linux/lib/lzo/lzodefs.h

72 lines
1.8 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* lzodefs.h -- architecture, OS and compiler specific defines
*
* Copyright (C) 1996-2012 Markus F.X.J. Oberhumer <markus@oberhumer.com>
*
* The full LZO package can be found at:
* http://www.oberhumer.com/opensource/lzo/
*
* Changed for Linux kernel use by:
* Nitin Gupta <nitingupta910@gmail.com>
* Richard Purdie <rpurdie@openedhand.com>
*/
lib/lzo: implement run-length encoding Patch series "lib/lzo: run-length encoding support", v5. Following on from the previous lzo-rle patchset: https://lkml.org/lkml/2018/11/30/972 This patchset contains only the RLE patches, and should be applied on top of the non-RLE patches ( https://lkml.org/lkml/2019/2/5/366 ). Previously, some questions were raised around the RLE patches. I've done some additional benchmarking to answer these questions. In short: - RLE offers significant additional performance (data-dependent) - I didn't measure any regressions that were clearly outside the noise One concern with this patchset was around performance - specifically, measuring RLE impact separately from Matt Sealey's patches (CTZ & fast copy). I have done some additional benchmarking which I hope clarifies the benefits of each part of the patchset. Firstly, I've captured some memory via /dev/fmem from a Chromebook with many tabs open which is starting to swap, and then split this into 4178 4k pages. I've excluded the all-zero pages (as zram does), and also the no-zero pages (which won't tell us anything about RLE performance). This should give a realistic test dataset for zram. What I found was that the data is VERY bimodal: 44% of pages in this dataset contain 5% or fewer zeros, and 44% contain over 90% zeros (30% if you include the no-zero pages). This supports the idea of special-casing zeros in zram. Next, I've benchmarked four variants of lzo on these pages (on 64-bit Arm at max frequency): baseline LZO; baseline + Matt Sealey's patches (aka MS); baseline + RLE only; baseline + MS + RLE. Numbers are for weighted roundtrip throughput (the weighting reflects that zram does more compression than decompression). https://drive.google.com/file/d/1VLtLjRVxgUNuWFOxaGPwJYhl_hMQXpHe/view?usp=sharing Matt's patches help in all cases for Arm (and no effect on Intel), as expected. RLE also behaves as expected: with few zeros present, it makes no difference; above ~75%, it gives a good improvement (50 - 300 MB/s on top of the benefit from Matt's patches). Best performance is seen with both MS and RLE patches. Finally, I have benchmarked the same dataset on an x86-64 device. Here, the MS patches make no difference (as expected); RLE helps, similarly as on Arm. There were no definite regressions; allowing for observational error, 0.1% (3/4178) of cases had a regression > 1 standard deviation, of which the largest was 4.6% (1.2 standard deviations). I think this is probably within the noise. https://drive.google.com/file/d/1xCUVwmiGD0heEMx5gcVEmLBI4eLaageV/view?usp=sharing One point to note is that the graphs show RLE appears to help very slightly with no zeros present! This is because the extra code causes the clang optimiser to change code layout in a way that happens to have a significant benefit. Taking baseline LZO and adding a do-nothing line like "__builtin_prefetch(out_len);" immediately before the "goto next" has the same effect. So this is a real, but basically spurious effect - it's small enough not to upset the overall findings. This patch (of 3): When using zram, we frequently encounter long runs of zero bytes. This adds a special case which identifies runs of zeros and encodes them using run-length encoding. This is faster for both compression and decompresion. For high-entropy data which doesn't hit this case, impact is minimal. Compression ratio is within a few percent in all cases. This modifies the bitstream in a way which is backwards compatible (i.e., we can decompress old bitstreams, but old versions of lzo cannot decompress new bitstreams). Link: http://lkml.kernel.org/r/20190205155944.16007-2-dave.rodgman@arm.com Signed-off-by: Dave Rodgman <dave.rodgman@arm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com> Cc: Matt Sealey <matt.sealey@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <nitingupta910@gmail.com> Cc: Richard Purdie <rpurdie@openedhand.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Sonny Rao <sonnyrao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-08 03:30:40 +03:00
/* Version
* 0: original lzo version
* 1: lzo with support for RLE
*/
#define LZO_VERSION 1
#define COPY4(dst, src) \
put_unaligned(get_unaligned((const u32 *)(src)), (u32 *)(dst))
