2012-03-17 01:16:43 -04:00
/*
* Copyright 1996 , 1997 , 1998 Hans Reiser , see reiserfs / README for licensing and copyright details
*/
# include <linux/reiserfs_fs.h>
# include <linux/slab.h>
# include <linux/interrupt.h>
# include <linux/sched.h>
The following text was taken from the original review request:
"[RFC - PATCH 0/7] consolidation of BUG support code."
https://lkml.org/lkml/2012/1/26/525
--
The changes shown here are to unify linux's BUG support under
the one <linux/bug.h> file. Due to historical reasons, we have
some BUG code in bug.h and some in kernel.h -- i.e. the support for
BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h,
but old code in kernel.h wasn't moved to bug.h at that time. As
a band-aid, kernel.h was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions.
Here is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.]
Ugh - very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and
hence relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2.
But to ensure that git history for bisect doesn't get needless
build failures introduced, the commits have been reorderd to fix
the problem areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJPbNwpAAoJEOvOhAQsB9HWrqYP/A0t9VB0nK6e42F0OR2P14MZ
GJFtf1B++wwioIrx+KSWSRfSur1C5FKhDbxLR3I/pvkAYl4+T4JvRdMG6xJwxyip
CC1kVQQNDjWVVqzjz2x6rYkOffx6dUlw/ERyIyk+OzP+1HzRIsIrugMqbzGLlX0X
y0v2Tbd0G6xg1DV8lcRdp95eIzcGuUvdb2iY2LGadWZczEOeSXx64Jz3QCFxg3aL
LFU4oovsg8Nb7MRJmqDvHK/oQf5vaTm9WSrS0pvVte0msSQRn8LStYdWC0G9BPCS
GwL86h/eLXlUXQlC5GpgWg1QQt5i2QpjBFcVBIG0IT5SgEPMx+gXyiqZva2KwbHu
LKicjKtfnzPitQnyEV/N6JyV1fb1U6/MsB7ebU5nCCzt9Gr7MYbjZ44peNeprAtu
HMvJ/BNnRr4Ha6nPQNu952AdASPKkxmeXFUwBL1zUbLkOX/bK/vy1ujlcdkFxCD7
fP3t7hghYa737IHk0ehUOhrE4H67hvxTSCKioLUAy/YeN1IcfH/iOQiCBQVLWmoS
AqYV6ou9cqgdYoyila2UeAqegb+8xyubPIHt+lebcaKxs5aGsTg+r3vq5juMDAPs
iwSVYUDcIw9dHer1lJfo7QCy3QUTRDTxh+LB9VlHXQICgeCK02sLBOi9hbEr4/H8
Ko9g8J3BMxcMkXLHT9ud
=PYQT
-----END PGP SIGNATURE-----
Merge tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull <linux/bug.h> cleanup from Paul Gortmaker:
"The changes shown here are to unify linux's BUG support under the one
<linux/bug.h> file. Due to historical reasons, we have some BUG code
in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in
linux/kernel.h predates the addition of linux/bug.h, but old code in
kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h
was including <asm/bug.h> to pseudo link them.
This has caused confusion[1] and general yuck/WTF[2] reactions. Here
is an example that violates the principle of least surprise:
CC lib/string.o
lib/string.c: In function 'strlcat':
lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON'
make[2]: *** [lib/string.o] Error 1
$
$ grep linux/bug.h lib/string.c
#include <linux/bug.h>
$
We've included <linux/bug.h> for the BUG infrastructure and yet we
still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh -
very confusing for someone who is new to kernel development.
With the above in mind, the goals of this changeset are:
1) find and fix any include/*.h files that were relying on the
implicit presence of BUG code.
2) find and fix any C files that were consuming kernel.h and hence
relying on implicitly getting some/all BUG code.
3) Move the BUG related code living in kernel.h to <linux/bug.h>
4) remove the asm/bug.h from kernel.h to finally break the chain.
During development, the order was more like 3-4, build-test, 1-2. But
to ensure that git history for bisect doesn't get needless build
failures introduced, the commits have been reorderd to fix the problem
areas in advance.
[1] https://lkml.org/lkml/2012/1/3/90
[2] https://lkml.org/lkml/2012/1/17/414"
Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul
and linux-next.
* tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
kernel.h: doesn't explicitly use bug.h, so don't include it.
bug: consolidate BUILD_BUG_ON with other bug code
BUG: headers with BUG/BUG_ON etc. need linux/bug.h
bug.h: add include of it to various implicit C users
lib: fix implicit users of kernel.h for TAINT_WARN
spinlock: macroize assert_spin_locked to avoid bug.h dependency
x86: relocate get/set debugreg fcns to include/asm/debugreg.
2012-03-24 10:08:39 -07:00
# include <linux/bug.h>
2012-03-17 01:16:43 -04:00
# include <linux/workqueue.h>
# include <asm/unaligned.h>
# include <linux/bitops.h>
# include <linux/proc_fs.h>
# include <linux/buffer_head.h>
/* the 32 bit compat definitions with int argument */
# define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
# define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
# define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
# define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
# define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
2012-03-17 01:19:24 -04:00
struct reiserfs_journal_list ;
/** bitmasks for i_flags field in reiserfs-specific part of inode */
typedef enum {
/** this says what format of key do all items (but stat data) of
an object have . If this is set , that format is 3.6 otherwise
- 3.5 */
i_item_key_version_mask = 0x0001 ,
/** If this is unset, object has 3.5 stat data, otherwise, it has
3.6 stat data with 64 bit size , 32 bit nlink etc . */
i_stat_data_version_mask = 0x0002 ,
/** file might need tail packing on close */
i_pack_on_close_mask = 0x0004 ,
/** don't pack tail of file */
i_nopack_mask = 0x0008 ,
/** If those is set, "safe link" was created for this file during
truncate or unlink . Safe link is used to avoid leakage of disk
space on crash with some files open , but unlinked . */
i_link_saved_unlink_mask = 0x0010 ,
i_link_saved_truncate_mask = 0x0020 ,
i_has_xattr_dir = 0x0040 ,
i_data_log = 0x0080 ,
} reiserfs_inode_flags ;
struct reiserfs_inode_info {
__u32 i_key [ 4 ] ; /* key is still 4 32 bit integers */
/** transient inode flags that are never stored on disk. Bitmasks
for this field are defined above . */
__u32 i_flags ;
__u32 i_first_direct_byte ; // offset of first byte stored in direct item.
/* copy of persistent inode flags read from sd_attrs. */
__u32 i_attrs ;
int i_prealloc_block ; /* first unused block of a sequence of unused blocks */
int i_prealloc_count ; /* length of that sequence */
struct list_head i_prealloc_list ; /* per-transaction list of inodes which
* have preallocated blocks */
unsigned new_packing_locality : 1 ; /* new_packig_locality is created; new blocks
* for the contents of this directory should be
* displaced */
/* we use these for fsync or O_SYNC to decide which transaction
* * needs to be committed in order for this inode to be properly
* * flushed */
unsigned int i_trans_id ;
struct reiserfs_journal_list * i_jl ;
atomic_t openers ;
struct mutex tailpack ;
# ifdef CONFIG_REISERFS_FS_XATTR
struct rw_semaphore i_xattr_sem ;
# endif
struct inode vfs_inode ;
} ;
typedef enum {
reiserfs_attrs_cleared = 0x00000001 ,
} reiserfs_super_block_flags ;
/* struct reiserfs_super_block accessors/mutators
* since this is a disk structure , it will always be in
* little endian format . */
# define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
# define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
# define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
# define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
# define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
# define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
# define sb_jp_journal_1st_block(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_1st_block ) )
# define set_sb_jp_journal_1st_block(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_1st_block = cpu_to_le32 ( v ) )
# define sb_jp_journal_dev(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_dev ) )
# define set_sb_jp_journal_dev(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_dev = cpu_to_le32 ( v ) )
# define sb_jp_journal_size(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_size ) )
# define set_sb_jp_journal_size(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_size = cpu_to_le32 ( v ) )
# define sb_jp_journal_trans_max(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_trans_max ) )
# define set_sb_jp_journal_trans_max(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_trans_max = cpu_to_le32 ( v ) )
# define sb_jp_journal_magic(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_magic ) )
# define set_sb_jp_journal_magic(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_magic = cpu_to_le32 ( v ) )
# define sb_jp_journal_max_batch(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_max_batch ) )
# define set_sb_jp_journal_max_batch(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_max_batch = cpu_to_le32 ( v ) )
# define sb_jp_jourmal_max_commit_age(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_journal . jp_journal_max_commit_age ) )
# define set_sb_jp_journal_max_commit_age(sbp,v) \
( ( sbp ) - > s_v1 . s_journal . jp_journal_max_commit_age = cpu_to_le32 ( v ) )
# define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
# define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
# define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
# define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
# define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
# define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
# define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
# define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
# define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
# define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
# define sb_hash_function_code(sbp) \
( le32_to_cpu ( ( sbp ) - > s_v1 . s_hash_function_code ) )
# define set_sb_hash_function_code(sbp,v) \
( ( sbp ) - > s_v1 . s_hash_function_code = cpu_to_le32 ( v ) )
# define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
# define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
# define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
# define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
# define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
# define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
# define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
# define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
# define sb_reserved_for_journal(sbp) \
( le16_to_cpu ( ( sbp ) - > s_v1 . s_reserved_for_journal ) )
# define set_sb_reserved_for_journal(sbp,v) \
( ( sbp ) - > s_v1 . s_reserved_for_journal = cpu_to_le16 ( v ) )
/* LOGGING -- */
/* These all interelate for performance.
* *
* * If the journal block count is smaller than n transactions , you lose speed .
* * I don ' t know what n is yet , I ' m guessing 8 - 16.
* *
* * typical transaction size depends on the application , how often fsync is
* * called , and how many metadata blocks you dirty in a 30 second period .
* * The more small files ( < 16 k ) you use , the larger your transactions will
* * be .
* *
* * If your journal fills faster than dirty buffers get flushed to disk , it must flush them before allowing the journal
* * to wrap , which slows things down . If you need high speed meta data updates , the journal should be big enough
* * to prevent wrapping before dirty meta blocks get to disk .
* *
* * If the batch max is smaller than the transaction max , you ' ll waste space at the end of the journal
* * because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping .
* *
* * The large the batch max age , the better the speed , and the more meta data changes you ' ll lose after a crash .
* *
*/
/* don't mess with these for a while */
/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
# define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
# define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
# define JOURNAL_HASH_SIZE 8192
# define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */
/* One of these for every block in every transaction
* * Each one is in two hash tables . First , a hash of the current transaction , and after journal_end , a
* * hash of all the in memory transactions .
* * next and prev are used by the current transaction ( journal_hash ) .
* * hnext and hprev are used by journal_list_hash . If a block is in more than one transaction , the journal_list_hash
* * links it in multiple times . This allows flush_journal_list to remove just the cnode belonging
* * to a given transaction .
*/
struct reiserfs_journal_cnode {
struct buffer_head * bh ; /* real buffer head */
struct super_block * sb ; /* dev of real buffer head */
__u32 blocknr ; /* block number of real buffer head, == 0 when buffer on disk */
unsigned long state ;
struct reiserfs_journal_list * jlist ; /* journal list this cnode lives in */
struct reiserfs_journal_cnode * next ; /* next in transaction list */
struct reiserfs_journal_cnode * prev ; /* prev in transaction list */
struct reiserfs_journal_cnode * hprev ; /* prev in hash list */
struct reiserfs_journal_cnode * hnext ; /* next in hash list */
} ;
struct reiserfs_bitmap_node {
int id ;
char * data ;
struct list_head list ;
} ;
struct reiserfs_list_bitmap {
struct reiserfs_journal_list * journal_list ;
struct reiserfs_bitmap_node * * bitmaps ;
} ;
/*
* * one of these for each transaction . The most important part here is the j_realblock .
