56 +04:00
3. Dump format
The data dump begins with a header, currently defined as "====" followed by a
timestamp and a new line. The dump then continues with the actual data.
4. Reading the data
2012-05-03 09:45:02 +04:00
The dump data can be read from the pstore filesystem. The format for these
files is "dmesg-ramoops-N", where N is the record number in memory. To delete
a stored record from RAM, simply unlink the respective pstore file.