linux/net/sched/cls_api.c

3742 lines
91 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/cls_api.c Packet classifier API.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* Changes:
*
* Eduardo J. Blanco <ejbs@netlabs.com.uy> :990222: kmod support
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/kmod.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/idr.h>
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
#include <linux/jhash.h>
#include <linux/rculist.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_vlan.h>
#include <net/tc_act/tc_tunnel_key.h>
#include <net/tc_act/tc_csum.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_police.h>
#include <net/tc_act/tc_sample.h>
#include <net/tc_act/tc_skbedit.h>
net/sched: Introduce action ct Allow sending a packet to conntrack module for connection tracking. The packet will be marked with conntrack connection's state, and any metadata such as conntrack mark and label. This state metadata can later be matched against with tc classifers, for example with the flower classifier as below. In addition to committing new connections the user can optionally specific a zone to track within, set a mark/label and configure nat with an address range and port range. Usage is as follows: $ tc qdisc add dev ens1f0_0 ingress $ tc qdisc add dev ens1f0_1 ingress $ tc filter add dev ens1f0_0 ingress \ prio 1 chain 0 proto ip \ flower ip_proto tcp ct_state -trk \ action ct zone 2 pipe \ action goto chain 2 $ tc filter add dev ens1f0_0 ingress \ prio 1 chain 2 proto ip \ flower ct_state +trk+new \ action ct zone 2 commit mark 0xbb nat src addr 5.5.5.7 pipe \ action mirred egress redirect dev ens1f0_1 $ tc filter add dev ens1f0_0 ingress \ prio 1 chain 2 proto ip \ flower ct_zone 2 ct_mark 0xbb ct_state +trk+est \ action ct nat pipe \ action mirred egress redirect dev ens1f0_1 $ tc filter add dev ens1f0_1 ingress \ prio 1 chain 0 proto ip \ flower ip_proto tcp ct_state -trk \ action ct zone 2 pipe \ action goto chain 1 $ tc filter add dev ens1f0_1 ingress \ prio 1 chain 1 proto ip \ flower ct_zone 2 ct_mark 0xbb ct_state +trk+est \ action ct nat pipe \ action mirred egress redirect dev ens1f0_0 Signed-off-by: Paul Blakey <paulb@mellanox.com> Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: Yossi Kuperman <yossiku@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Changelog: V5->V6: Added CONFIG_NF_DEFRAG_IPV6 in handle fragments ipv6 case V4->V5: Reordered nf_conntrack_put() in tcf_ct_skb_nfct_cached() V3->V4: Added strict_start_type for act_ct policy V2->V3: Fixed david's comments: Removed extra newline after rcu in tcf_ct_params , and indent of break in act_ct.c V1->V2: Fixed parsing of ranges TCA_CT_NAT_IPV6_MAX as 'else' case overwritten ipv4 max Refactored NAT_PORT_MIN_MAX range handling as well Added ipv4/ipv6 defragmentation Removed extra skb pull push of nw offset in exectute nat Refactored tcf_ct_skb_network_trim after pull Removed TCA_ACT_CT define Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-09 10:30:48 +03:00
#include <net/tc_act/tc_ct.h>
#include <net/tc_act/tc_mpls.h>
#include <net/tc_act/tc_gate.h>
#include <net/flow_offload.h>
extern const struct nla_policy rtm_tca_policy[TCA_MAX + 1];
/* The list of all installed classifier types */
static LIST_HEAD(tcf_proto_base);
/* Protects list of registered TC modules. It is pure SMP lock. */
static DEFINE_RWLOCK(cls_mod_lock);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
static u32 destroy_obj_hashfn(const struct tcf_proto *tp)
{
return jhash_3words(tp->chain->index, tp->prio,
(__force __u32)tp->protocol, 0);
}
static void tcf_proto_signal_destroying(struct tcf_chain *chain,
struct tcf_proto *tp)
{
struct tcf_block *block = chain->block;
mutex_lock(&block->proto_destroy_lock);
hash_add_rcu(block->proto_destroy_ht, &tp->destroy_ht_node,
destroy_obj_hashfn(tp));
mutex_unlock(&block->proto_destroy_lock);
}
static bool tcf_proto_cmp(const struct tcf_proto *tp1,
const struct tcf_proto *tp2)
{
return tp1->chain->index == tp2->chain->index &&
tp1->prio == tp2->prio &&
tp1->protocol == tp2->protocol;
}
static bool tcf_proto_exists_destroying(struct tcf_chain *chain,
struct tcf_proto *tp)
{
u32 hash = destroy_obj_hashfn(tp);
struct tcf_proto *iter;
bool found = false;
rcu_read_lock();
hash_for_each_possible_rcu(chain->block->proto_destroy_ht, iter,
destroy_ht_node, hash) {
if (tcf_proto_cmp(tp, iter)) {
found = true;
break;
}
}
rcu_read_unlock();
return found;
}
static void
tcf_proto_signal_destroyed(struct tcf_chain *chain, struct tcf_proto *tp)
{
struct tcf_block *block = chain->block;
mutex_lock(&block->proto_destroy_lock);
if (hash_hashed(&tp->destroy_ht_node))
hash_del_rcu(&tp->destroy_ht_node);
mutex_unlock(&block->proto_destroy_lock);
}
/* Find classifier type by string name */
static const struct tcf_proto_ops *__tcf_proto_lookup_ops(const char *kind)
{
const struct tcf_proto_ops *t, *res = NULL;
if (kind) {
read_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head) {
if (strcmp(kind, t->kind) == 0) {
if (try_module_get(t->owner))
res = t;
break;
}
}
read_unlock(&cls_mod_lock);
}
return res;
}
static const struct tcf_proto_ops *
tcf_proto_lookup_ops(const char *kind, bool rtnl_held,
struct netlink_ext_ack *extack)
{
const struct tcf_proto_ops *ops;
ops = __tcf_proto_lookup_ops(kind);
if (ops)
return ops;
#ifdef CONFIG_MODULES
if (rtnl_held)
rtnl_unlock();
request_module("cls_%s", kind);
if (rtnl_held)
rtnl_lock();
ops = __tcf_proto_lookup_ops(kind);
/* We dropped the RTNL semaphore in order to perform
* the module load. So, even if we succeeded in loading
* the module we have to replay the request. We indicate
* this using -EAGAIN.