* * this list of cnodes is used to hash all the blocks in all the commits , to mark all the
* * real buffer heads dirty once all the commits hit the disk ,
* * and to make sure every real block in a transaction is on disk before allowing the log area
* * to be overwritten */
struct reiserfs_journal_list {
unsigned long j_start ;
unsigned long j_state ;
unsigned long j_len ;
atomic_t j_nonzerolen ;
atomic_t j_commit_left ;
atomic_t j_older_commits_done ; /* all commits older than this on disk */
struct mutex j_commit_mutex ;
unsigned int j_trans_id ;
time_t j_timestamp ;
struct reiserfs_list_bitmap * j_list_bitmap ;
struct buffer_head * j_commit_bh ; /* commit buffer head */
struct reiserfs_journal_cnode * j_realblock ;
struct reiserfs_journal_cnode * j_freedlist ; /* list of buffers that were freed during this trans. free each of these on flush */
/* time ordered list of all active transactions */
struct list_head j_list ;
/* time ordered list of all transactions we haven't tried to flush yet */
struct list_head j_working_list ;
/* list of tail conversion targets in need of flush before commit */
struct list_head j_tail_bh_list ;
/* list of data=ordered buffers in need of flush before commit */
struct list_head j_bh_list ;
int j_refcount ;
} ;
struct reiserfs_journal {
struct buffer_head * * j_ap_blocks ; /* journal blocks on disk */
struct reiserfs_journal_cnode * j_last ; /* newest journal block */
struct reiserfs_journal_cnode * j_first ; /* oldest journal block. start here for traverse */
struct block_device * j_dev_bd ;
fmode_t j_dev_mode ;
int j_1st_reserved_block ; /* first block on s_dev of reserved area journal */
unsigned long j_state ;
unsigned int j_trans_id ;
unsigned long j_mount_id ;
unsigned long j_start ; /* start of current waiting commit (index into j_ap_blocks) */
unsigned long j_len ; /* length of current waiting commit */
unsigned long j_len_alloc ; /* number of buffers requested by journal_begin() */
atomic_t j_wcount ; /* count of writers for current commit */
unsigned long j_bcount ; /* batch count. allows turning X transactions into 1 */
unsigned long j_first_unflushed_offset ; /* first unflushed transactions offset */
unsigned j_last_flush_trans_id ; /* last fully flushed journal timestamp */
struct buffer_head * j_header_bh ;
time_t j_trans_start_time ; /* time this transaction started */
struct mutex j_mutex ;
struct mutex j_flush_mutex ;
wait_queue_head_t j_join_wait ; /* wait for current transaction to finish before starting new one */
atomic_t j_jlock ; /* lock for j_join_wait */
int j_list_bitmap_index ; /* number of next list bitmap to use */
int j_must_wait ; /* no more journal begins allowed. MUST sleep on j_join_wait */
int j_next_full_flush ; /* next journal_end will flush all journal list */
int j_next_async_flush ; /* next journal_end will flush all async commits */
int j_cnode_used ; /* number of cnodes on the used list */
int j_cnode_free ; /* number of cnodes on the free list */
unsigned int j_trans_max ; /* max number of blocks in a transaction. */
unsigned int j_max_batch ; /* max number of blocks to batch into a trans */
unsigned int j_max_commit_age ; /* in seconds, how old can an async commit be */
unsigned int j_max_trans_age ; /* in seconds, how old can a transaction be */
unsigned int j_default_max_commit_age ; /* the default for the max commit age */
struct reiserfs_journal_cnode * j_cnode_free_list ;
struct reiserfs_journal_cnode * j_cnode_free_orig ; /* orig pointer returned from vmalloc */
struct reiserfs_journal_list * j_current_jl ;
int j_free_bitmap_nodes ;
int j_used_bitmap_nodes ;
int j_num_lists ; /* total number of active transactions */
int j_num_work_lists ; /* number that need attention from kreiserfsd */
/* debugging to make sure things are flushed in order */
unsigned int j_last_flush_id ;
/* debugging to make sure things are committed in order */
unsigned int j_last_commit_id ;
struct list_head j_bitmap_nodes ;
struct list_head j_dirty_buffers ;
spinlock_t j_dirty_buffers_lock ; /* protects j_dirty_buffers */
/* list of all active transactions */
struct list_head j_journal_list ;
/* lists that haven't been touched by writeback attempts */
struct list_head j_working_list ;
struct reiserfs_list_bitmap j_list_bitmap [ JOURNAL_NUM_BITMAPS ] ; /* array of bitmaps to record the deleted blocks */
struct reiserfs_journal_cnode * j_hash_table [ JOURNAL_HASH_SIZE ] ; /* hash table for real buffer heads in current trans */
struct reiserfs_journal_cnode * j_list_hash_table [ JOURNAL_HASH_SIZE ] ; /* hash table for all the real buffer heads in all
the transactions */
struct list_head j_prealloc_list ; /* list of inodes which have preallocated blocks */
int j_persistent_trans ;
unsigned long j_max_trans_size ;
unsigned long j_max_batch_size ;
int j_errno ;
/* when flushing ordered buffers, throttle new ordered writers */
struct delayed_work j_work ;
struct super_block * j_work_sb ;
atomic_t j_async_throttle ;
} ;
enum journal_state_bits {
J_WRITERS_BLOCKED = 1 , /* set when new writers not allowed */
J_WRITERS_QUEUED , /* set when log is full due to too many writers */
J_ABORTED , /* set when log is aborted */
} ;
# define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */
typedef __u32 ( * hashf_t ) ( const signed char * , int ) ;
struct reiserfs_bitmap_info {
__u32 free_count ;
} ;
struct proc_dir_entry ;
# if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
typedef unsigned long int stat_cnt_t ;
typedef struct reiserfs_proc_info_data {
spinlock_t lock ;
int exiting ;
int max_hash_collisions ;
stat_cnt_t breads ;
stat_cnt_t bread_miss ;
stat_cnt_t search_by_key ;
stat_cnt_t search_by_key_fs_changed ;
stat_cnt_t search_by_key_restarted ;
stat_cnt_t insert_item_restarted ;
stat_cnt_t paste_into_item_restarted ;
stat_cnt_t cut_from_item_restarted ;
stat_cnt_t delete_solid_item_restarted ;
stat_cnt_t delete_item_restarted ;
stat_cnt_t leaked_oid ;
stat_cnt_t leaves_removable ;
/* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */
stat_cnt_t balance_at [ 5 ] ; /* XXX */
/* sbk == search_by_key */
stat_cnt_t sbk_read_at [ 5 ] ; /* XXX */
stat_cnt_t sbk_fs_changed [ 5 ] ;
stat_cnt_t sbk_restarted [ 5 ] ;
stat_cnt_t items_at [ 5 ] ; /* XXX */
stat_cnt_t free_at [ 5 ] ; /* XXX */
stat_cnt_t can_node_be_removed [ 5 ] ; /* XXX */
long int lnum [ 5 ] ; /* XXX */
long int rnum [ 5 ] ; /* XXX */
long int lbytes [ 5 ] ; /* XXX */
long int rbytes [ 5 ] ; /* XXX */
stat_cnt_t get_neighbors [ 5 ] ;
stat_cnt_t get_neighbors_restart [ 5 ] ;
stat_cnt_t need_l_neighbor [ 5 ] ;
stat_cnt_t need_r_neighbor [ 5 ] ;
stat_cnt_t free_block ;
struct __scan_bitmap_stats {
stat_cnt_t call ;
stat_cnt_t wait ;
stat_cnt_t bmap ;
stat_cnt_t retry ;
stat_cnt_t in_journal_hint ;
stat_cnt_t in_journal_nohint ;
stat_cnt_t stolen ;
} scan_bitmap ;
struct __journal_stats {
stat_cnt_t in_journal ;
stat_cnt_t in_journal_bitmap ;
stat_cnt_t in_journal_reusable ;
stat_cnt_t lock_journal ;
stat_cnt_t lock_journal_wait ;
stat_cnt_t journal_being ;
stat_cnt_t journal_relock_writers ;
stat_cnt_t journal_relock_wcount ;
stat_cnt_t mark_dirty ;
stat_cnt_t mark_dirty_already ;
stat_cnt_t mark_dirty_notjournal ;
stat_cnt_t restore_prepared ;
stat_cnt_t prepare ;
stat_cnt_t prepare_retry ;
} journal ;
} reiserfs_proc_info_data_t ;
# else
typedef struct reiserfs_proc_info_data {
} reiserfs_proc_info_data_t ;
# endif
/* reiserfs union of in-core super block data */
struct reiserfs_sb_info {
struct buffer_head * s_sbh ; /* Buffer containing the super block */
/* both the comment and the choice of
name are unclear for s_rs - Hans */
struct reiserfs_super_block * s_rs ; /* Pointer to the super block in the buffer */
struct reiserfs_bitmap_info * s_ap_bitmap ;
struct reiserfs_journal * s_journal ; /* pointer to journal information */
unsigned short s_mount_state ; /* reiserfs state (valid, invalid) */
/* Serialize writers access, replace the old bkl */
struct mutex lock ;
/* Owner of the lock (can be recursive) */
struct task_struct * lock_owner ;
/* Depth of the lock, start from -1 like the bkl */
int lock_depth ;
/* Comment? -Hans */
void ( * end_io_handler ) ( struct buffer_head * , int ) ;
hashf_t s_hash_function ; /* pointer to function which is used
to sort names in directory . Set on
mount */
unsigned long s_mount_opt ; /* reiserfs's mount options are set
here ( currently - NOTAIL , NOLOG ,
REPLAYONLY ) */
struct { /* This is a structure that describes block allocator options */
unsigned long bits ; /* Bitfield for enable/disable kind of options */
unsigned long large_file_size ; /* size started from which we consider file to be a large one(in blocks) */
int border ; /* percentage of disk, border takes */
int preallocmin ; /* Minimal file size (in blocks) starting from which we do preallocations */
int preallocsize ; /* Number of blocks we try to prealloc when file
reaches preallocmin size ( in blocks ) or
prealloc_list is empty . */
} s_alloc_options ;
/* Comment? -Hans */
wait_queue_head_t s_wait ;
/* To be obsoleted soon by per buffer seals.. -Hans */
atomic_t s_generation_counter ; // increased by one every time the
// tree gets re-balanced
unsigned long s_properties ; /* File system properties. Currently holds
on - disk FS format */
/* session statistics */
int s_disk_reads ;
int s_disk_writes ;
int s_fix_nodes ;
int s_do_balance ;
int s_unneeded_left_neighbor ;
int s_good_search_by_key_reada ;
int s_bmaps ;
int s_bmaps_without_search ;
int s_direct2indirect ;
int s_indirect2direct ;
/* set up when it's ok for reiserfs_read_inode2() to read from
disk inode with nlink = = 0. Currently this is only used during
finish_unfinished ( ) processing at mount time */
int s_is_unlinked_ok ;
reiserfs_proc_info_data_t s_proc_info_data ;
struct proc_dir_entry * procdir ;
int reserved_blocks ; /* amount of blocks reserved for further allocations */
spinlock_t bitmap_lock ; /* this lock on now only used to protect reserved_blocks variable */
struct dentry * priv_root ; /* root of /.reiserfs_priv */
struct dentry * xattr_root ; /* root of /.reiserfs_priv/xattrs */
int j_errno ;
# ifdef CONFIG_QUOTA
char * s_qf_names [ MAXQUOTAS ] ;
int s_jquota_fmt ;
# endif
char * s_jdev ; /* Stored jdev for mount option showing */
# ifdef CONFIG_REISERFS_CHECK
struct tree_balance * cur_tb ; /*
* Detects whether more than one
* copy of tb exists per superblock
* as a means of checking whether
* do_balance is executing concurrently
* against another tree reader / writer
* on a same mount point .
*/
# endif
} ;
/* Definitions of reiserfs on-disk properties: */
# define REISERFS_3_5 0
# define REISERFS_3_6 1
# define REISERFS_OLD_FORMAT 2
enum reiserfs_mount_options {
/* Mount options */
REISERFS_LARGETAIL , /* large tails will be created in a session */
REISERFS_SMALLTAIL , /* small (for files less than block size) tails will be created in a session */
REPLAYONLY , /* replay journal and return 0. Use by fsck */
REISERFS_CONVERT , /* -o conv: causes conversion of old
format super block to the new
format . If not specified - old
partition will be dealt with in a
manner of 3.5 . x */
/* -o hash={tea, rupasov, r5, detect} is meant for properly mounting
* * reiserfs disks from 3.5 .19 or earlier . 99 % of the time , this option
* * is not required . If the normal autodection code can ' t determine which
* * hash to use ( because both hashes had the same value for a file )
* * use this option to force a specific hash . It won ' t allow you to override
* * the existing hash on the FS , so if you have a tea hash disk , and mount
* * with - o hash = rupasov , the mount will fail .
*/
FORCE_TEA_HASH , /* try to force tea hash on mount */
FORCE_RUPASOV_HASH , /* try to force rupasov hash on mount */
FORCE_R5_HASH , /* try to force rupasov hash on mount */
FORCE_HASH_DETECT , /* try to detect hash function on mount */
REISERFS_DATA_LOG ,
REISERFS_DATA_ORDERED ,
REISERFS_DATA_WRITEBACK ,
/* used for testing experimental features, makes benchmarking new
features with and without more convenient , should never be used by
users in any code shipped to users ( ideally ) */
REISERFS_NO_BORDER ,
REISERFS_NO_UNHASHED_RELOCATION ,
REISERFS_HASHED_RELOCATION ,
REISERFS_ATTRS ,
REISERFS_XATTRS_USER ,
REISERFS_POSIXACL ,
REISERFS_EXPOSE_PRIVROOT ,
REISERFS_BARRIER_NONE ,
REISERFS_BARRIER_FLUSH ,
/* Actions on error */
REISERFS_ERROR_PANIC ,
REISERFS_ERROR_RO ,
REISERFS_ERROR_CONTINUE ,
REISERFS_USRQUOTA , /* User quota option specified */
REISERFS_GRPQUOTA , /* Group quota option specified */
REISERFS_TEST1 ,
REISERFS_TEST2 ,
REISERFS_TEST3 ,
REISERFS_TEST4 ,
REISERFS_UNSUPPORTED_OPT ,
} ;
# define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
# define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
# define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
# define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
# define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
# define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
# define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
# define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
# define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
# define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
# define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
# define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
# define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
# define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
# define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
# define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
# define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
# define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
# define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
# define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
# define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
# define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
# define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
# define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
# define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
void reiserfs_file_buffer ( struct buffer_head * bh , int list ) ;
extern struct file_system_type reiserfs_fs_type ;
int reiserfs_resize ( struct super_block * , unsigned long ) ;
# define CARRY_ON 0
# define SCHEDULE_OCCURRED 1
# define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
# define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
# define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
# define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
# define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
# define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
/* A safe version of the "bdevname", which returns the "s_id" field of
* a superblock or else " Null superblock " if the super block is NULL .
*/
static inline char * reiserfs_bdevname ( struct super_block * s )
{
return ( s = = NULL ) ? " Null superblock " : s - > s_id ;
}
# define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
static inline int __reiserfs_is_journal_aborted ( struct reiserfs_journal
* journal )
{
return test_bit ( J_ABORTED , & journal - > j_state ) ;
}
2012-03-17 01:16:43 -04:00
/*
* Locking primitives . The write lock is a per superblock
* special mutex that has properties close to the Big Kernel Lock
* which was used in the previous locking scheme .