#if defined(CONFIG_X86_64) || defined(CONFIG_ARM64)
#define COPY8(dst, src) \
put_unaligned(get_unaligned((const u64 *)(src)), (u64 *)(dst))
#else
#define COPY8(dst, src) \
COPY4(dst, src); COPY4((dst) + 4, (src) + 4)
#endif
#if defined(__BIG_ENDIAN) && defined(__LITTLE_ENDIAN)
#error "conflicting endian definitions"
#elif defined(CONFIG_X86_64) || defined(CONFIG_ARM64)
#define LZO_USE_CTZ64 1
#define LZO_USE_CTZ32 1
lib/lzo: implement run-length encoding Patch series "lib/lzo: run-length encoding support", v5. Following on from the previous lzo-rle patchset: https://lkml.org/lkml/2018/11/30/972 This patchset contains only the RLE patches, and should be applied on top of the non-RLE patches ( https://lkml.org/lkml/2019/2/5/366 ). Previously, some questions were raised around the RLE patches. I've done some additional benchmarking to answer these questions. In short: - RLE offers significant additional performance (data-dependent) - I didn't measure any regressions that were clearly outside the noise One concern with this patchset was around performance - specifically, measuring RLE impact separately from Matt Sealey's patches (CTZ & fast copy). I have done some additional benchmarking which I hope clarifies the benefits of each part of the patchset. Firstly, I've captured some memory via /dev/fmem from a Chromebook with many tabs open which is starting to swap, and then split this into 4178 4k pages. I've excluded the all-zero pages (as zram does), and also the no-zero pages (which won't tell us anything about RLE performance). This should give a realistic test dataset for zram. What I found was that the data is VERY bimodal: 44% of pages in this dataset contain 5% or fewer zeros, and 44% contain over 90% zeros (30% if you include the no-zero pages). This supports the idea of special-casing zeros in zram. Next, I've benchmarked four variants of lzo on these pages (on 64-bit Arm at max frequency): baseline LZO; baseline + Matt Sealey's patches (aka MS); baseline + RLE only; baseline + MS + RLE. Numbers are for weighted roundtrip throughput (the weighting reflects that zram does more compression than decompression). https://drive.google.com/file/d/1VLtLjRVxgUNuWFOxaGPwJYhl_hMQXpHe/view?usp=sharing Matt's patches help in all cases for Arm (and no effect on Intel), as expected. RLE also behaves as expected: with few zeros present, it makes no difference; above ~75%, it gives a good improvement (50 - 300 MB/s on top of the benefit from Matt's patches). Best performance is seen with both MS and RLE patches. Finally, I have benchmarked the same dataset on an x86-64 device. Here, the MS patches make no difference (as expected); RLE helps, similarly as on Arm. There were no definite regressions; allowing for observational error, 0.1% (3/4178) of cases had a regression > 1 standard deviation, of which the largest was 4.6% (1.2 standard deviations). I think this is probably within the noise. https://drive.google.com/file/d/1xCUVwmiGD0heEMx5gcVEmLBI4eLaageV/view?usp=sharing One point to note is that the graphs show RLE appears to help very slightly with no zeros present! This is because the extra code causes the clang optimiser to change code layout in a way that happens to have a significant benefit. Taking baseline LZO and adding a do-nothing line like "__builtin_prefetch(out_len);" immediately before the "goto next" has the same effect. So this is a real, but basically spurious effect - it's small enough not to upset the overall findings. This patch (of 3): When using zram, we frequently encounter long runs of zero bytes. This adds a special case which identifies runs of zeros and encodes them using run-length encoding. This is faster for both compression and decompresion. For high-entropy data which doesn't hit this case, impact is minimal. Compression ratio is within a few percent in all cases. This modifies the bitstream in a way which is backwards compatible (i.e., we can decompress old bitstreams, but old versions of lzo cannot decompress new bitstreams). Link: http://lkml.kernel.org/r/20190205155944.16007-2-dave.rodgman@arm.com Signed-off-by: Dave Rodgman <dave.rodgman@arm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com> Cc: Matt Sealey <matt.sealey@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <nitingupta910@gmail.com> Cc: Richard Purdie <rpurdie@openedhand.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Sonny Rao <sonnyrao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-08 03:30:40 +03:00
#define LZO_FAST_64BIT_MEMORY_ACCESS
#elif defined(CONFIG_X86) || defined(CONFIG_PPC)
#define LZO_USE_CTZ32 1
#elif defined(CONFIG_ARM) && (__LINUX_ARM_ARCH__ >= 5)
#define LZO_USE_CTZ32 1
#endif
#define M1_MAX_OFFSET 0x0400