*/
if (ops) {
module_put(ops->owner);
return ERR_PTR(-EAGAIN);
}
#endif
NL_SET_ERR_MSG(extack, "TC classifier not found");
return ERR_PTR(-ENOENT);
}
/* Register(unregister) new classifier type */
int register_tcf_proto_ops(struct tcf_proto_ops *ops)
{
struct tcf_proto_ops *t;
int rc = -EEXIST;
write_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head)
if (!strcmp(ops->kind, t->kind))
goto out;
list_add_tail(&ops->head, &tcf_proto_base);
rc = 0;
out:
write_unlock(&cls_mod_lock);
return rc;
}
EXPORT_SYMBOL(register_tcf_proto_ops);
static struct workqueue_struct *tc_filter_wq;
int unregister_tcf_proto_ops(struct tcf_proto_ops *ops)
{
struct tcf_proto_ops *t;
int rc = -ENOENT;
net: sched: fix call_rcu() race on classifier module unloads Vijay reported that a loop as simple as ... while true; do tc qdisc add dev foo root handle 1: prio tc filter add dev foo parent 1: u32 match u32 0 0 flowid 1 tc qdisc del dev foo root rmmod cls_u32 done ... will panic the kernel. Moreover, he bisected the change apparently introducing it to 78fd1d0ab072 ("netlink: Re-add locking to netlink_lookup() and seq walker"). The removal of synchronize_net() from the netlink socket triggering the qdisc to be removed, seems to have uncovered an RCU resp. module reference count race from the tc API. Given that RCU conversion was done after e341694e3eb5 ("netlink: Convert netlink_lookup() to use RCU protected hash table") which added the synchronize_net() originally, occasion of hitting the bug was less likely (not impossible though): When qdiscs that i) support attaching classifiers and, ii) have at least one of them attached, get deleted, they invoke tcf_destroy_chain(), and thus call into ->destroy() handler from a classifier module. After RCU conversion, all classifier that have an internal prio list, unlink them and initiate freeing via call_rcu() deferral. Meanhile, tcf_destroy() releases already reference to the tp->ops->owner module before the queued RCU callback handler has been invoked. Subsequent rmmod on the classifier module is then not prevented since all module references are already dropped. By the time, the kernel invokes the RCU callback handler from the module, that function address is then invalid. One way to fix it would be to add an rcu_barrier() to unregister_tcf_proto_ops() to wait for all pending call_rcu()s to complete. synchronize_rcu() is not appropriate as under heavy RCU callback load, registered call_rcu()s could be deferred longer than a grace period. In case we don't have any pending call_rcu()s, the barrier is allowed to return immediately. Since we came here via unregister_tcf_proto_ops(), there are no users of a given classifier anymore. Further nested call_rcu()s pointing into the module space are not being done anywhere. Only cls_bpf_delete_prog() may schedule a work item, to unlock pages eventually, but that is not in the range/context of cls_bpf anymore. Fixes: 25d8c0d55f24 ("net: rcu-ify tcf_proto") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Reported-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: John Fastabend <john.r.fastabend@intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Thomas Graf <tgraf@suug.ch> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-20 18:13:33 +03:00
/* Wait for outstanding call_rcu()s, if any, from a
* tcf_proto_ops's destroy() handler.
*/
rcu_barrier();
flush_workqueue(tc_filter_wq);
net: sched: fix call_rcu() race on classifier module unloads Vijay reported that a loop as simple as ... while true; do tc qdisc add dev foo root handle 1: prio tc filter add dev foo parent 1: u32 match u32 0 0 flowid 1 tc qdisc del dev foo root rmmod cls_u32 done ... will panic the kernel. Moreover, he bisected the change apparently introducing it to 78fd1d0ab072 ("netlink: Re-add locking to netlink_lookup() and seq walker"). The removal of synchronize_net() from the netlink socket triggering the qdisc to be removed, seems to have uncovered an RCU resp. module reference count race from the tc API. Given that RCU conversion was done after e341694e3eb5 ("netlink: Convert netlink_lookup() to use RCU protected hash table") which added the synchronize_net() originally, occasion of hitting the bug was less likely (not impossible though): When qdiscs that i) support attaching classifiers and, ii) have at least one of them attached, get deleted, they invoke tcf_destroy_chain(), and thus call into ->destroy() handler from a classifier module. After RCU conversion, all classifier that have an internal prio list, unlink them and initiate freeing via call_rcu() deferral. Meanhile, tcf_destroy() releases already reference to the tp->ops->owner module before the queued RCU callback handler has been invoked. Subsequent rmmod on the classifier module is then not prevented since all module references are already dropped. By the time, the kernel invokes the RCU callback handler from the module, that function address is then invalid. One way to fix it would be to add an rcu_barrier() to unregister_tcf_proto_ops() to wait for all pending call_rcu()s to complete. synchronize_rcu() is not appropriate as under heavy RCU callback load, registered call_rcu()s could be deferred longer than a grace period. In case we don't have any pending call_rcu()s, the barrier is allowed to return immediately. Since we came here via unregister_tcf_proto_ops(), there are no users of a given classifier anymore. Further nested call_rcu()s pointing into the module space are not being done anywhere. Only cls_bpf_delete_prog() may schedule a work item, to unlock pages eventually, but that is not in the range/context of cls_bpf anymore. Fixes: 25d8c0d55f24 ("net: rcu-ify tcf_proto") Fixes: 9888faefe132 ("net: sched: cls_basic use RCU") Reported-by: Vijay Subramanian <subramanian.vijay@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: John Fastabend <john.r.fastabend@intel.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Thomas Graf <tgraf@suug.ch> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Tested-by: Vijay Subramanian <subramanian.vijay@gmail.com> Acked-by: Alexei Starovoitov <ast@plumgrid.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-20 18:13:33 +03:00