*/
void reiserfs_write_lock ( struct super_block * s ) ;
void reiserfs_write_unlock ( struct super_block * s ) ;
int reiserfs_write_lock_once ( struct super_block * s ) ;
void reiserfs_write_unlock_once ( struct super_block * s , int lock_depth ) ;
# ifdef CONFIG_REISERFS_CHECK
void reiserfs_lock_check_recursive ( struct super_block * s ) ;
# else
static inline void reiserfs_lock_check_recursive ( struct super_block * s ) { }
# endif
/*
* Several mutexes depend on the write lock .
* However sometimes we want to relax the write lock while we hold
* these mutexes , according to the release / reacquire on schedule ( )
* properties of the Bkl that were used .
* Reiserfs performances and locking were based on this scheme .
* Now that the write lock is a mutex and not the bkl anymore , doing so
* may result in a deadlock :
*
* A acquire write_lock
* A acquire j_commit_mutex
* A release write_lock and wait for something
* B acquire write_lock
* B can ' t acquire j_commit_mutex and sleep
* A can ' t acquire write lock anymore
* deadlock
*
* What we do here is avoiding such deadlock by playing the same game
* than the Bkl : if we can ' t acquire a mutex that depends on the write lock ,
* we release the write lock , wait a bit and then retry .
*
* The mutexes concerned by this hack are :
* - The commit mutex of a journal list
* - The flush mutex
* - The journal lock
* - The inode mutex
*/
static inline void reiserfs_mutex_lock_safe ( struct mutex * m ,
struct super_block * s )
{
reiserfs_lock_check_recursive ( s ) ;
reiserfs_write_unlock ( s ) ;
mutex_lock ( m ) ;
reiserfs_write_lock ( s ) ;
}
static inline void
reiserfs_mutex_lock_nested_safe ( struct mutex * m , unsigned int subclass ,
struct super_block * s )
{
reiserfs_lock_check_recursive ( s ) ;
reiserfs_write_unlock ( s ) ;
mutex_lock_nested ( m , subclass ) ;
reiserfs_write_lock ( s ) ;
}
static inline void
reiserfs_down_read_safe ( struct rw_semaphore * sem , struct super_block * s )
{
reiserfs_lock_check_recursive ( s ) ;
reiserfs_write_unlock ( s ) ;
down_read ( sem ) ;
reiserfs_write_lock ( s ) ;
}
/*
* When we schedule , we usually want to also release the write lock ,
* according to the previous bkl based locking scheme of reiserfs .
*/
static inline void reiserfs_cond_resched ( struct super_block * s )
{
if ( need_resched ( ) ) {
reiserfs_write_unlock ( s ) ;
schedule ( ) ;
reiserfs_write_lock ( s ) ;
}
}
struct fid ;
/* in reading the #defines, it may help to understand that they employ
the following abbreviations :
B = Buffer
I = Item header
H = Height within the tree ( should be changed to LEV )
N = Number of the item in the node
STAT = stat data
DEH = Directory Entry Header
EC = Entry Count
E = Entry number
UL = Unsigned Long
BLKH = BLocK Header
UNFM = UNForMatted node
DC = Disk Child
P = Path
These # defines are named by concatenating these abbreviations ,
where first comes the arguments , and last comes the return value ,
of the macro .
*/
# define USE_INODE_GENERATION_COUNTER
# define REISERFS_PREALLOCATE
# define DISPLACE_NEW_PACKING_LOCALITIES
# define PREALLOCATION_SIZE 9
/* n must be power of 2 */
# define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
// to be ok for alpha and others we have to align structures to 8 byte
// boundary.
// FIXME: do not change 4 by anything else: there is code which relies on that
# define ROUND_UP(x) _ROUND_UP(x,8LL)
/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
* * messages .
*/
# define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
void __reiserfs_warning ( struct super_block * s , const char * id ,
const char * func , const char * fmt , . . . ) ;
# define reiserfs_warning(s, id, fmt, args...) \
__reiserfs_warning ( s , id , __func__ , fmt , # # args )
/* assertions handling */
/** always check a condition and panic if it's false. */
# define __RASSERT(cond, scond, format, args...) \
do { \
if ( ! ( cond ) ) \
reiserfs_panic ( NULL , " assertion failure " , " ( " # cond " ) at " \
__FILE__ " :%i:%s: " format " \n " , \
in_interrupt ( ) ? - 1 : task_pid_nr ( current ) , \
__LINE__ , __func__ , # # args ) ; \
} while ( 0 )
# define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
# if defined( CONFIG_REISERFS_CHECK )
# define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
# else
# define RFALSE( cond, format, args... ) do {;} while( 0 )
# endif
# define CONSTF __attribute_const__
/*
* Disk Data Structures
*/
/***************************************************************************/
/* SUPER BLOCK */
/***************************************************************************/
/*
* Structure of super block on disk , a version of which in RAM is often accessed as REISERFS_SB ( s ) - > s_rs
* the version in RAM is part of a larger structure containing fields never written to disk .
*/
# define UNSET_HASH 0 // read_super will guess about, what hash names
// in directories were sorted with
# define TEA_HASH 1
# define YURA_HASH 2
# define R5_HASH 3
# define DEFAULT_HASH R5_HASH
struct journal_params {
__le32 jp_journal_1st_block ; /* where does journal start from on its
* device */
__le32 jp_journal_dev ; /* journal device st_rdev */
__le32 jp_journal_size ; /* size of the journal */
__le32 jp_journal_trans_max ; /* max number of blocks in a transaction. */
__le32 jp_journal_magic ; /* random value made on fs creation (this
* was sb_journal_block_count ) */
__le32 jp_journal_max_batch ; /* max number of blocks to batch into a
* trans */
__le32 jp_journal_max_commit_age ; /* in seconds, how old can an async
* commit be */
__le32 jp_journal_max_trans_age ; /* in seconds, how old can a transaction
* be */
} ;
/* this is the super from 3.5.X, where X >= 10 */
struct reiserfs_super_block_v1 {
__le32 s_block_count ; /* blocks count */
__le32 s_free_blocks ; /* free blocks count */
__le32 s_root_block ; /* root block number */
struct journal_params s_journal ;
__le16 s_blocksize ; /* block size */
__le16 s_oid_maxsize ; /* max size of object id array, see
* get_objectid ( ) commentary */
__le16 s_oid_cursize ; /* current size of object id array */
__le16 s_umount_state ; /* this is set to 1 when filesystem was
* umounted , to 2 - when not */
char s_magic [ 10 ] ; /* reiserfs magic string indicates that
* file system is reiserfs :
* " ReIsErFs " or " ReIsEr2Fs " or " ReIsEr3Fs " */
__le16 s_fs_state ; /* it is set to used by fsck to mark which
* phase of rebuilding is done */
__le32 s_hash_function_code ; /* indicate, what hash function is being use
* to sort names in a directory */
__le16 s_tree_height ; /* height of disk tree */
__le16 s_bmap_nr ; /* amount of bitmap blocks needed to address
* each block of file system */
__le16 s_version ; /* this field is only reliable on filesystem
* with non - standard journal */
__le16 s_reserved_for_journal ; /* size in blocks of journal area on main
* device , we need to keep after
* making fs with non - standard journal */
} __attribute__ ( ( __packed__ ) ) ;
# define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
/* this is the on disk super block */
struct reiserfs_super_block {
struct reiserfs_super_block_v1 s_v1 ;
__le32 s_inode_generation ;
__le32 s_flags ; /* Right now used only by inode-attributes, if enabled */
unsigned char s_uuid [ 16 ] ; /* filesystem unique identifier */
unsigned char s_label [ 16 ] ; /* filesystem volume label */
__le16 s_mnt_count ; /* Count of mounts since last fsck */
__le16 s_max_mnt_count ; /* Maximum mounts before check */
__le32 s_lastcheck ; /* Timestamp of last fsck */
__le32 s_check_interval ; /* Interval between checks */
char s_unused [ 76 ] ; /* zero filled by mkreiserfs and
* reiserfs_convert_objectid_map_v1 ( )
* so any additions must be updated
* there as well . */
} __attribute__ ( ( __packed__ ) ) ;
# define SB_SIZE (sizeof(struct reiserfs_super_block))
# define REISERFS_VERSION_1 0
# define REISERFS_VERSION_2 2
// on-disk super block fields converted to cpu form
# define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
# define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
# define SB_BLOCKSIZE(s) \
le32_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_blocksize ) )
# define SB_BLOCK_COUNT(s) \
le32_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_block_count ) )
# define SB_FREE_BLOCKS(s) \
le32_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_free_blocks ) )
# define SB_REISERFS_MAGIC(s) \
( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_magic )
# define SB_ROOT_BLOCK(s) \
le32_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_root_block ) )
# define SB_TREE_HEIGHT(s) \
le16_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_tree_height ) )
# define SB_REISERFS_STATE(s) \
le16_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_umount_state ) )
# define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
# define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
# define PUT_SB_BLOCK_COUNT(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_block_count = cpu_to_le32 ( val ) ; } while ( 0 )
# define PUT_SB_FREE_BLOCKS(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_free_blocks = cpu_to_le32 ( val ) ; } while ( 0 )
# define PUT_SB_ROOT_BLOCK(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_root_block = cpu_to_le32 ( val ) ; } while ( 0 )
# define PUT_SB_TREE_HEIGHT(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_tree_height = cpu_to_le16 ( val ) ; } while ( 0 )
# define PUT_SB_REISERFS_STATE(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_umount_state = cpu_to_le16 ( val ) ; } while ( 0 )
# define PUT_SB_VERSION(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_version = cpu_to_le16 ( val ) ; } while ( 0 )
# define PUT_SB_BMAP_NR(s, val) \
do { SB_V1_DISK_SUPER_BLOCK ( s ) - > s_bmap_nr = cpu_to_le16 ( val ) ; } while ( 0 )
# define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
# define SB_ONDISK_JOURNAL_SIZE(s) \
le32_to_cpu ( ( SB_ONDISK_JP ( s ) - > jp_journal_size ) )
# define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
le32_to_cpu ( ( SB_ONDISK_JP ( s ) - > jp_journal_1st_block ) )
# define SB_ONDISK_JOURNAL_DEVICE(s) \
le32_to_cpu ( ( SB_ONDISK_JP ( s ) - > jp_journal_dev ) )
# define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
le16_to_cpu ( ( SB_V1_DISK_SUPER_BLOCK ( s ) - > s_reserved_for_journal ) )
# define is_block_in_log_or_reserved_area(s, block) \
block > = SB_JOURNAL_1st_RESERVED_BLOCK ( s ) \
& & block < SB_JOURNAL_1st_RESERVED_BLOCK ( s ) + \
( ( ! is_reiserfs_jr ( SB_DISK_SUPER_BLOCK ( s ) ) ? \
SB_ONDISK_JOURNAL_SIZE ( s ) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL ( s ) ) )
int is_reiserfs_3_5 ( struct reiserfs_super_block * rs ) ;
int is_reiserfs_3_6 ( struct reiserfs_super_block * rs ) ;
int is_reiserfs_jr ( struct reiserfs_super_block * rs ) ;
/* ReiserFS leaves the first 64k unused, so that partition labels have
enough space . If someone wants to write a fancy bootloader that
needs more than 64 k , let us know , and this will be increased in size .
This number must be larger than than the largest block size on any
platform , or code will break . - Hans */
# define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
# define REISERFS_FIRST_BLOCK unused_define
# define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
# define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
# define CARRY_ON 0
# define REPEAT_SEARCH -1
# define IO_ERROR -2
# define NO_DISK_SPACE -3
# define NO_BALANCING_NEEDED (-4)
# define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
# define QUOTA_EXCEEDED -6
typedef __u32 b_blocknr_t ;
typedef __le32 unp_t ;
struct unfm_nodeinfo {
unp_t unfm_nodenum ;
unsigned short unfm_freespace ;
} ;
/* there are two formats of keys: 3.5 and 3.6
*/
# define KEY_FORMAT_3_5 0
# define KEY_FORMAT_3_6 1
/* there are two stat datas */
# define STAT_DATA_V1 0
# define STAT_DATA_V2 1
static inline struct reiserfs_inode_info * REISERFS_I ( const struct inode * inode )
{
return container_of ( inode , struct reiserfs_inode_info , vfs_inode ) ;
}
static inline struct reiserfs_sb_info * REISERFS_SB ( const struct super_block * sb )
{
return sb - > s_fs_info ;
}
/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
* which overflows on large file systems . */
static inline __u32 reiserfs_bmap_count ( struct super_block * sb )
{
return ( SB_BLOCK_COUNT ( sb ) - 1 ) / ( sb - > s_blocksize * 8 ) + 1 ;
}
static inline int bmap_would_wrap ( unsigned bmap_nr )
{
return bmap_nr > ( ( 1LL < < 16 ) - 1 ) ;
}
/** this says about version of key of all items (but stat data) the
object consists of */
# define get_inode_item_key_version( inode ) \
( ( REISERFS_I ( inode ) - > i_flags & i_item_key_version_mask ) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5 )
# define set_inode_item_key_version( inode, version ) \
( { if ( ( version ) = = KEY_FORMAT_3_6 ) \
REISERFS_I ( inode ) - > i_flags | = i_item_key_version_mask ; \
else \
REISERFS_I ( inode ) - > i_flags & = ~ i_item_key_version_mask ; } )
# define get_inode_sd_version(inode) \
( ( REISERFS_I ( inode ) - > i_flags & i_stat_data_version_mask ) ? STAT_DATA_V2 : STAT_DATA_V1 )
# define set_inode_sd_version(inode, version) \
( { if ( ( version ) = = STAT_DATA_V2 ) \
REISERFS_I ( inode ) - > i_flags | = i_stat_data_version_mask ; \
else \
REISERFS_I ( inode ) - > i_flags & = ~ i_stat_data_version_mask ; } )
/* This is an aggressive tail suppression policy, I am hoping it
improves our benchmarks . The principle behind it is that percentage
space saving is what matters , not absolute space saving . This is
non - intuitive , but it helps to understand it if you consider that the
cost to access 4 blocks is not much more than the cost to access 1
block , if you have to do a seek and rotate . A tail risks a
non - linear disk access that is significant as a percentage of total
time cost for a 4 block file and saves an amount of space that is
less significant as a percentage of space , or so goes the hypothesis .