#define M2_MAX_OFFSET 0x0800
#define M3_MAX_OFFSET 0x4000
#define M4_MAX_OFFSET_V0 0xbfff
#define M4_MAX_OFFSET_V1 0xbffe
#define M1_MIN_LEN 2
#define M1_MAX_LEN 2
#define M2_MIN_LEN 3
#define M2_MAX_LEN 8
#define M3_MIN_LEN 3
#define M3_MAX_LEN 33
#define M4_MIN_LEN 3
#define M4_MAX_LEN 9
#define M1_MARKER 0
#define M2_MARKER 64
#define M3_MARKER 32
#define M4_MARKER 16
lib/lzo: implement run-length encoding Patch series "lib/lzo: run-length encoding support", v5. Following on from the previous lzo-rle patchset: https://lkml.org/lkml/2018/11/30/972 This patchset contains only the RLE patches, and should be applied on top of the non-RLE patches ( https://lkml.org/lkml/2019/2/5/366 ). Previously, some questions were raised around the RLE patches. I've done some additional benchmarking to answer these questions. In short: - RLE offers significant additional performance (data-dependent) - I didn't measure any regressions that were clearly outside the noise One concern with this patchset was around performance - specifically, measuring RLE impact separately from Matt Sealey's patches (CTZ & fast copy). I have done some additional benchmarking which I hope clarifies the benefits of each part of the patchset. Firstly, I've captured some memory via /dev/fmem from a Chromebook with many tabs open which is starting to swap, and then split this into 4178 4k pages. I've excluded the all-zero pages (as zram does), and also the no-zero pages (which won't tell us anything about RLE performance). This should give a realistic test dataset for zram. What I found was that the data is VERY bimodal: 44% of pages in this dataset contain 5% or fewer zeros, and 44% contain over 90% zeros (30% if you include the no-zero pages). This supports the idea of special-casing zeros in zram. Next, I've benchmarked four variants of lzo on these pages (on 64-bit Arm at max frequency): baseline LZO; baseline + Matt Sealey's patches (aka MS); baseline + RLE only; baseline + MS + RLE. Numbers are for weighted roundtrip throughput (the weighting reflects that zram does more compression than decompression). https://drive.google.com/file/d/1VLtLjRVxgUNuWFOxaGPwJYhl_hMQXpHe/view?usp=sharing Matt's patches help in all cases for Arm (and no effect on Intel), as expected. RLE also behaves as expected: with few zeros present, it makes no difference; above ~75%, it gives a good improvement (50 - 300 MB/s on top of the benefit from Matt's patches). Best performance is seen with both MS and RLE patches. Finally, I have benchmarked the same dataset on an x86-64 device. Here, the MS patches make no difference (as expected); RLE helps, similarly as on Arm. There were no definite regressions; allowing for observational error, 0.1% (3/4178) of cases had a regression > 1 standard deviation, of which the largest was 4.6% (1.2 standard deviations). I think this is probably within the noise. https://drive.google.com/file/d/1xCUVwmiGD0heEMx5gcVEmLBI4eLaageV/view?usp=sharing One point to note is that the graphs show RLE appears to help very slightly with no zeros present! This is because the extra code causes the clang optimiser to change code layout in a way that happens to have a significant benefit. Taking baseline LZO and adding a do-nothing line like "__builtin_prefetch(out_len);" immediately before the "goto next" has the same effect. So this is a real, but basically spurious effect - it's small enough not to upset the overall findings. This patch (of 3): When using zram, we frequently encounter long runs of zero bytes. This adds a special case which identifies runs of zeros and encodes them using run-length encoding. This is faster for both compression and decompresion. For high-entropy data which doesn't hit this case, impact is minimal. Compression ratio is within a few percent in all cases. This modifies the bitstream in a way which is backwards compatible (i.e., we can decompress old bitstreams, but old versions of lzo cannot decompress new bitstreams). Link: http://lkml.kernel.org/r/20190205155944.16007-2-dave.rodgman@arm.com Signed-off-by: Dave Rodgman <dave.rodgman@arm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Markus F.X.J. Oberhumer <markus@oberhumer.com> Cc: Matt Sealey <matt.sealey@arm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <nitingupta910@gmail.com> Cc: Richard Purdie <rpurdie@openedhand.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Sonny Rao <sonnyrao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-08 03:30:40 +03:00
#define MIN_ZERO_RUN_LENGTH 4
#define MAX_ZERO_RUN_LENGTH (2047 + MIN_ZERO_RUN_LENGTH)
#define lzo_dict_t unsigned short
#define D_BITS 13
#define D_SIZE (1u << D_BITS)
#define D_MASK (D_SIZE - 1)
#define D_HIGH ((D_MASK >> 1) + 1)