write_lock(&cls_mod_lock);
list_for_each_entry(t, &tcf_proto_base, head) {
if (t == ops) {
list_del(&t->head);
rc = 0;
break;
}
}
write_unlock(&cls_mod_lock);
return rc;
}
EXPORT_SYMBOL(unregister_tcf_proto_ops);
bool tcf_queue_work(struct rcu_work *rwork, work_func_t func)
{
INIT_RCU_WORK(rwork, func);
return queue_rcu_work(tc_filter_wq, rwork);
}
EXPORT_SYMBOL(tcf_queue_work);
/* Select new prio value from the range, managed by kernel. */
static inline u32 tcf_auto_prio(struct tcf_proto *tp)
{
u32 first = TC_H_MAKE(0xC0000000U, 0U);
if (tp)
first = tp->prio - 1;
return TC_H_MAJ(first);
}
static bool tcf_proto_check_kind(struct nlattr *kind, char *name)
{
if (kind)
return nla_strscpy(name, kind, IFNAMSIZ) < 0;
memset(name, 0, IFNAMSIZ);
return false;
}
static bool tcf_proto_is_unlocked(const char *kind)
{
const struct tcf_proto_ops *ops;
bool ret;
if (strlen(kind) == 0)
return false;
ops = tcf_proto_lookup_ops(kind, false, NULL);
/* On error return false to take rtnl lock. Proto lookup/create
* functions will perform lookup again and properly handle errors.
*/
if (IS_ERR(ops))
return false;
ret = !!(ops->flags & TCF_PROTO_OPS_DOIT_UNLOCKED);
module_put(ops->owner);
return ret;
}
static struct tcf_proto *tcf_proto_create(const char *kind, u32 protocol,
u32 prio, struct tcf_chain *chain,
bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcf_proto *tp;
int err;
tp = kzalloc(sizeof(*tp), GFP_KERNEL);
if (!tp)
return ERR_PTR(-ENOBUFS);
tp->ops = tcf_proto_lookup_ops(kind, rtnl_held, extack);
if (IS_ERR(tp->ops)) {
err = PTR_ERR(tp->ops);
goto errout;
}
tp->classify = tp->ops->classify;
tp->protocol = protocol;
tp->prio = prio;
tp->chain = chain;
spin_lock_init(&tp->lock);
refcount_set(&tp->refcnt, 1);
err = tp->ops->init(tp);
if (err) {
module_put(tp->ops->owner);
goto errout;
}
return tp;
errout:
kfree(tp);
return ERR_PTR(err);
}
static void tcf_proto_get(struct tcf_proto *tp)
{
refcount_inc(&tp->refcnt);
}
static void tcf_chain_put(struct tcf_chain *chain);
static void tcf_proto_destroy(struct tcf_proto *tp, bool rtnl_held,
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
bool sig_destroy, struct netlink_ext_ack *extack)
{
tp->ops->destroy(tp, rtnl_held, extack);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
if (sig_destroy)
tcf_proto_signal_destroyed(tp->chain, tp);
tcf_chain_put(tp->chain);
module_put(tp->ops->owner);
kfree_rcu(tp, rcu);
}
static void tcf_proto_put(struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
if (refcount_dec_and_test(&tp->refcnt))
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
tcf_proto_destroy(tp, rtnl_held, true, extack);
}
net/sched: add delete_empty() to filters and use it in cls_flower Revert "net/sched: cls_u32: fix refcount leak in the error path of u32_change()", and fix the u32 refcount leak in a more generic way that preserves the semantic of rule dumping. On tc filters that don't support lockless insertion/removal, there is no need to guard against concurrent insertion when a removal is in progress. Therefore, for most of them we can avoid a full walk() when deleting, and just decrease the refcount, like it was done on older Linux kernels. This fixes situations where walk() was wrongly detecting a non-empty filter, like it happened with cls_u32 in the error path of change(), thus leading to failures in the following tdc selftests: 6aa7: (filter, u32) Add/Replace u32 with source match and invalid indev 6658: (filter, u32) Add/Replace u32 with custom hash table and invalid handle 74c2: (filter, u32) Add/Replace u32 filter with invalid hash table id On cls_flower, and on (future) lockless filters, this check is necessary: move all the check_empty() logic in a callback so that each filter can have its own implementation. For cls_flower, it's sufficient to check if no IDRs have been allocated. This reverts commit 275c44aa194b7159d1191817b20e076f55f0e620. Changes since v1: - document the need for delete_empty() when TCF_PROTO_OPS_DOIT_UNLOCKED is used, thanks to Vlad Buslov - implement delete_empty() without doing fl_walk(), thanks to Vlad Buslov - squash revert and new fix in a single patch, to be nice with bisect tests that run tdc on u32 filter, thanks to Dave Miller Fixes: 275c44aa194b ("net/sched: cls_u32: fix refcount leak in the error path of u32_change()") Fixes: 6676d5e416ee ("net: sched: set dedicated tcf_walker flag when tp is empty") Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Suggested-by: Vlad Buslov <vladbu@mellanox.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Reviewed-by: Vlad Buslov <vladbu@mellanox.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-28 18:36:58 +03:00
static bool tcf_proto_check_delete(struct tcf_proto *tp)
{
net/sched: add delete_empty() to filters and use it in cls_flower Revert "net/sched: cls_u32: fix refcount leak in the error path of u32_change()", and fix the u32 refcount leak in a more generic way that preserves the semantic of rule dumping. On tc filters that don't support lockless insertion/removal, there is no need to guard against concurrent insertion when a removal is in progress. Therefore, for most of them we can avoid a full walk() when deleting, and just decrease the refcount, like it was done on older Linux kernels. This fixes situations where walk() was wrongly detecting a non-empty filter, like it happened with cls_u32 in the error path of change(), thus leading to failures in the following tdc selftests: 6aa7: (filter, u32) Add/Replace u32 with source match and invalid indev 6658: (filter, u32) Add/Replace u32 with custom hash table and invalid handle 74c2: (filter, u32) Add/Replace u32 filter with invalid hash table id On cls_flower, and on (future) lockless filters, this check is necessary: move all the check_empty() logic in a callback so that each filter can have its own implementation. For cls_flower, it's sufficient to check if no IDRs have been allocated. This reverts commit 275c44aa194b7159d1191817b20e076f55f0e620. Changes since v1: - document the need for delete_empty() when TCF_PROTO_OPS_DOIT_UNLOCKED is used, thanks to Vlad Buslov - implement delete_empty() without doing fl_walk(), thanks to Vlad Buslov - squash revert and new fix in a single patch, to be nice with bisect tests that run tdc on u32 filter, thanks to Dave Miller Fixes: 275c44aa194b ("net/sched: cls_u32: fix refcount leak in the error path of u32_change()") Fixes: 6676d5e416ee ("net: sched: set dedicated tcf_walker flag when tp is empty") Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Suggested-by: Vlad Buslov <vladbu@mellanox.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Reviewed-by: Vlad Buslov <vladbu@mellanox.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-28 18:36:58 +03:00