- Hans */
# define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
( \
( ! ( n_tail_size ) ) | | \
( ( ( n_tail_size ) > MAX_DIRECT_ITEM_LEN ( n_block_size ) ) | | \
( ( n_file_size ) > = ( n_block_size ) * 4 ) | | \
( ( ( n_file_size ) > = ( n_block_size ) * 3 ) & & \
( ( n_tail_size ) > = ( MAX_DIRECT_ITEM_LEN ( n_block_size ) ) / 4 ) ) | | \
( ( ( n_file_size ) > = ( n_block_size ) * 2 ) & & \
( ( n_tail_size ) > = ( MAX_DIRECT_ITEM_LEN ( n_block_size ) ) / 2 ) ) | | \
( ( ( n_file_size ) > = ( n_block_size ) ) & & \
( ( n_tail_size ) > = ( MAX_DIRECT_ITEM_LEN ( n_block_size ) * 3 ) / 4 ) ) ) \
)
/* Another strategy for tails, this one means only create a tail if all the
file would fit into one DIRECT item .
Primary intention for this one is to increase performance by decreasing
seeking .
*/
# define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
( \
( ! ( n_tail_size ) ) | | \
( ( ( n_file_size ) > MAX_DIRECT_ITEM_LEN ( n_block_size ) ) ) \
)
/*
* values for s_umount_state field
*/
# define REISERFS_VALID_FS 1
# define REISERFS_ERROR_FS 2
//
// there are 5 item types currently
//
# define TYPE_STAT_DATA 0
# define TYPE_INDIRECT 1
# define TYPE_DIRECT 2
# define TYPE_DIRENTRY 3
# define TYPE_MAXTYPE 3
# define TYPE_ANY 15 // FIXME: comment is required
/***************************************************************************/
/* KEY & ITEM HEAD */
/***************************************************************************/
//
// directories use this key as well as old files
//
struct offset_v1 {
__le32 k_offset ;
__le32 k_uniqueness ;
} __attribute__ ( ( __packed__ ) ) ;
struct offset_v2 {
__le64 v ;
} __attribute__ ( ( __packed__ ) ) ;
static inline __u16 offset_v2_k_type ( const struct offset_v2 * v2 )
{
__u8 type = le64_to_cpu ( v2 - > v ) > > 60 ;
return ( type < = TYPE_MAXTYPE ) ? type : TYPE_ANY ;
}
static inline void set_offset_v2_k_type ( struct offset_v2 * v2 , int type )
{
v2 - > v =
( v2 - > v & cpu_to_le64 ( ~ 0ULL > > 4 ) ) | cpu_to_le64 ( ( __u64 ) type < < 60 ) ;
}
static inline loff_t offset_v2_k_offset ( const struct offset_v2 * v2 )
{
return le64_to_cpu ( v2 - > v ) & ( ~ 0ULL > > 4 ) ;
}
static inline void set_offset_v2_k_offset ( struct offset_v2 * v2 , loff_t offset )
{
offset & = ( ~ 0ULL > > 4 ) ;
v2 - > v = ( v2 - > v & cpu_to_le64 ( 15ULL < < 60 ) ) | cpu_to_le64 ( offset ) ;
}
/* Key of an item determines its location in the S+tree, and
is composed of 4 components */
struct reiserfs_key {
__le32 k_dir_id ; /* packing locality: by default parent
directory object id */
__le32 k_objectid ; /* object identifier */
union {
struct offset_v1 k_offset_v1 ;
struct offset_v2 k_offset_v2 ;
} __attribute__ ( ( __packed__ ) ) u ;
} __attribute__ ( ( __packed__ ) ) ;
struct in_core_key {
__u32 k_dir_id ; /* packing locality: by default parent
directory object id */
__u32 k_objectid ; /* object identifier */
__u64 k_offset ;
__u8 k_type ;
} ;
struct cpu_key {
struct in_core_key on_disk_key ;
int version ;
int key_length ; /* 3 in all cases but direct2indirect and
indirect2direct conversion */
} ;
/* Our function for comparing keys can compare keys of different
lengths . It takes as a parameter the length of the keys it is to
compare . These defines are used in determining what is to be passed
to it as that parameter . */
# define REISERFS_FULL_KEY_LEN 4
# define REISERFS_SHORT_KEY_LEN 2
/* The result of the key compare */
# define FIRST_GREATER 1
# define SECOND_GREATER -1
# define KEYS_IDENTICAL 0
# define KEY_FOUND 1
# define KEY_NOT_FOUND 0
# define KEY_SIZE (sizeof(struct reiserfs_key))
# define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
/* return values for search_by_key and clones */
# define ITEM_FOUND 1
# define ITEM_NOT_FOUND 0
# define ENTRY_FOUND 1
# define ENTRY_NOT_FOUND 0
# define DIRECTORY_NOT_FOUND -1
# define REGULAR_FILE_FOUND -2
# define DIRECTORY_FOUND -3
# define BYTE_FOUND 1
# define BYTE_NOT_FOUND 0
# define FILE_NOT_FOUND -1
# define POSITION_FOUND 1
# define POSITION_NOT_FOUND 0
// return values for reiserfs_find_entry and search_by_entry_key
# define NAME_FOUND 1
# define NAME_NOT_FOUND 0
# define GOTO_PREVIOUS_ITEM 2
# define NAME_FOUND_INVISIBLE 3
/* Everything in the filesystem is stored as a set of items. The
item head contains the key of the item , its free space ( for
indirect items ) and specifies the location of the item itself
within the block . */
struct item_head {
/* Everything in the tree is found by searching for it based on
* its key . */
struct reiserfs_key ih_key ;
union {
/* The free space in the last unformatted node of an
indirect item if this is an indirect item . This
equals 0xFFFF iff this is a direct item or stat data
item . Note that the key , not this field , is used to
determine the item type , and thus which field this
union contains . */
__le16 ih_free_space_reserved ;
/* Iff this is a directory item, this field equals the
number of directory entries in the directory item . */
__le16 ih_entry_count ;
} __attribute__ ( ( __packed__ ) ) u ;
__le16 ih_item_len ; /* total size of the item body */
__le16 ih_item_location ; /* an offset to the item body
* within the block */
__le16 ih_version ; /* 0 for all old items, 2 for new
ones . Highest bit is set by fsck
temporary , cleaned after all
done */
} __attribute__ ( ( __packed__ ) ) ;
/* size of item header */
# define IH_SIZE (sizeof(struct item_head))
# define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
# define ih_version(ih) le16_to_cpu((ih)->ih_version)
# define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
# define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
# define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
# define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
# define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
# define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
# define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
# define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
# define unreachable_item(ih) (ih_version(ih) & (1 << 15))
# define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
# define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
/* these operate on indirect items, where you've got an array of ints
* * at a possibly unaligned location . These are a noop on ia32
* *
* * p is the array of __u32 , i is the index into the array , v is the value
* * to store there .
*/
# define get_block_num(p, i) get_unaligned_le32((p) + (i))
# define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
//
// in old version uniqueness field shows key type
//
# define V1_SD_UNIQUENESS 0
# define V1_INDIRECT_UNIQUENESS 0xfffffffe
# define V1_DIRECT_UNIQUENESS 0xffffffff
# define V1_DIRENTRY_UNIQUENESS 500
# define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
//
// here are conversion routines
//
static inline int uniqueness2type ( __u32 uniqueness ) CONSTF ;
static inline int uniqueness2type ( __u32 uniqueness )
{
switch ( ( int ) uniqueness ) {
case V1_SD_UNIQUENESS :
return TYPE_STAT_DATA ;
case V1_INDIRECT_UNIQUENESS :
return TYPE_INDIRECT ;
case V1_DIRECT_UNIQUENESS :
return TYPE_DIRECT ;
case V1_DIRENTRY_UNIQUENESS :
return TYPE_DIRENTRY ;
case V1_ANY_UNIQUENESS :
default :
return TYPE_ANY ;
}
}
static inline __u32 type2uniqueness ( int type ) CONSTF ;
static inline __u32 type2uniqueness ( int type )
{
switch ( type ) {
case TYPE_STAT_DATA :
return V1_SD_UNIQUENESS ;
case TYPE_INDIRECT :
return V1_INDIRECT_UNIQUENESS ;
case TYPE_DIRECT :
return V1_DIRECT_UNIQUENESS ;
case TYPE_DIRENTRY :
return V1_DIRENTRY_UNIQUENESS ;
case TYPE_ANY :
default :
return V1_ANY_UNIQUENESS ;
}
}
//
// key is pointer to on disk key which is stored in le, result is cpu,
// there is no way to get version of object from key, so, provide
// version to these defines
//
static inline loff_t le_key_k_offset ( int version ,
const struct reiserfs_key * key )
{
return ( version = = KEY_FORMAT_3_5 ) ?
le32_to_cpu ( key - > u . k_offset_v1 . k_offset ) :
offset_v2_k_offset ( & ( key - > u . k_offset_v2 ) ) ;
}
static inline loff_t le_ih_k_offset ( const struct item_head * ih )
{
return le_key_k_offset ( ih_version ( ih ) , & ( ih - > ih_key ) ) ;
}
static inline loff_t le_key_k_type ( int version , const struct reiserfs_key * key )
{
return ( version = = KEY_FORMAT_3_5 ) ?
uniqueness2type ( le32_to_cpu ( key - > u . k_offset_v1 . k_uniqueness ) ) :
offset_v2_k_type ( & ( key - > u . k_offset_v2 ) ) ;
}
static inline loff_t le_ih_k_type ( const struct item_head * ih )
{
return le_key_k_type ( ih_version ( ih ) , & ( ih - > ih_key ) ) ;
}
static inline void set_le_key_k_offset ( int version , struct reiserfs_key * key ,
loff_t offset )
{
( version = = KEY_FORMAT_3_5 ) ? ( void ) ( key - > u . k_offset_v1 . k_offset = cpu_to_le32 ( offset ) ) : /* jdm check */
( void ) ( set_offset_v2_k_offset ( & ( key - > u . k_offset_v2 ) , offset ) ) ;
}
static inline void set_le_ih_k_offset ( struct item_head * ih , loff_t offset )
{
set_le_key_k_offset ( ih_version ( ih ) , & ( ih - > ih_key ) , offset ) ;
}
static inline void set_le_key_k_type ( int version , struct reiserfs_key * key ,
int type )
{
( version = = KEY_FORMAT_3_5 ) ?
( void ) ( key - > u . k_offset_v1 . k_uniqueness =
cpu_to_le32 ( type2uniqueness ( type ) ) )
: ( void ) ( set_offset_v2_k_type ( & ( key - > u . k_offset_v2 ) , type ) ) ;
}
static inline void set_le_ih_k_type ( struct item_head * ih , int type )
{
set_le_key_k_type ( ih_version ( ih ) , & ( ih - > ih_key ) , type ) ;
}
static inline int is_direntry_le_key ( int version , struct reiserfs_key * key )
{
return le_key_k_type ( version , key ) = = TYPE_DIRENTRY ;
}
static inline int is_direct_le_key ( int version , struct reiserfs_key * key )
{
return le_key_k_type ( version , key ) = = TYPE_DIRECT ;
}
static inline int is_indirect_le_key ( int version , struct reiserfs_key * key )
{
return le_key_k_type ( version , key ) = = TYPE_INDIRECT ;
}
static inline int is_statdata_le_key ( int version , struct reiserfs_key * key )
{
return le_key_k_type ( version , key ) = = TYPE_STAT_DATA ;
}
//
// item header has version.