if (tp->ops->delete_empty)
return tp->ops->delete_empty(tp);
net/sched: add delete_empty() to filters and use it in cls_flower Revert "net/sched: cls_u32: fix refcount leak in the error path of u32_change()", and fix the u32 refcount leak in a more generic way that preserves the semantic of rule dumping. On tc filters that don't support lockless insertion/removal, there is no need to guard against concurrent insertion when a removal is in progress. Therefore, for most of them we can avoid a full walk() when deleting, and just decrease the refcount, like it was done on older Linux kernels. This fixes situations where walk() was wrongly detecting a non-empty filter, like it happened with cls_u32 in the error path of change(), thus leading to failures in the following tdc selftests: 6aa7: (filter, u32) Add/Replace u32 with source match and invalid indev 6658: (filter, u32) Add/Replace u32 with custom hash table and invalid handle 74c2: (filter, u32) Add/Replace u32 filter with invalid hash table id On cls_flower, and on (future) lockless filters, this check is necessary: move all the check_empty() logic in a callback so that each filter can have its own implementation. For cls_flower, it's sufficient to check if no IDRs have been allocated. This reverts commit 275c44aa194b7159d1191817b20e076f55f0e620. Changes since v1: - document the need for delete_empty() when TCF_PROTO_OPS_DOIT_UNLOCKED is used, thanks to Vlad Buslov - implement delete_empty() without doing fl_walk(), thanks to Vlad Buslov - squash revert and new fix in a single patch, to be nice with bisect tests that run tdc on u32 filter, thanks to Dave Miller Fixes: 275c44aa194b ("net/sched: cls_u32: fix refcount leak in the error path of u32_change()") Fixes: 6676d5e416ee ("net: sched: set dedicated tcf_walker flag when tp is empty") Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Suggested-by: Vlad Buslov <vladbu@mellanox.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Reviewed-by: Vlad Buslov <vladbu@mellanox.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-28 18:36:58 +03:00
tp->deleting = true;
return tp->deleting;
}
static void tcf_proto_mark_delete(struct tcf_proto *tp)
{
spin_lock(&tp->lock);
tp->deleting = true;
spin_unlock(&tp->lock);
}
static bool tcf_proto_is_deleting(struct tcf_proto *tp)
{
bool deleting;
spin_lock(&tp->lock);
deleting = tp->deleting;
spin_unlock(&tp->lock);
return deleting;
}
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
#define ASSERT_BLOCK_LOCKED(block) \
lockdep_assert_held(&(block)->lock)
struct tcf_filter_chain_list_item {
struct list_head list;
tcf_chain_head_change_t *chain_head_change;
void *chain_head_change_priv;
};
static struct tcf_chain *tcf_chain_create(struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
ASSERT_BLOCK_LOCKED(block);
chain = kzalloc(sizeof(*chain), GFP_KERNEL);
if (!chain)
return NULL;
list_add_tail_rcu(&chain->list, &block->chain_list);
mutex_init(&chain->filter_chain_lock);
chain->block = block;
chain->index = chain_index;
chain->refcnt = 1;
if (!chain->index)
block->chain0.chain = chain;
return chain;
}
static void tcf_chain_head_change_item(struct tcf_filter_chain_list_item *item,
struct tcf_proto *tp_head)
{
if (item->chain_head_change)
item->chain_head_change(tp_head, item->chain_head_change_priv);
}
static void tcf_chain0_head_change(struct tcf_chain *chain,
struct tcf_proto *tp_head)
{
struct tcf_filter_chain_list_item *item;
struct tcf_block *block = chain->block;
if (chain->index)
return;
mutex_lock(&block->lock);
list_for_each_entry(item, &block->chain0.filter_chain_list, list)
tcf_chain_head_change_item(item, tp_head);
mutex_unlock(&block->lock);
}
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
/* Returns true if block can be safely freed. */
static bool tcf_chain_detach(struct tcf_chain *chain)
{
struct tcf_block *block = chain->block;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
ASSERT_BLOCK_LOCKED(block);
list_del_rcu(&chain->list);
if (!chain->index)
block->chain0.chain = NULL;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
if (list_empty(&block->chain_list) &&
refcount_read(&block->refcnt) == 0)
return true;
return false;
}
static void tcf_block_destroy(struct tcf_block *block)
{
mutex_destroy(&block->lock);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
mutex_destroy(&block->proto_destroy_lock);
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
kfree_rcu(block, rcu);
}
static void tcf_chain_destroy(struct tcf_chain *chain, bool free_block)
{
struct tcf_block *block = chain->block;
mutex_destroy(&chain->filter_chain_lock);
kfree_rcu(chain, rcu);
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
if (free_block)
tcf_block_destroy(block);
}
static void tcf_chain_hold(struct tcf_chain *chain)
{
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
ASSERT_BLOCK_LOCKED(chain->block);
++chain->refcnt;
}
static bool tcf_chain_held_by_acts_only(struct tcf_chain *chain)
{
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
ASSERT_BLOCK_LOCKED(chain->block);
/* In case all the references are action references, this
* chain should not be shown to the user.
*/
return chain->refcnt == chain->action_refcnt;
}
static struct tcf_chain *tcf_chain_lookup(struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
ASSERT_BLOCK_LOCKED(block);
list_for_each_entry(chain, &block->chain_list, list) {
if (chain->index == chain_index)
return chain;
}
return NULL;
}
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
static struct tcf_chain *tcf_chain_lookup_rcu(const struct tcf_block *block,
u32 chain_index)
{
struct tcf_chain *chain;
list_for_each_entry_rcu(chain, &block->chain_list, list) {
if (chain->index == chain_index)
return chain;
}
return NULL;
}
#endif
static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb,
u32 seq, u16 flags, int event, bool unicast);
static struct tcf_chain *__tcf_chain_get(struct tcf_block *block,
u32 chain_index, bool create,
bool by_act)
{
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
struct tcf_chain *chain = NULL;
bool is_first_reference;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
mutex_lock(&block->lock);
chain = tcf_chain_lookup(block, chain_index);
if (chain) {
tcf_chain_hold(chain);
} else {
if (!create)
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
goto errout;
chain = tcf_chain_create(block, chain_index);
if (!chain)
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
goto errout;
}
if (by_act)
++chain->action_refcnt;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
is_first_reference = chain->refcnt - chain->action_refcnt == 1;
mutex_unlock(&block->lock);
/* Send notification only in case we got the first
* non-action reference. Until then, the chain acts only as
* a placeholder for actions pointing to it and user ought
* not know about them.
*/
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
if (is_first_reference && !by_act)
tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL,
RTM_NEWCHAIN, false);
return chain;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
errout:
mutex_unlock(&block->lock);
return chain;
}
static struct tcf_chain *tcf_chain_get(struct tcf_block *block, u32 chain_index,
bool create)
{
return __tcf_chain_get(block, chain_index, create, false);
}
struct tcf_chain *tcf_chain_get_by_act(struct tcf_block *block, u32 chain_index)
{
return __tcf_chain_get(block, chain_index, true, true);
}
EXPORT_SYMBOL(tcf_chain_get_by_act);
static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv);
static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct tcf_block *block, struct sk_buff *oskb,
u32 seq, u16 flags, bool unicast);
static void __tcf_chain_put(struct tcf_chain *chain, bool by_act,
bool explicitly_created)
{
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
struct tcf_block *block = chain->block;
const struct tcf_proto_ops *tmplt_ops;
bool free_block = false;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
unsigned int refcnt;
void *tmplt_priv;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
mutex_lock(&block->lock);
if (explicitly_created) {
if (!chain->explicitly_created) {
mutex_unlock(&block->lock);
return;
}
chain->explicitly_created = false;
}
if (by_act)
chain->action_refcnt--;
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
/* tc_chain_notify_delete can't be called while holding block lock.
* However, when block is unlocked chain can be changed concurrently, so
* save these to temporary variables.
*/
refcnt = --chain->refcnt;
tmplt_ops = chain->tmplt_ops;
tmplt_priv = chain->tmplt_priv;
/* The last dropped non-action reference will trigger notification. */
if (refcnt - chain->action_refcnt == 0 && !by_act) {
tc_chain_notify_delete(tmplt_ops, tmplt_priv, chain->index,
block, NULL, 0, 0, false);
/* Last reference to chain, no need to lock. */
chain->flushing = false;
}
if (refcnt == 0)
free_block = tcf_chain_detach(chain);
mutex_unlock(&block->lock);
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
if (refcnt == 0) {
tc_chain_tmplt_del(tmplt_ops, tmplt_priv);
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
tcf_chain_destroy(chain, free_block);
}
}
static void tcf_chain_put(struct tcf_chain *chain)
{
__tcf_chain_put(chain, false, false);
}
void tcf_chain_put_by_act(struct tcf_chain *chain)
{
__tcf_chain_put(chain, true, false);
}
EXPORT_SYMBOL(tcf_chain_put_by_act);
static void tcf_chain_put_explicitly_created(struct tcf_chain *chain)
{
__tcf_chain_put(chain, false, true);
}
static void tcf_chain_flush(struct tcf_chain *chain, bool rtnl_held)
{
struct tcf_proto *tp, *tp_next;
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_dereference(chain->filter_chain, chain);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
while (tp) {
tp_next = rcu_dereference_protected(tp->next, 1);
tcf_proto_signal_destroying(chain, tp);
tp = tp_next;
}
tp = tcf_chain_dereference(chain->filter_chain, chain);
RCU_INIT_POINTER(chain->filter_chain, NULL);