//
static inline int is_direntry_le_ih ( struct item_head * ih )
{
return is_direntry_le_key ( ih_version ( ih ) , & ih - > ih_key ) ;
}
static inline int is_direct_le_ih ( struct item_head * ih )
{
return is_direct_le_key ( ih_version ( ih ) , & ih - > ih_key ) ;
}
static inline int is_indirect_le_ih ( struct item_head * ih )
{
return is_indirect_le_key ( ih_version ( ih ) , & ih - > ih_key ) ;
}
static inline int is_statdata_le_ih ( struct item_head * ih )
{
return is_statdata_le_key ( ih_version ( ih ) , & ih - > ih_key ) ;
}
//
// key is pointer to cpu key, result is cpu
//
static inline loff_t cpu_key_k_offset ( const struct cpu_key * key )
{
return key - > on_disk_key . k_offset ;
}
static inline loff_t cpu_key_k_type ( const struct cpu_key * key )
{
return key - > on_disk_key . k_type ;
}
static inline void set_cpu_key_k_offset ( struct cpu_key * key , loff_t offset )
{
key - > on_disk_key . k_offset = offset ;
}
static inline void set_cpu_key_k_type ( struct cpu_key * key , int type )
{
key - > on_disk_key . k_type = type ;
}
static inline void cpu_key_k_offset_dec ( struct cpu_key * key )
{
key - > on_disk_key . k_offset - - ;
}
# define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
# define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
# define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
# define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
/* are these used ? */
# define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
# define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
# define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
# define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
# define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
( ! COMP_SHORT_KEYS ( ih , key ) & & \
I_OFF_BYTE_IN_ITEM ( ih , k_offset ( key ) , n_blocksize ) )
/* maximal length of item */
# define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
# define MIN_ITEM_LEN 1
/* object identifier for root dir */
# define REISERFS_ROOT_OBJECTID 2
# define REISERFS_ROOT_PARENT_OBJECTID 1
extern struct reiserfs_key root_key ;
/*
* Picture represents a leaf of the S + tree
* ______________________________________________________
* | | Array of | | |
* | Block | Object - Item | F r e e | Objects - |
* | head | Headers | S p a c e | Items |
* | ______ | _______________ | ___________________ | ___________ |
*/
/* Header of a disk block. More precisely, header of a formatted leaf
or internal node , and not the header of an unformatted node . */
struct block_head {
__le16 blk_level ; /* Level of a block in the tree. */
__le16 blk_nr_item ; /* Number of keys/items in a block. */
__le16 blk_free_space ; /* Block free space in bytes. */
__le16 blk_reserved ;
/* dump this in v4/planA */
struct reiserfs_key blk_right_delim_key ; /* kept only for compatibility */
} ;
# define BLKH_SIZE (sizeof(struct block_head))
# define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
# define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
# define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
# define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
# define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
# define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
# define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
# define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
# define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
# define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
/*
* values for blk_level field of the struct block_head
*/
# define FREE_LEVEL 0 / * when node gets removed from the tree its
blk_level is set to FREE_LEVEL . It is then
used to see whether the node is still in the
tree */
# define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
/* Given the buffer head of a formatted node, resolve to the block head of that node. */
# define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
/* Number of items that are in buffer. */
# define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
# define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
# define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
# define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
# define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
# define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
/* Get right delimiting key. -- little endian */
# define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
/* Does the buffer contain a disk leaf. */
# define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
/* Does the buffer contain a disk internal node */
# define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
& & B_LEVEL ( bh ) < = MAX_HEIGHT )
/***************************************************************************/
/* STAT DATA */
/***************************************************************************/
//
// old stat data is 32 bytes long. We are going to distinguish new one by
// different size
//
struct stat_data_v1 {
__le16 sd_mode ; /* file type, permissions */
__le16 sd_nlink ; /* number of hard links */
__le16 sd_uid ; /* owner */
__le16 sd_gid ; /* group */
__le32 sd_size ; /* file size */
__le32 sd_atime ; /* time of last access */
__le32 sd_mtime ; /* time file was last modified */
__le32 sd_ctime ; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
union {
__le32 sd_rdev ;
__le32 sd_blocks ; /* number of blocks file uses */
} __attribute__ ( ( __packed__ ) ) u ;
__le32 sd_first_direct_byte ; /* first byte of file which is stored
in a direct item : except that if it
equals 1 it is a symlink and if it
equals ~ ( __u32 ) 0 there is no
direct item . The existence of this
field really grates on me . Let ' s
replace it with a macro based on
sd_size and our tail suppression
policy . Someday . - Hans */
} __attribute__ ( ( __packed__ ) ) ;
# define SD_V1_SIZE (sizeof(struct stat_data_v1))
# define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
# define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
# define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
# define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
# define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
# define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
# define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
# define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
# define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
# define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
# define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
# define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
# define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
# define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
# define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
# define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
# define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
# define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
# define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
# define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
# define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
# define sd_v1_first_direct_byte(sdp) \
( le32_to_cpu ( ( sdp ) - > sd_first_direct_byte ) )
# define set_sd_v1_first_direct_byte(sdp,v) \
( ( sdp ) - > sd_first_direct_byte = cpu_to_le32 ( v ) )
/* inode flags stored in sd_attrs (nee sd_reserved) */
/* we want common flags to have the same values as in ext2,
so chattr ( 1 ) will work without problems */
# define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
# define REISERFS_APPEND_FL FS_APPEND_FL
# define REISERFS_SYNC_FL FS_SYNC_FL
# define REISERFS_NOATIME_FL FS_NOATIME_FL
# define REISERFS_NODUMP_FL FS_NODUMP_FL
# define REISERFS_SECRM_FL FS_SECRM_FL
# define REISERFS_UNRM_FL FS_UNRM_FL
# define REISERFS_COMPR_FL FS_COMPR_FL
# define REISERFS_NOTAIL_FL FS_NOTAIL_FL
/* persistent flags that file inherits from the parent directory */
# define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
REISERFS_SYNC_FL | \
REISERFS_NOATIME_FL | \
REISERFS_NODUMP_FL | \
REISERFS_SECRM_FL | \
REISERFS_COMPR_FL | \
REISERFS_NOTAIL_FL )
/* Stat Data on disk (reiserfs version of UFS disk inode minus the
address blocks ) */
struct stat_data {
__le16 sd_mode ; /* file type, permissions */
__le16 sd_attrs ; /* persistent inode flags */
__le32 sd_nlink ; /* number of hard links */
__le64 sd_size ; /* file size */
__le32 sd_uid ; /* owner */
__le32 sd_gid ; /* group */
__le32 sd_atime ; /* time of last access */
__le32 sd_mtime ; /* time file was last modified */
__le32 sd_ctime ; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
__le32 sd_blocks ;
union {
__le32 sd_rdev ;
__le32 sd_generation ;
//__le32 sd_first_direct_byte;
/* first byte of file which is stored in a
direct item : except that if it equals 1
it is a symlink and if it equals
~ ( __u32 ) 0 there is no direct item . The
existence of this field really grates
on me . Let ' s replace it with a macro
based on sd_size and our tail
suppression policy ? */
} __attribute__ ( ( __packed__ ) ) u ;
} __attribute__ ( ( __packed__ ) ) ;
//
// this is 44 bytes long
//
# define SD_SIZE (sizeof(struct stat_data))
# define SD_V2_SIZE SD_SIZE
# define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
# define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
# define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
/* sd_reserved */
/* set_sd_reserved */
# define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
# define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
# define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
# define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
# define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
# define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
# define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
# define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
# define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
# define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
# define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
# define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
# define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
# define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
# define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
# define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
# define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
# define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
# define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
# define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
# define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
# define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
/***************************************************************************/
/* DIRECTORY STRUCTURE */
/***************************************************************************/
/*
Picture represents the structure of directory items
________________________________________________
| Array of | | | | | |
| directory | N - 1 | N - 2 | . . . . | 1 st | 0 th |
| entry headers | | | | | |
| _______________ | ___ | _____ | ________ | _______ | ___ |
< - - - - directory entries - - - - - - >
First directory item has k_offset component 1. We store " . " and " .. "
in one item , always , we never split " . " and " .. " into differing
items . This makes , among other things , the code for removing
directories simpler . */
# define SD_OFFSET 0
# define SD_UNIQUENESS 0
# define DOT_OFFSET 1
# define DOT_DOT_OFFSET 2
# define DIRENTRY_UNIQUENESS 500
/* */
# define FIRST_ITEM_OFFSET 1
/*
Q : How to get key of object pointed to by entry from entry ?
A : Each directory entry has its header . This header has deh_dir_id and deh_objectid fields , those are key
of object , entry points to */
/* NOT IMPLEMENTED:
Directory will someday contain stat data of object */
struct reiserfs_de_head {
__le32 deh_offset ; /* third component of the directory entry key */
__le32 deh_dir_id ; /* objectid of the parent directory of the object, that is referenced
by directory entry */
__le32 deh_objectid ; /* objectid of the object, that is referenced by directory entry */
__le16 deh_location ; /* offset of name in the whole item */
__le16 deh_state ; /* whether 1) entry contains stat data (for future), and 2) whether
entry is hidden ( unlinked ) */
} __attribute__ ( ( __packed__ ) ) ;
# define DEH_SIZE sizeof(struct reiserfs_de_head)
# define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
# define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
# define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
# define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
# define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
# define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
# define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
# define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
# define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
# define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
/* empty directory contains two entries "." and ".." and their headers */
# define EMPTY_DIR_SIZE \
( DEH_SIZE * 2 + ROUND_UP ( strlen ( " . " ) ) + ROUND_UP ( strlen ( " .. " ) ) )
/* old format directories have this size when empty */
# define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
# define DEH_Statdata 0 /* not used now */
# define DEH_Visible 2
/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
# if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
# define ADDR_UNALIGNED_BITS (3)
# endif
/* These are only used to manipulate deh_state.
* Because of this , we ' ll use the ext2_ bit routines ,
* since they are little endian */
# ifdef ADDR_UNALIGNED_BITS
# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
# define set_bit_unaligned(nr, addr) \
__test_and_set_bit_le ( ( nr ) + unaligned_offset ( addr ) , aligned_address ( addr ) )
# define clear_bit_unaligned(nr, addr) \
__test_and_clear_bit_le ( ( nr ) + unaligned_offset ( addr ) , aligned_address ( addr ) )
# define test_bit_unaligned(nr, addr) \
test_bit_le ( ( nr ) + unaligned_offset ( addr ) , aligned_address ( addr ) )
# else
# define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
# define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
# define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
# endif
# define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
# define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
# define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
# define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
# define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
# define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
# define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
extern void make_empty_dir_item_v1 ( char * body , __le32 dirid , __le32 objid ,
__le32 par_dirid , __le32 par_objid ) ;
extern void make_empty_dir_item ( char * body , __le32 dirid , __le32 objid ,
__le32 par_dirid , __le32 par_objid ) ;
/* array of the entry headers */
/* get item body */
# define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
# define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
/* length of the directory entry in directory item. This define
calculates length of i - th directory entry using directory entry
locations from dir entry head . When it calculates length of 0 - th
directory entry , it uses length of whole item in place of entry
location of the non - existent following entry in the calculation .
See picture above . */
/*
# define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
( ( i ) ? ( deh_location ( ( deh ) - 1 ) - deh_location ( ( deh ) ) ) : ( ih_item_len ( ( ih ) ) - deh_location ( ( deh ) ) ) )
*/
static inline int entry_length ( const struct buffer_head * bh ,
const struct item_head * ih , int pos_in_item )
{
struct reiserfs_de_head * deh ;
deh = B_I_DEH ( bh , ih ) + pos_in_item ;
if ( pos_in_item )
return deh_location ( deh - 1 ) - deh_location ( deh ) ;
return ih_item_len ( ih ) - deh_location ( deh ) ;
}
/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
# define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
/* name by bh, ih and entry_num */
# define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
// two entries per block (at least)
# define REISERFS_MAX_NAME(block_size) 255
/* this structure is used for operations on directory entries. It is
not a disk structure . */
/* When reiserfs_find_entry or search_by_entry_key find directory
entry , they return filled reiserfs_dir_entry structure */
struct reiserfs_dir_entry {
struct buffer_head * de_bh ;
int de_item_num ;
struct item_head * de_ih ;
int de_entry_num ;
struct reiserfs_de_head * de_deh ;
int de_entrylen ;
int de_namelen ;
char * de_name ;
unsigned long * de_gen_number_bit_string ;
__u32 de_dir_id ;
__u32 de_objectid ;
struct cpu_key de_entry_key ;
} ;
/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
/* pointer to file name, stored in entry */
# define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
/* length of name */
# define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
( I_DEH_N_ENTRY_LENGTH ( ih , deh , entry_num ) - ( de_with_sd ( deh ) ? SD_SIZE : 0 ) )
/* hash value occupies bits from 7 up to 30 */
# define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
/* generation number occupies 7 bits starting from 0 up to 6 */
# define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
# define MAX_GENERATION_NUMBER 127
# define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
/*
* Picture represents an internal node of the reiserfs tree
* ______________________________________________________
* | | Array of | Array of | Free |
* | block | keys | pointers | space |
* | head | N | N + 1 | |
* | ______ | _______________ | ___________________ | ___________ |
*/
/***************************************************************************/
/* DISK CHILD */
/***************************************************************************/
/* Disk child pointer: The pointer from an internal node of the tree
to a node that is on disk . */
struct disk_child {
__le32 dc_block_number ; /* Disk child's block number. */
__le16 dc_size ; /* Disk child's used space. */
__le16 dc_reserved ;
} ;
# define DC_SIZE (sizeof(struct disk_child))
# define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
# define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
# define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
# define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
/* Get disk child by buffer header and position in the tree node. */
# define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
( ( bh ) - > b_data + BLKH_SIZE + B_NR_ITEMS ( bh ) * KEY_SIZE + DC_SIZE * ( n_pos ) ) )
/* Get disk child number by buffer header and position in the tree node. */
# define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
# define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
( put_dc_block_number ( B_N_CHILD ( bh , n_pos ) , val ) )
/* maximal value of field child_size in structure disk_child */
/* child size is the combined size of all items and their headers */
# define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
/* amount of used space in buffer (not including block head) */
# define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
/* max and min number of keys in internal node */
# define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE) / (KEY_SIZE+DC_SIZE) )
# define MIN_NR_KEY(bh) (MAX_NR_KEY(bh) / 2)
/***************************************************************************/
/* PATH STRUCTURES AND DEFINES */
/***************************************************************************/
/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
key . It uses reiserfs_bread to try to find buffers in the cache given their block number . If it
does not find them in the cache it reads them from disk . For each node search_by_key finds using
reiserfs_bread it then uses bin_search to look through that node . bin_search will find the
position of the block_number of the next node if it is looking through an internal node . If it
is looking through a leaf node bin_search will find the position of the item which has key either
equal to given key , or which is the maximal key less than the given key . */
struct path_element {
struct buffer_head * pe_buffer ; /* Pointer to the buffer at the path in the tree. */
int pe_position ; /* Position in the tree node which is placed in the */
/* buffer above. */
} ;
# define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
# define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
# define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
# define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
# define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
/* We need to keep track of who the ancestors of nodes are. When we
perform a search we record which nodes were visited while
descending the tree looking for the node we searched for . This list
of nodes is called the path . This information is used while
performing balancing . Note that this path information may become
invalid , and this means we must check it when using it to see if it
is still valid . You ' ll need to read search_by_key and the comments
in it , especially about decrement_counters_in_path ( ) , to understand
this structure .