tcf_chain0_head_change(chain, NULL);
chain->flushing = true;
mutex_unlock(&chain->filter_chain_lock);
while (tp) {
tp_next = rcu_dereference_protected(tp->next, 1);
tcf_proto_put(tp, rtnl_held, NULL);
tp = tp_next;
}
}
static int tcf_block_setup(struct tcf_block *block,
struct flow_block_offload *bo);
static void tcf_block_offload_init(struct flow_block_offload *bo,
struct net_device *dev, struct Qdisc *sch,
enum flow_block_command command,
enum flow_block_binder_type binder_type,
struct flow_block *flow_block,
bool shared, struct netlink_ext_ack *extack)
{
bo->net = dev_net(dev);
bo->command = command;
bo->binder_type = binder_type;
bo->block = flow_block;
bo->block_shared = shared;
bo->extack = extack;
bo->sch = sch;
bo->cb_list_head = &flow_block->cb_list;
INIT_LIST_HEAD(&bo->cb_list);
}
static void tcf_block_unbind(struct tcf_block *block,
struct flow_block_offload *bo);
static void tc_block_indr_cleanup(struct flow_block_cb *block_cb)
{
struct tcf_block *block = block_cb->indr.data;
struct net_device *dev = block_cb->indr.dev;
struct Qdisc *sch = block_cb->indr.sch;
struct netlink_ext_ack extack = {};
struct flow_block_offload bo = {};
tcf_block_offload_init(&bo, dev, sch, FLOW_BLOCK_UNBIND,
block_cb->indr.binder_type,
&block->flow_block, tcf_block_shared(block),
&extack);
net: protect tcf_block_unbind with block lock The tcf_block_unbind() expects that the caller will take block->cb_lock before calling it, however the code took RTNL lock and dropped cb_lock instead. This causes to the following kernel panic. WARNING: CPU: 1 PID: 13524 at net/sched/cls_api.c:1488 tcf_block_unbind+0x2db/0x420 Modules linked in: mlx5_ib mlx5_core mlxfw ptp pps_core act_mirred act_tunnel_key cls_flower vxlan ip6_udp_tunnel udp_tunnel dummy sch_ingress openvswitch nsh xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad ib_ipoib rdma_cm iw_cm ib_cm ib_uverbs ib_core overlay [last unloaded: mlxfw] CPU: 1 PID: 13524 Comm: test-ecmp-add-v Tainted: G W 5.9.0+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:tcf_block_unbind+0x2db/0x420 Code: ff 48 83 c4 40 5b 5d 41 5c 41 5d 41 5e 41 5f c3 49 8d bc 24 30 01 00 00 be ff ff ff ff e8 7d 7f 70 00 85 c0 0f 85 7b fd ff ff <0f> 0b e9 74 fd ff ff 48 c7 c7 dc 6a 24 84 e8 02 ec fe fe e9 55 fd RSP: 0018:ffff888117d17968 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88812f713c00 RCX: 1ffffffff0848d5b RDX: 0000000000000001 RSI: ffff88814fbc8130 RDI: ffff888107f2b878 RBP: 1ffff11022fa2f3f R08: 0000000000000000 R09: ffffffff84115a87 R10: fffffbfff0822b50 R11: ffff888107f2b898 R12: ffff88814fbc8000 R13: ffff88812f713c10 R14: ffff888117d17a38 R15: ffff88814fbc80c0 FS: 00007f6593d36740(0000) GS:ffff8882a4f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005607a00758f8 CR3: 0000000131aea006 CR4: 0000000000170ea0 Call Trace: tc_block_indr_cleanup+0x3e0/0x5a0 ? tcf_block_unbind+0x420/0x420 ? __mutex_unlock_slowpath+0xe7/0x610 flow_indr_dev_unregister+0x5e2/0x930 ? mlx5e_restore_tunnel+0xdf0/0xdf0 [mlx5_core] ? mlx5e_restore_tunnel+0xdf0/0xdf0 [mlx5_core] ? flow_indr_block_cb_alloc+0x3c0/0x3c0 ? mlx5_db_free+0x37c/0x4b0 [mlx5_core] mlx5e_cleanup_rep_tx+0x8b/0xc0 [mlx5_core] mlx5e_detach_netdev+0xe5/0x120 [mlx5_core] mlx5e_vport_rep_unload+0x155/0x260 [mlx5_core] esw_offloads_disable+0x227/0x2b0 [mlx5_core] mlx5_eswitch_disable_locked.cold+0x38e/0x699 [mlx5_core] mlx5_eswitch_disable+0x94/0xf0 [mlx5_core] mlx5_device_disable_sriov+0x183/0x1f0 [mlx5_core] mlx5_core_sriov_configure+0xfd/0x230 [mlx5_core] sriov_numvfs_store+0x261/0x2f0 ? sriov_drivers_autoprobe_store+0x110/0x110 ? sysfs_file_ops+0x170/0x170 ? sysfs_file_ops+0x117/0x170 ? sysfs_file_ops+0x170/0x170 kernfs_fop_write+0x1ff/0x3f0 ? rcu_read_lock_any_held+0x6e/0x90 vfs_write+0x1f3/0x620 ksys_write+0xf9/0x1d0 ? __x64_sys_read+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3f0 ? syscall_enter_from_user_mode+0x1d/0x50 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 <...> ---[ end trace bfdd028ada702879 ]--- Fixes: 0fdcf78d5973 ("net: use flow_indr_dev_setup_offload()") Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Link: https://lore.kernel.org/r/20201026123327.1141066-1-leon@kernel.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-26 15:33:27 +03:00
rtnl_lock();
down_write(&block->cb_lock);
list_del(&block_cb->driver_list);
list_move(&block_cb->list, &bo.cb_list);
tcf_block_unbind(block, &bo);