Paths make the code so much harder to work with and debug . . . . An
enormous number of bugs are due to them , and trying to write or modify
code that uses them just makes my head hurt . They are based on an
excessive effort to avoid disturbing the precious VFS code . : - ( The
gods only know how we are going to SMP the code that uses them .
znodes are the way ! */
# define PATH_READA 0x1 /* do read ahead */
# define PATH_READA_BACK 0x2 /* read backwards */
struct treepath {
int path_length ; /* Length of the array above. */
int reada ;
struct path_element path_elements [ EXTENDED_MAX_HEIGHT ] ; /* Array of the path elements. */
int pos_in_item ;
} ;
# define pos_in_item(path) ((path)->pos_in_item)
# define INITIALIZE_PATH(var) \
struct treepath var = { . path_length = ILLEGAL_PATH_ELEMENT_OFFSET , . reada = 0 , }
/* Get path element by path and path position. */
# define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
/* Get buffer header at the path by path and path position. */
# define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
/* Get position in the element at the path by path and path position. */
# define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
# define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
/* you know, to the person who didn't
write this the macro name does not
at first suggest what it does .
Maybe POSITION_FROM_PATH_END ? Or
maybe we should just focus on
dumping paths . . . - Hans */
# define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
# define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
/* in do_balance leaf has h == 0 in contrast with path structure,
where root has level = = 0. That is why we need these defines */
# define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
# define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
# define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
# define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
# define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
# define get_last_bh(path) PATH_PLAST_BUFFER(path)
# define get_ih(path) PATH_PITEM_HEAD(path)
# define get_item_pos(path) PATH_LAST_POSITION(path)
# define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
# define item_moved(ih,path) comp_items(ih, path)
# define path_changed(ih,path) comp_items (ih, path)
/***************************************************************************/
/* MISC */
/***************************************************************************/
/* Size of pointer to the unformatted node. */
# define UNFM_P_SIZE (sizeof(unp_t))
# define UNFM_P_SHIFT 2
// in in-core inode key is stored on le form
# define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
# define MAX_UL_INT 0xffffffff
# define MAX_INT 0x7ffffff
# define MAX_US_INT 0xffff
// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
# define U32_MAX (~(__u32)0)
static inline loff_t max_reiserfs_offset ( struct inode * inode )
{
if ( get_inode_item_key_version ( inode ) = = KEY_FORMAT_3_5 )
return ( loff_t ) U32_MAX ;
return ( loff_t ) ( ( ~ ( __u64 ) 0 ) > > 4 ) ;
}
/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
# define MAX_KEY_OBJECTID MAX_UL_INT
# define MAX_B_NUM MAX_UL_INT
# define MAX_FC_NUM MAX_US_INT
/* the purpose is to detect overflow of an unsigned short */
# define REISERFS_LINK_MAX (MAX_US_INT - 1000)
/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
# define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
# define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
# define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
# define get_generation(s) atomic_read (&fs_generation(s))
# define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
# define __fs_changed(gen,s) (gen != get_generation (s))
# define fs_changed(gen,s) \
( { \
reiserfs_cond_resched ( s ) ; \
__fs_changed ( gen , s ) ; \
} )
/***************************************************************************/
/* FIXATE NODES */
/***************************************************************************/
# define VI_TYPE_LEFT_MERGEABLE 1
# define VI_TYPE_RIGHT_MERGEABLE 2
/* To make any changes in the tree we always first find node, that
contains item to be changed / deleted or place to insert a new
item . We call this node S . To do balancing we need to decide what
we will shift to left / right neighbor , or to a new node , where new
item will be etc . To make this analysis simpler we build virtual
node . Virtual node is an array of items , that will replace items of
node S . ( For instance if we are going to delete an item , virtual
node does not contain it ) . Virtual node keeps information about
item sizes and types , mergeability of first and last items , sizes
of all entries in directory item . We use this array of items when
calculating what we can shift to neighbors and how many nodes we
have to have if we do not any shiftings , if we shift to left / right
neighbor or to both . */
struct virtual_item {
int vi_index ; // index in the array of item operations
unsigned short vi_type ; // left/right mergeability
unsigned short vi_item_len ; /* length of item that it will have after balancing */
struct item_head * vi_ih ;
const char * vi_item ; // body of item (old or new)
const void * vi_new_data ; // 0 always but paste mode
void * vi_uarea ; // item specific area
} ;
struct virtual_node {
char * vn_free_ptr ; /* this is a pointer to the free space in the buffer */
unsigned short vn_nr_item ; /* number of items in virtual node */
short vn_size ; /* size of node , that node would have if it has unlimited size and no balancing is performed */
short vn_mode ; /* mode of balancing (paste, insert, delete, cut) */
short vn_affected_item_num ;
short vn_pos_in_item ;
struct item_head * vn_ins_ih ; /* item header of inserted item, 0 for other modes */
const void * vn_data ;
struct virtual_item * vn_vi ; /* array of items (including a new one, excluding item to be deleted) */
} ;
/* used by directory items when creating virtual nodes */
struct direntry_uarea {
int flags ;
__u16 entry_count ;
__u16 entry_sizes [ 1 ] ;
} __attribute__ ( ( __packed__ ) ) ;
/***************************************************************************/
/* TREE BALANCE */
/***************************************************************************/
/* This temporary structure is used in tree balance algorithms, and
constructed as we go to the extent that its various parts are
needed . It contains arrays of nodes that can potentially be
involved in the balancing of node S , and parameters that define how
each of the nodes must be balanced . Note that in these algorithms
for balancing the worst case is to need to balance the current node
S and the left and right neighbors and all of their parents plus
create a new node . We implement S1 balancing for the leaf nodes
and S0 balancing for the internal nodes ( S1 and S0 are defined in
our papers . ) */
# define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
/* maximum number of FEB blocknrs on a single level */
# define MAX_AMOUNT_NEEDED 2
/* someday somebody will prefix every field in this struct with tb_ */
struct tree_balance {
int tb_mode ;
int need_balance_dirty ;
struct super_block * tb_sb ;
struct reiserfs_transaction_handle * transaction_handle ;
struct treepath * tb_path ;
struct buffer_head * L [ MAX_HEIGHT ] ; /* array of left neighbors of nodes in the path */
struct buffer_head * R [ MAX_HEIGHT ] ; /* array of right neighbors of nodes in the path */
struct buffer_head * FL [ MAX_HEIGHT ] ; /* array of fathers of the left neighbors */
struct buffer_head * FR [ MAX_HEIGHT ] ; /* array of fathers of the right neighbors */
struct buffer_head * CFL [ MAX_HEIGHT ] ; /* array of common parents of center node and its left neighbor */
struct buffer_head * CFR [ MAX_HEIGHT ] ; /* array of common parents of center node and its right neighbor */
struct buffer_head * FEB [ MAX_FEB_SIZE ] ; /* array of empty buffers. Number of buffers in array equals
cur_blknum . */
struct buffer_head * used [ MAX_FEB_SIZE ] ;
struct buffer_head * thrown [ MAX_FEB_SIZE ] ;
int lnum [ MAX_HEIGHT ] ; /* array of number of items which must be
shifted to the left in order to balance the
current node ; for leaves includes item that
will be partially shifted ; for internal
nodes , it is the number of child pointers
rather than items . It includes the new item
being created . The code sometimes subtracts
one to get the number of wholly shifted
items for other purposes . */
int rnum [ MAX_HEIGHT ] ; /* substitute right for left in comment above */
int lkey [ MAX_HEIGHT ] ; /* array indexed by height h mapping the key delimiting L[h] and
S [ h ] to its item number within the node CFL [ h ] */
int rkey [ MAX_HEIGHT ] ; /* substitute r for l in comment above */
int insert_size [ MAX_HEIGHT ] ; /* the number of bytes by we are trying to add or remove from
S [ h ] . A negative value means removing . */
int blknum [ MAX_HEIGHT ] ; /* number of nodes that will replace node S[h] after
balancing on the level h of the tree . If 0 then S is
being deleted , if 1 then S is remaining and no new nodes
are being created , if 2 or 3 then 1 or 2 new nodes is
being created */
/* fields that are used only for balancing leaves of the tree */
int cur_blknum ; /* number of empty blocks having been already allocated */
int s0num ; /* number of items that fall into left most node when S[0] splits */
int s1num ; /* number of items that fall into first new node when S[0] splits */
int s2num ; /* number of items that fall into second new node when S[0] splits */
int lbytes ; /* number of bytes which can flow to the left neighbor from the left */
/* most liquid item that cannot be shifted from S[0] entirely */
/* if -1 then nothing will be partially shifted */
int rbytes ; /* number of bytes which will flow to the right neighbor from the right */
/* most liquid item that cannot be shifted from S[0] entirely */
/* if -1 then nothing will be partially shifted */
int s1bytes ; /* number of bytes which flow to the first new node when S[0] splits */
/* note: if S[0] splits into 3 nodes, then items do not need to be cut */
int s2bytes ;
struct buffer_head * buf_to_free [ MAX_FREE_BLOCK ] ; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
char * vn_buf ; /* kmalloced memory. Used to create
virtual node and keep map of
dirtied bitmap blocks */
int vn_buf_size ; /* size of the vn_buf */
struct virtual_node * tb_vn ; /* VN starts after bitmap of bitmap blocks */
int fs_gen ; /* saved value of `reiserfs_generation' counter
see FILESYSTEM_CHANGED ( ) macro in reiserfs_fs . h */
# ifdef DISPLACE_NEW_PACKING_LOCALITIES
struct in_core_key key ; /* key pointer, to pass to block allocator or
another low - level subsystem */
# endif
} ;
/* These are modes of balancing */
/* When inserting an item. */
# define M_INSERT 'i'
/* When inserting into (directories only) or appending onto an already
existent item . */
# define M_PASTE 'p'
/* When deleting an item. */
# define M_DELETE 'd'
/* When truncating an item or removing an entry from a (directory) item. */
# define M_CUT 'c'
/* used when balancing on leaf level skipped (in reiserfsck) */
# define M_INTERNAL 'n'
/* When further balancing is not needed, then do_balance does not need
to be called . */
# define M_SKIP_BALANCING 's'
# define M_CONVERT 'v'
/* modes of leaf_move_items */
# define LEAF_FROM_S_TO_L 0
# define LEAF_FROM_S_TO_R 1
# define LEAF_FROM_R_TO_L 2
# define LEAF_FROM_L_TO_R 3
# define LEAF_FROM_S_TO_SNEW 4
# define FIRST_TO_LAST 0
# define LAST_TO_FIRST 1
/* used in do_balance for passing parent of node information that has
been gotten from tb struct */
struct buffer_info {
struct tree_balance * tb ;
struct buffer_head * bi_bh ;
struct buffer_head * bi_parent ;
int bi_position ;
} ;
static inline struct super_block * sb_from_tb ( struct tree_balance * tb )
{
return tb ? tb - > tb_sb : NULL ;
}
static inline struct super_block * sb_from_bi ( struct buffer_info * bi )
{
return bi ? sb_from_tb ( bi - > tb ) : NULL ;
}
/* there are 4 types of items: stat data, directory item, indirect, direct.
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
| | k_offset | k_uniqueness | mergeable ? |
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
| stat data | 0 | 0 | no |
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
| 1 st directory item | DOT_OFFSET | DIRENTRY_UNIQUENESS | no |
| non 1 st directory | hash value | | yes |
| item | | | |
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
| indirect item | offset + 1 | TYPE_INDIRECT | if this is not the first indirect item of the object
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
| direct item | offset + 1 | TYPE_DIRECT | if not this is not the first direct item of the object
+ - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - + - - - - - - - - - - - - - - + - - - - - - - - - - - - +
*/
struct item_operations {
int ( * bytes_number ) ( struct item_head * ih , int block_size ) ;
void ( * decrement_key ) ( struct cpu_key * ) ;
int ( * is_left_mergeable ) ( struct reiserfs_key * ih ,
unsigned long bsize ) ;
void ( * print_item ) ( struct item_head * , char * item ) ;
void ( * check_item ) ( struct item_head * , char * item ) ;
int ( * create_vi ) ( struct virtual_node * vn , struct virtual_item * vi ,
int is_affected , int insert_size ) ;
int ( * check_left ) ( struct virtual_item * vi , int free ,
int start_skip , int end_skip ) ;
int ( * check_right ) ( struct virtual_item * vi , int free ) ;
int ( * part_size ) ( struct virtual_item * vi , int from , int to ) ;
int ( * unit_num ) ( struct virtual_item * vi ) ;
void ( * print_vi ) ( struct virtual_item * vi ) ;
} ;
extern struct item_operations * item_ops [ TYPE_ANY + 1 ] ;
# define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
# define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
# define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
# define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
# define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
# define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
# define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
# define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
# define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
# define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
# define COMP_SHORT_KEYS comp_short_keys
/* number of blocks pointed to by the indirect item */
# define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
# define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
/* get the item header */
# define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
/* get key */
# define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
/* get the key */
# define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
/* get item body */
# define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
/* get the stat data by the buffer header and the item order */
# define B_N_STAT_DATA(bh,nr) \
( ( struct stat_data * ) ( ( bh ) - > b_data + ih_location ( B_N_PITEM_HEAD ( ( bh ) , ( nr ) ) ) ) )
/* following defines use reiserfs buffer header and item header */
/* get stat-data */
# define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
// this is 3976 for size==4096
# define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
/* indirect items consist of entries which contain blocknrs, pos
indicates which entry , and B_I_POS_UNFM_POINTER resolves to the
blocknr contained by the entry pos points to */
# define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
# define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
struct reiserfs_iget_args {
__u32 objectid ;
__u32 dirid ;
} ;
/***************************************************************************/
/* FUNCTION DECLARATIONS */
/***************************************************************************/
# define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
# define journal_trans_half(blocksize) \
( ( blocksize - sizeof ( struct reiserfs_journal_desc ) + sizeof ( __u32 ) - 12 ) / sizeof ( __u32 ) )
/* journal.c see journal.c for all the comments here */
/* first block written in a commit. */
struct reiserfs_journal_desc {
__le32 j_trans_id ; /* id of commit */
__le32 j_len ; /* length of commit. len +1 is the commit block */
__le32 j_mount_id ; /* mount id of this trans */
__le32 j_realblock [ 1 ] ; /* real locations for each block */
} ;
# define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
# define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
# define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
# define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
# define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
# define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
/* last block written in a commit */
struct reiserfs_journal_commit {
__le32 j_trans_id ; /* must match j_trans_id from the desc block */
__le32 j_len ; /* ditto */
__le32 j_realblock [ 1 ] ; /* real locations for each block */
} ;
# define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
# define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
# define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
# define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
# define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
* * last fully flushed transaction . fully flushed means all the log blocks and all the real blocks are on disk ,
* * and this transaction does not need to be replayed .