net: protect tcf_block_unbind with block lock The tcf_block_unbind() expects that the caller will take block->cb_lock before calling it, however the code took RTNL lock and dropped cb_lock instead. This causes to the following kernel panic. WARNING: CPU: 1 PID: 13524 at net/sched/cls_api.c:1488 tcf_block_unbind+0x2db/0x420 Modules linked in: mlx5_ib mlx5_core mlxfw ptp pps_core act_mirred act_tunnel_key cls_flower vxlan ip6_udp_tunnel udp_tunnel dummy sch_ingress openvswitch nsh xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad ib_ipoib rdma_cm iw_cm ib_cm ib_uverbs ib_core overlay [last unloaded: mlxfw] CPU: 1 PID: 13524 Comm: test-ecmp-add-v Tainted: G W 5.9.0+ #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:tcf_block_unbind+0x2db/0x420 Code: ff 48 83 c4 40 5b 5d 41 5c 41 5d 41 5e 41 5f c3 49 8d bc 24 30 01 00 00 be ff ff ff ff e8 7d 7f 70 00 85 c0 0f 85 7b fd ff ff <0f> 0b e9 74 fd ff ff 48 c7 c7 dc 6a 24 84 e8 02 ec fe fe e9 55 fd RSP: 0018:ffff888117d17968 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88812f713c00 RCX: 1ffffffff0848d5b RDX: 0000000000000001 RSI: ffff88814fbc8130 RDI: ffff888107f2b878 RBP: 1ffff11022fa2f3f R08: 0000000000000000 R09: ffffffff84115a87 R10: fffffbfff0822b50 R11: ffff888107f2b898 R12: ffff88814fbc8000 R13: ffff88812f713c10 R14: ffff888117d17a38 R15: ffff88814fbc80c0 FS: 00007f6593d36740(0000) GS:ffff8882a4f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005607a00758f8 CR3: 0000000131aea006 CR4: 0000000000170ea0 Call Trace: tc_block_indr_cleanup+0x3e0/0x5a0 ? tcf_block_unbind+0x420/0x420 ? __mutex_unlock_slowpath+0xe7/0x610 flow_indr_dev_unregister+0x5e2/0x930 ? mlx5e_restore_tunnel+0xdf0/0xdf0 [mlx5_core] ? mlx5e_restore_tunnel+0xdf0/0xdf0 [mlx5_core] ? flow_indr_block_cb_alloc+0x3c0/0x3c0 ? mlx5_db_free+0x37c/0x4b0 [mlx5_core] mlx5e_cleanup_rep_tx+0x8b/0xc0 [mlx5_core] mlx5e_detach_netdev+0xe5/0x120 [mlx5_core] mlx5e_vport_rep_unload+0x155/0x260 [mlx5_core] esw_offloads_disable+0x227/0x2b0 [mlx5_core] mlx5_eswitch_disable_locked.cold+0x38e/0x699 [mlx5_core] mlx5_eswitch_disable+0x94/0xf0 [mlx5_core] mlx5_device_disable_sriov+0x183/0x1f0 [mlx5_core] mlx5_core_sriov_configure+0xfd/0x230 [mlx5_core] sriov_numvfs_store+0x261/0x2f0 ? sriov_drivers_autoprobe_store+0x110/0x110 ? sysfs_file_ops+0x170/0x170 ? sysfs_file_ops+0x117/0x170 ? sysfs_file_ops+0x170/0x170 kernfs_fop_write+0x1ff/0x3f0 ? rcu_read_lock_any_held+0x6e/0x90 vfs_write+0x1f3/0x620 ksys_write+0xf9/0x1d0 ? __x64_sys_read+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3f0 ? syscall_enter_from_user_mode+0x1d/0x50 do_syscall_64+0x2d/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 <...> ---[ end trace bfdd028ada702879 ]--- Fixes: 0fdcf78d5973 ("net: use flow_indr_dev_setup_offload()") Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Link: https://lore.kernel.org/r/20201026123327.1141066-1-leon@kernel.org Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-26 15:33:27 +03:00
up_write(&block->cb_lock);
rtnl_unlock();
}
static bool tcf_block_offload_in_use(struct tcf_block *block)
{
return atomic_read(&block->offloadcnt);
}
static int tcf_block_offload_cmd(struct tcf_block *block,
struct net_device *dev, struct Qdisc *sch,
struct tcf_block_ext_info *ei,
enum flow_block_command command,
struct netlink_ext_ack *extack)
{
struct flow_block_offload bo = {};
tcf_block_offload_init(&bo, dev, sch, command, ei->binder_type,
&block->flow_block, tcf_block_shared(block),
extack);
net/sched: cls_api: fix nooffloaddevcnt warning dmesg log The block->nooffloaddevcnt should always count for indr block. even the indr block offload successful. The representor maybe gone away and the ingress qdisc can work in software mode. block->nooffloaddevcnt warning with following dmesg log: [ 760.667058] ##################################################### [ 760.668186] ## TEST test-ecmp-add-vxlan-encap-disable-sriov.sh ## [ 760.669179] ##################################################### [ 761.780655] :test: Fedora 30 (Thirty) [ 761.783794] :test: Linux reg-r-vrt-018-180 5.7.0+ [ 761.822890] :test: NIC ens1f0 FW 16.26.6000 PCI 0000:81:00.0 DEVICE 0x1019 ConnectX-5 Ex [ 761.860244] mlx5_core 0000:81:00.0 ens1f0: Link up [ 761.880693] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 762.059732] mlx5_core 0000:81:00.1 ens1f1: Link up [ 762.234341] :test: unbind vfs of ens1f0 [ 762.257825] :test: Change ens1f0 eswitch (0000:81:00.0) mode to switchdev [ 762.291363] :test: unbind vfs of ens1f1 [ 762.306914] :test: Change ens1f1 eswitch (0000:81:00.1) mode to switchdev [ 762.309237] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(LEGACY), nvfs(2), active vports(3) [ 763.282598] mlx5_core 0000:81:00.1: E-Switch: Supported tc offload range - chains: 4294967294, prios: 4294967295 [ 763.362825] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.444465] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 763.460088] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.502586] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.552429] ens1f1_0: renamed from eth0 [ 763.569569] mlx5_core 0000:81:00.1: E-Switch: Enable: mode(OFFLOADS), nvfs(2), active vports(3) [ 763.629694] ens1f1_1: renamed from