*/
struct reiserfs_journal_header {
__le32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
__le32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
__le32 j_mount_id ;
/* 12 */ struct journal_params jh_journal ;
} ;
/* biggest tunable defines are right here */
# define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
# define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
# define JOURNAL_TRANS_MIN_DEFAULT 256
# define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
# define JOURNAL_MIN_RATIO 2
# define JOURNAL_MAX_COMMIT_AGE 30
# define JOURNAL_MAX_TRANS_AGE 30
# define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
# define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2 * ( REISERFS_QUOTA_INIT_BLOCKS ( sb ) + \
REISERFS_QUOTA_TRANS_BLOCKS ( sb ) ) )
# ifdef CONFIG_QUOTA
# define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
/* We need to update data and inode (atime) */
# define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
# define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
( DQUOT_INIT_ALLOC * ( JOURNAL_PER_BALANCE_CNT + 2 ) + DQUOT_INIT_REWRITE + 1 ) : 0 )
/* same as with INIT */
# define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
( DQUOT_DEL_ALLOC * ( JOURNAL_PER_BALANCE_CNT + 2 ) + DQUOT_DEL_REWRITE + 1 ) : 0 )
# else
# define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
# define REISERFS_QUOTA_INIT_BLOCKS(s) 0
# define REISERFS_QUOTA_DEL_BLOCKS(s) 0
# endif
/* both of these can be as low as 1, or as high as you want. The min is the
* * number of 4 k bitmap nodes preallocated on mount . New nodes are allocated
* * as needed , and released when transactions are committed . On release , if
* * the current number of nodes is > max , the node is freed , otherwise ,
* * it is put on a free list for faster use later .
*/
# define REISERFS_MIN_BITMAP_NODES 10
# define REISERFS_MAX_BITMAP_NODES 100
# define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
# define JBH_HASH_MASK 8191
# define _jhashfn(sb,block) \
( ( ( unsigned long ) sb > > L1_CACHE_SHIFT ) ^ \
( ( ( block ) < < ( JBH_HASH_SHIFT - 6 ) ) ^ ( ( block ) > > 13 ) ^ ( ( block ) < < ( JBH_HASH_SHIFT - 12 ) ) ) )
# define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
// We need these to make journal.c code more readable
# define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
# define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
# define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
enum reiserfs_bh_state_bits {
BH_JDirty = BH_PrivateStart , /* buffer is in current transaction */
BH_JDirty_wait ,
BH_JNew , /* disk block was taken off free list before
* being in a finished transaction , or
* written to disk . Can be reused immed . */
BH_JPrepared ,
BH_JRestore_dirty ,
BH_JTest , // debugging only will go away
} ;
BUFFER_FNS ( JDirty , journaled ) ;
TAS_BUFFER_FNS ( JDirty , journaled ) ;
BUFFER_FNS ( JDirty_wait , journal_dirty ) ;
TAS_BUFFER_FNS ( JDirty_wait , journal_dirty ) ;
BUFFER_FNS ( JNew , journal_new ) ;
TAS_BUFFER_FNS ( JNew , journal_new ) ;
BUFFER_FNS ( JPrepared , journal_prepared ) ;
TAS_BUFFER_FNS ( JPrepared , journal_prepared ) ;
BUFFER_FNS ( JRestore_dirty , journal_restore_dirty ) ;
TAS_BUFFER_FNS ( JRestore_dirty , journal_restore_dirty ) ;
BUFFER_FNS ( JTest , journal_test ) ;
TAS_BUFFER_FNS ( JTest , journal_test ) ;
/*
* * transaction handle which is passed around for all journal calls
*/
struct reiserfs_transaction_handle {
struct super_block * t_super ; /* super for this FS when journal_begin was
called . saves calls to reiserfs_get_super
also used by nested transactions to make
sure they are nesting on the right FS
_must_ be first in the handle
*/
int t_refcount ;
int t_blocks_logged ; /* number of blocks this writer has logged */
int t_blocks_allocated ; /* number of blocks this writer allocated */
unsigned int t_trans_id ; /* sanity check, equals the current trans id */
void * t_handle_save ; /* save existing current->journal_info */
unsigned displace_new_blocks : 1 ; /* if new block allocation occurres, that block
should be displaced from others */
struct list_head t_list ;
} ;
/* used to keep track of ordered and tail writes, attached to the buffer
* head through b_journal_head .
*/
struct reiserfs_jh {
struct reiserfs_journal_list * jl ;
struct buffer_head * bh ;
struct list_head list ;
} ;
void reiserfs_free_jh ( struct buffer_head * bh ) ;
int reiserfs_add_tail_list ( struct inode * inode , struct buffer_head * bh ) ;
int reiserfs_add_ordered_list ( struct inode * inode , struct buffer_head * bh ) ;
int journal_mark_dirty ( struct reiserfs_transaction_handle * ,
struct super_block * , struct buffer_head * bh ) ;
static inline int reiserfs_file_data_log ( struct inode * inode )
{
if ( reiserfs_data_log ( inode - > i_sb ) | |
( REISERFS_I ( inode ) - > i_flags & i_data_log ) )
return 1 ;
return 0 ;
}
static inline int reiserfs_transaction_running ( struct super_block * s )
{
struct reiserfs_transaction_handle * th = current - > journal_info ;
if ( th & & th - > t_super = = s )
return 1 ;
if ( th & & th - > t_super = = NULL )
BUG ( ) ;
return 0 ;
}
static inline int reiserfs_transaction_free_space ( struct reiserfs_transaction_handle * th )
{
return th - > t_blocks_allocated - th - > t_blocks_logged ;
}
struct reiserfs_transaction_handle * reiserfs_persistent_transaction ( struct
super_block
* ,
int count ) ;
int reiserfs_end_persistent_transaction ( struct reiserfs_transaction_handle * ) ;
int reiserfs_commit_page ( struct inode * inode , struct page * page ,
unsigned from , unsigned to ) ;
int reiserfs_flush_old_commits ( struct super_block * ) ;
int reiserfs_commit_for_inode ( struct inode * ) ;
int reiserfs_inode_needs_commit ( struct inode * ) ;
void reiserfs_update_inode_transaction ( struct inode * ) ;
void reiserfs_wait_on_write_block ( struct super_block * s ) ;
void reiserfs_block_writes ( struct reiserfs_transaction_handle * th ) ;
void reiserfs_allow_writes ( struct super_block * s ) ;
void reiserfs_check_lock_depth ( struct super_block * s , char * caller ) ;
int reiserfs_prepare_for_journal ( struct super_block * , struct buffer_head * bh ,
int wait ) ;
void reiserfs_restore_prepared_buffer ( struct super_block * ,
struct buffer_head * bh ) ;
int journal_init ( struct super_block * , const char * j_dev_name , int old_format ,
unsigned int ) ;
int journal_release ( struct reiserfs_transaction_handle * , struct super_block * ) ;
int journal_release_error ( struct reiserfs_transaction_handle * ,
struct super_block * ) ;
int journal_end ( struct reiserfs_transaction_handle * , struct super_block * ,
unsigned long ) ;
int journal_end_sync ( struct reiserfs_transaction_handle * , struct super_block * ,
unsigned long ) ;
int journal_mark_freed ( struct reiserfs_transaction_handle * ,
struct super_block * , b_blocknr_t blocknr ) ;
int journal_transaction_should_end ( struct reiserfs_transaction_handle * , int ) ;
int reiserfs_in_journal ( struct super_block * sb , unsigned int bmap_nr ,
int bit_nr , int searchall , b_blocknr_t * next ) ;
int journal_begin ( struct reiserfs_transaction_handle * ,
struct super_block * sb , unsigned long ) ;
int journal_join_abort ( struct reiserfs_transaction_handle * ,
struct super_block * sb , unsigned long ) ;
void reiserfs_abort_journal ( struct super_block * sb , int errno ) ;
void reiserfs_abort ( struct super_block * sb , int errno , const char * fmt , . . . ) ;
int reiserfs_allocate_list_bitmaps ( struct super_block * s ,
struct reiserfs_list_bitmap * , unsigned int ) ;
void add_save_link ( struct reiserfs_transaction_handle * th ,
struct inode * inode , int truncate ) ;
int remove_save_link ( struct inode * inode , int truncate ) ;
/* objectid.c */
__u32 reiserfs_get_unused_objectid ( struct reiserfs_transaction_handle * th ) ;
void reiserfs_release_objectid ( struct reiserfs_transaction_handle * th ,
__u32 objectid_to_release ) ;
int reiserfs_convert_objectid_map_v1 ( struct super_block * ) ;
/* stree.c */
int B_IS_IN_TREE ( const struct buffer_head * ) ;
extern void copy_item_head ( struct item_head * to ,
const struct item_head * from ) ;
// first key is in cpu form, second - le
extern int comp_short_keys ( const struct reiserfs_key * le_key ,
const struct cpu_key * cpu_key ) ;
extern void le_key2cpu_key ( struct cpu_key * to , const struct reiserfs_key * from ) ;
// both are in le form
extern int comp_le_keys ( const struct reiserfs_key * ,
const struct reiserfs_key * ) ;
extern int comp_short_le_keys ( const struct reiserfs_key * ,
const struct reiserfs_key * ) ;
//
// get key version from on disk key - kludge
//
static inline int le_key_version ( const struct reiserfs_key * key )
{
int type ;
type = offset_v2_k_type ( & ( key - > u . k_offset_v2 ) ) ;
if ( type ! = TYPE_DIRECT & & type ! = TYPE_INDIRECT
& & type ! = TYPE_DIRENTRY )
return KEY_FORMAT_3_5 ;
return KEY_FORMAT_3_6 ;
}
static inline void copy_key ( struct reiserfs_key * to ,
const struct reiserfs_key * from )
{
memcpy ( to , from , KEY_SIZE ) ;
}
int comp_items ( const struct item_head * stored_ih , const struct treepath * path ) ;
const struct reiserfs_key * get_rkey ( const struct treepath * chk_path ,
const struct super_block * sb ) ;
int search_by_key ( struct super_block * , const struct cpu_key * ,
struct treepath * , int ) ;
# define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
int search_for_position_by_key ( struct super_block * sb ,
const struct cpu_key * cpu_key ,
struct treepath * search_path ) ;
extern void decrement_bcount ( struct buffer_head * bh ) ;
void decrement_counters_in_path ( struct treepath * search_path ) ;
void pathrelse ( struct treepath * search_path ) ;
int reiserfs_check_path ( struct treepath * p ) ;
void pathrelse_and_restore ( struct super_block * s , struct treepath * search_path ) ;
int reiserfs_insert_item ( struct reiserfs_transaction_handle * th ,
struct treepath * path ,
const struct cpu_key * key ,
struct item_head * ih ,
struct inode * inode , const char * body ) ;
int reiserfs_paste_into_item ( struct reiserfs_transaction_handle * th ,
struct treepath * path ,
const struct cpu_key * key ,
struct inode * inode ,
const char * body , int paste_size ) ;
int reiserfs_cut_from_item ( struct reiserfs_transaction_handle * th ,
struct treepath * path ,
struct cpu_key * key ,
struct inode * inode ,
struct page * page , loff_t new_file_size ) ;
int reiserfs_delete_item ( struct reiserfs_transaction_handle * th ,
struct treepath * path ,
const struct cpu_key * key ,
struct inode * inode , struct buffer_head * un_bh ) ;
void reiserfs_delete_solid_item ( struct reiserfs_transaction_handle * th ,
struct inode * inode , struct reiserfs_key * key ) ;
int reiserfs_delete_object ( struct reiserfs_transaction_handle * th ,
struct inode * inode ) ;
int reiserfs_do_truncate ( struct reiserfs_transaction_handle * th ,
struct inode * inode , struct page * ,
int update_timestamps ) ;
# define i_block_size(inode) ((inode)->i_sb->s_blocksize)
# define file_size(inode) ((inode)->i_size)
# define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
# define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
! STORE_TAIL_IN_UNFM_S1 ( file_size ( inode ) , tail_size ( inode ) , inode - > i_sb - > s_blocksize ) : have_small_tails ( ( inode ) - > i_sb ) ? ! STORE_TAIL_IN_UNFM_S2 ( file_size ( inode ) , tail_size ( inode ) , inode - > i_sb - > s_blocksize ) : 0 )
void padd_item ( char * item , int total_length , int length ) ;
/* inode.c */
/* args for the create parameter of reiserfs_get_block */
# define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
# define GET_BLOCK_CREATE 1 /* add anything you need to find block */
# define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
# define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
# define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
# define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
void reiserfs_read_locked_inode ( struct inode * inode ,
struct reiserfs_iget_args * args ) ;
int reiserfs_find_actor ( struct inode * inode , void * p ) ;
int reiserfs_init_locked_inode ( struct inode * inode , void * p ) ;
void reiserfs_evict_inode ( struct inode * inode ) ;
int reiserfs_write_inode ( struct inode * inode , struct writeback_control * wbc ) ;
int reiserfs_get_block ( struct inode * inode , sector_t block ,
struct buffer_head * bh_result , int create ) ;
struct dentry * reiserfs_fh_to_dentry ( struct super_block * sb , struct fid * fid ,
int fh_len , int fh_type ) ;
struct dentry * reiserfs_fh_to_parent ( struct super_block * sb , struct fid * fid ,
int fh_len , int fh_type ) ;
int reiserfs_encode_fh ( struct dentry * dentry , __u32 * data , int * lenp ,
int connectable ) ;
int reiserfs_truncate_file ( struct inode * , int update_timestamps ) ;
void make_cpu_key ( struct cpu_key * cpu_key , struct inode * inode , loff_t offset ,
int type , int key_length ) ;
void make_le_item_head ( struct item_head * ih , const struct cpu_key * key ,
int version ,
loff_t offset , int type , int length , int entry_count ) ;
struct inode * reiserfs_iget ( struct super_block * s , const struct cpu_key * key ) ;
struct reiserfs_security_handle ;
int reiserfs_new_inode ( struct reiserfs_transaction_handle * th ,
struct inode * dir , umode_t mode ,
const char * symname , loff_t i_size ,
struct dentry * dentry , struct inode * inode ,
struct reiserfs_security_handle * security ) ;
void reiserfs_update_sd_size ( struct reiserfs_transaction_handle * th ,
struct inode * inode , loff_t size ) ;
static inline void reiserfs_update_sd ( struct reiserfs_transaction_handle * th ,
struct inode * inode )
{
reiserfs_update_sd_size ( th , inode , inode - > i_size ) ;
}
void sd_attrs_to_i_attrs ( __u16 sd_attrs , struct inode * inode ) ;
void i_attrs_to_sd_attrs ( struct inode * inode , __u16 * sd_attrs ) ;
int reiserfs_setattr ( struct dentry * dentry , struct iattr * attr ) ;
int __reiserfs_write_begin ( struct page * page , unsigned from , unsigned len ) ;
/* namei.c */
void set_de_name_and_namelen ( struct reiserfs_dir_entry * de ) ;
int search_by_entry_key ( struct super_block * sb , const struct cpu_key * key ,
struct treepath * path , struct reiserfs_dir_entry * de ) ;
struct dentry * reiserfs_get_parent ( struct dentry * ) ;
# ifdef CONFIG_REISERFS_PROC_INFO
int reiserfs_proc_info_init ( struct super_block * sb ) ;
int reiserfs_proc_info_done ( struct super_block * sb ) ;
int reiserfs_proc_info_global_init ( void ) ;
int reiserfs_proc_info_global_done ( void ) ;
# define PROC_EXP( e ) e
# define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
# define PROC_INFO_MAX( sb, field, value ) \
__PINFO ( sb ) . field = \
max ( REISERFS_SB ( sb ) - > s_proc_info_data . field , value )
# define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
# define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
# define PROC_INFO_BH_STAT( sb, bh, level ) \
PROC_INFO_INC ( sb , sbk_read_at [ ( level ) ] ) ; \
PROC_INFO_ADD ( sb , free_at [ ( level ) ] , B_FREE_SPACE ( bh ) ) ; \
PROC_INFO_ADD ( sb , items_at [ ( level ) ] , B_NR_ITEMS ( bh ) )
# else
static inline int reiserfs_proc_info_init ( struct super_block * sb )
{
return 0 ;
}
static inline int reiserfs_proc_info_done ( struct super_block * sb )
{
return 0 ;
}
static inline int reiserfs_proc_info_global_init ( void )
{
return 0 ;
}
static inline int reiserfs_proc_info_global_done ( void )
{
return 0 ;
}
# define PROC_EXP( e )
# define VOID_V ( ( void ) 0 )
# define PROC_INFO_MAX( sb, field, value ) VOID_V
# define PROC_INFO_INC( sb, field ) VOID_V
# define PROC_INFO_ADD( sb, field, val ) VOID_V
# define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
# endif
/* dir.c */
extern const struct inode_operations reiserfs_dir_inode_operations ;
extern const struct inode_operations reiserfs_symlink_inode_operations ;
extern const struct inode_operations reiserfs_special_inode_operations ;
extern const struct file_operations reiserfs_dir_operations ;
int reiserfs_readdir_dentry ( struct dentry * , void * , filldir_t , loff_t * ) ;
/* tail_conversion.c */
int direct2indirect ( struct reiserfs_transaction_handle * , struct inode * ,
struct treepath * , struct buffer_head * , loff_t ) ;
int indirect2direct ( struct reiserfs_transaction_handle * , struct inode * ,
struct page * , struct treepath * , const struct cpu_key * ,
loff_t , char * ) ;
void reiserfs_unmap_buffer ( struct buffer_head * ) ;
/* file.c */
extern const struct inode_operations reiserfs_file_inode_operations ;
extern const struct file_operations reiserfs_file_operations ;
extern const struct address_space_operations reiserfs_address_space_operations ;
/* fix_nodes.c */
int fix_nodes ( int n_op_mode , struct tree_balance * tb ,
struct item_head * ins_ih , const void * ) ;
void unfix_nodes ( struct tree_balance * ) ;
/* prints.c */
void __reiserfs_panic ( struct super_block * s , const char * id ,
const char * function , const char * fmt , . . . )
__attribute__ ( ( noreturn ) ) ;
# define reiserfs_panic(s, id, fmt, args...) \
__reiserfs_panic ( s , id , __func__ , fmt , # # args )
void __reiserfs_error ( struct super_block * s , const char * id ,
const char * function , const char * fmt , . . . ) ;
# define reiserfs_error(s, id, fmt, args...) \
__reiserfs_error ( s , id , __func__ , fmt , # # args )
void reiserfs_info ( struct super_block * s , const char * fmt , . . . ) ;
void reiserfs_debug ( struct super_block * s , int level , const char * fmt , . . . ) ;
void print_indirect_item ( struct buffer_head * bh , int item_num ) ;
void store_print_tb ( struct tree_balance * tb ) ;
void print_cur_tb ( char * mes ) ;
void print_de ( struct reiserfs_dir_entry * de ) ;
void print_bi ( struct buffer_info * bi , char * mes ) ;
# define PRINT_LEAF_ITEMS 1 /* print all items */
# define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
# define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
void print_block ( struct buffer_head * bh , . . . ) ;
void print_bmap ( struct super_block * s , int silent ) ;
void print_bmap_block ( int i , char * data , int size , int silent ) ;
/*void print_super_block (struct super_block * s, char * mes);*/
void print_objectid_map ( struct super_block * s ) ;
void print_block_head ( struct buffer_head * bh , char * mes ) ;
void check_leaf ( struct buffer_head * bh ) ;
void check_internal ( struct buffer_head * bh ) ;
void print_statistics ( struct super_block * s ) ;
char * reiserfs_hashname ( int code ) ;
/* lbalance.c */
int leaf_move_items ( int shift_mode , struct tree_balance * tb , int mov_num ,
int mov_bytes , struct buffer_head * Snew ) ;
int leaf_shift_left ( struct tree_balance * tb , int shift_num , int shift_bytes ) ;
int leaf_shift_right ( struct tree_balance * tb , int shift_num , int shift_bytes ) ;
void leaf_delete_items ( struct buffer_info * cur_bi , int last_first , int first ,
int del_num , int del_bytes ) ;
void leaf_insert_into_buf ( struct buffer_info * bi , int before ,
struct item_head * inserted_item_ih ,
const char * inserted_item_body , int zeros_number ) ;
void leaf_paste_in_buffer ( struct buffer_info * bi , int pasted_item_num ,
int pos_in_item , int paste_size , const char * body ,
int zeros_number ) ;
void leaf_cut_from_buffer ( struct buffer_info * bi , int cut_item_num ,
int pos_in_item , int cut_size ) ;
void leaf_paste_entries ( struct buffer_info * bi , int item_num , int before ,
int new_entry_count , struct reiserfs_de_head * new_dehs ,
const char * records , int paste_size ) ;
/* ibalance.c */
int balance_internal ( struct tree_balance * , int , int , struct item_head * ,
struct buffer_head * * ) ;
/* do_balance.c */
void do_balance_mark_leaf_dirty ( struct tree_balance * tb ,
struct buffer_head * bh , int flag ) ;
# define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
# define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
void do_balance ( struct tree_balance * tb , struct item_head * ih ,
const char * body , int flag ) ;
void reiserfs_invalidate_buffer ( struct tree_balance * tb ,
struct buffer_head * bh ) ;
int get_left_neighbor_position ( struct tree_balance * tb , int h ) ;
int get_right_neighbor_position ( struct tree_balance * tb , int h ) ;
void replace_key ( struct tree_balance * tb , struct buffer_head * , int ,
struct buffer_head * , int ) ;
void make_empty_node ( struct buffer_info * ) ;
struct buffer_head * get_FEB ( struct tree_balance * ) ;
/* bitmap.c */
/* structure contains hints for block allocator, and it is a container for
* arguments , such as node , search path , transaction_handle , etc . */
struct __reiserfs_blocknr_hint {
struct inode * inode ; /* inode passed to allocator, if we allocate unf. nodes */
sector_t block ; /* file offset, in blocks */
struct in_core_key key ;
struct treepath * path ; /* search path, used by allocator to deternine search_start by
* various ways */
struct reiserfs_transaction_handle * th ; /* transaction handle is needed to log super blocks and
* bitmap blocks changes */
b_blocknr_t beg , end ;
b_blocknr_t search_start ; /* a field used to transfer search start value (block number)
* between different block allocator procedures
* ( determine_search_start ( ) and others ) */
int prealloc_size ; /* is set in determine_prealloc_size() function, used by underlayed
* function that do actual allocation */
unsigned formatted_node : 1 ; /* the allocator uses different polices for getting disk space for
* formatted / unformatted blocks with / without preallocation */
unsigned preallocate : 1 ;
} ;
typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t ;
int reiserfs_parse_alloc_options ( struct super_block * , char * ) ;
void reiserfs_init_alloc_options ( struct super_block * s ) ;
/*
* given a directory , this will tell you what packing locality
* to use for a new object underneat it . The locality is returned
* in disk byte order ( le ) .
*/
__le32 reiserfs_choose_packing ( struct inode * dir ) ;
int reiserfs_init_bitmap_cache ( struct super_block * sb ) ;
void reiserfs_free_bitmap_cache ( struct super_block * sb ) ;
void reiserfs_cache_bitmap_metadata ( struct super_block * sb , struct buffer_head * bh , struct reiserfs_bitmap_info * info ) ;
struct buffer_head * reiserfs_read_bitmap_block ( struct super_block * sb , unsigned int bitmap ) ;
int is_reusable ( struct super_block * s , b_blocknr_t block , int bit_value ) ;
void reiserfs_free_block ( struct reiserfs_transaction_handle * th , struct inode * ,
b_blocknr_t , int for_unformatted ) ;
int reiserfs_allocate_blocknrs ( reiserfs_blocknr_hint_t * , b_blocknr_t * , int ,
int ) ;
static inline int reiserfs_new_form_blocknrs ( struct tree_balance * tb ,
b_blocknr_t * new_blocknrs ,
int amount_needed )
{
reiserfs_blocknr_hint_t hint = {
. th = tb - > transaction_handle ,
. path = tb - > tb_path ,
. inode = NULL ,
. key = tb - > key ,
. block = 0 ,
. formatted_node = 1
} ;
return reiserfs_allocate_blocknrs ( & hint , new_blocknrs , amount_needed ,
0 ) ;
}
static inline int reiserfs_new_unf_blocknrs ( struct reiserfs_transaction_handle
* th , struct inode * inode ,
b_blocknr_t * new_blocknrs ,
struct treepath * path ,
sector_t block )
{
reiserfs_blocknr_hint_t hint = {
. th = th ,
. path = path ,
. inode = inode ,
. block = block ,
. formatted_node = 0 ,
. preallocate = 0
} ;
return reiserfs_allocate_blocknrs ( & hint , new_blocknrs , 1 , 0 ) ;
}
# ifdef REISERFS_PREALLOCATE
static inline int reiserfs_new_unf_blocknrs2 ( struct reiserfs_transaction_handle
* th , struct inode * inode ,
b_blocknr_t * new_blocknrs ,
struct treepath * path ,
sector_t block )
{
reiserfs_blocknr_hint_t hint = {
. th = th ,
. path = path ,
. inode = inode ,
. block = block ,
. formatted_node = 0 ,
. preallocate = 1
} ;
return reiserfs_allocate_blocknrs ( & hint , new_blocknrs , 1 , 0 ) ;
}
void reiserfs_discard_prealloc ( struct reiserfs_transaction_handle * th ,
struct inode * inode ) ;
void reiserfs_discard_all_prealloc ( struct reiserfs_transaction_handle * th ) ;
# endif
/* hashes.c */
__u32 keyed_hash ( const signed char * msg , int len ) ;
__u32 yura_hash ( const signed char * msg , int len ) ;
__u32 r5_hash ( const signed char * msg , int len ) ;
# define reiserfs_set_le_bit __set_bit_le
# define reiserfs_test_and_set_le_bit __test_and_set_bit_le
# define reiserfs_clear_le_bit __clear_bit_le
# define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
# define reiserfs_test_le_bit test_bit_le
# define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
/* sometimes reiserfs_truncate may require to allocate few new blocks
to perform indirect2direct conversion . People probably used to
think , that truncate should work without problems on a filesystem
without free disk space . They may complain that they can not
truncate due to lack of free disk space . This spare space allows us
to not worry about it . 500 is probably too much , but it should be
absolutely safe */
# define SPARE_SPACE 500
/* prototypes from ioctl.c */
long reiserfs_ioctl ( struct file * filp , unsigned int cmd , unsigned long arg ) ;
long reiserfs_compat_ioctl ( struct file * filp ,
unsigned int cmd , unsigned long arg ) ;
int reiserfs_unpack ( struct inode * inode , struct file * filp ) ;