eth1 [ 764.631552] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_0: link becomes ready [ 764.670841] :test: unbind vfs of ens1f0 [ 764.681966] :test: unbind vfs of ens1f1 [ 764.726762] mlx5_core 0000:81:00.0 ens1f0: Link up [ 764.766511] mlx5_core 0000:81:00.1 ens1f1: Link up [ 764.797325] :test: Add multipath vxlan encap rule and disable sriov [ 764.798544] :test: config multipath route [ 764.812732] mlx5_core 0000:81:00.0: lag map port 1:2 port 2:2 [ 764.874556] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:2 [ 765.603681] :test: OK [ 765.659048] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_1: link becomes ready [ 765.675085] :test: verify rule in hw [ 765.694237] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 765.711892] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1: link becomes ready [ 766.979230] :test: OK [ 768.125419] :test: OK [ 768.127519] :test: - disable sriov ens1f1 [ 768.131160] pci 0000:81:02.2: Removing from iommu group 75 [ 768.132646] pci 0000:81:02.3: Removing from iommu group 76 [ 769.179749] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 769.455627] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:1 [ 769.703990] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 769.988637] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 769.990022] :test: - disable sriov ens1f0 [ 769.994922] pci 0000:81:00.2: Removing from iommu group 73 [ 769.997048] pci 0000:81:00.3: Removing from iommu group 74 [ 771.035813] mlx5_core 0000:81:00.0: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 771.339091] ------------[ cut here ]------------ [ 771.340812] WARNING: CPU: 6 PID: 3448 at net/sched/cls_api.c:749 tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.341728] Modules linked in: act_mirred act_tunnel_key cls_flower dummy vxlan ip6_udp_tunnel udp_tunnel sch_ingress nfsv3 nfs_acl nfs lockd grace fscache tun bridge stp llc sunrpc rdma_ucm rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp mlxfw act_ct nf_flow_table kvm_intel nf_nat kvm nf_conntrack irqbypass crct10dif_pclmul igb crc32_pclmul nf_defrag_ipv6 libcrc32c nf_defrag_ipv4 crc32c_intel ghash_clmulni_intel ptp ipmi_ssif intel_cstate pps_c ore ses intel_uncore mei_me iTCO_wdt joydev ipmi_si iTCO_vendor_support i2c_i801 enclosure mei ioatdma dca lpc_ich wmi ipmi_devintf pcspkr acpi_power_meter ipmi_msghandler acpi_pad ast i2c_algo_bit drm_vram_helper drm_kms_helper drm_ttm_helper ttm drm mpt3sas raid_class scsi_transport_sas [ 771.347818] CPU: 6 PID: 3448 Comm: test-ecmp-add-v Not tainted 5.7.0+ #1146 [ 771.348727] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 771.349646] RIP: 0010:tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.350553] Code: 4a fd ff ff 83 f8 a1 74 0e 5b 4c 89 e7 5d 41 5c 41 5d e9 07 93 89 ff 8b 83 a0 00 00 00 8d 50 ff 89 93 a0 00 00 00 85 c0 75 df <0f> 0b eb db 0f 1f 44 00 00 41 57 41 56 41 55 41 89 cd 41 54 49 89 [ 771.352420] RSP: 0018:ffffb33144cd3b00 EFLAGS: 00010246 [ 771.353353] RAX: 0000000000000000 RBX: ffff8b37cf4b2800 RCX: 0000000000000000 [ 771.354294] RDX: 00000000ffffffff RSI: ffff8b3b9aad0000 RDI: ffffffff8d5c6e20 [ 771.355245] RBP: ffff8b37eb546948 R08: ffffffffc0b7a348 R09: ffff8b3b9aad0000 [ 771.356189] R10: 0000000000000001 R11: ffff8b3ba7a0a1c0 R12: ffff8b37cf4b2850 [ 771.357123] R13: ffff8b3b9aad0000 R14: ffff8b37cf4b2820 R15: ffff8b37cf4b2820 [ 771.358039] FS: 00007f8a19b6e740(0000) GS:ffff8b3befa00000(0000) knlGS:0000000000000000 [ 771.358965] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 771.359885] CR2: 00007f3afb91c1a0 CR3: 000000045133c004 CR4: 00000000001606e0 [ 771.360825] Call Trace: [ 771.361764] __tcf_block_put+0x84/0x150 [ 771.362712] ingress_destroy+0x1b/0x20 [sch_ingress] [ 771.363658] qdisc_destroy+0x3e/0xc0 [ 771.364594] dev_shutdown+0x7a/0xa5 [ 771.365522] rollback_registered_many+0x20d/0x530 [ 771.366458] ? netdev_upper_dev_unlink+0x15d/0x1c0 [ 771.367387] unregister_netdevice_many.part.0+0xf/0x70 [ 771.368310] vxlan_netdevice_event+0xa4/0x110 [vxlan] [ 771.369454] notifier_call_chain+0x4c/0x70 [ 771.370579] rollback_registered_many+0x2f5/0x530 [ 771.371719] rollback_registered+0x56/0x90 [ 771.372843] unregister_netdevice_queue+0x73/0xb0 [ 771.373982] unregister_netdev+0x18/0x20 [ 771.375168] mlx5e_vport_rep_unload+0x56/0xc0 [mlx5_core] [ 771.376327] esw_offloads_disable+0x81/0x90 [mlx5_core] [ 771.377512] mlx5_eswitch_disable_locked.cold+0xcb/0x1af [mlx5_core] [ 771.378679] mlx5_eswitch_disable+0x44/0x60 [mlx5_core] [ 771.379822] mlx5_device_disable_sriov+0xad/0xb0 [mlx5_core] [ 771.380968] mlx5_core_sriov_configure+0xc1/0xe0 [mlx5_core] [ 771.382087] sriov_numvfs_store+0xfc/0x130 [ 771.383195] kernfs_fop_write+0xce/0x1b0 [ 771.384302] vfs_write+0xb6/0x1a0 [ 771.385410] ksys_write+0x5f/0xe0 [ 771.386500] do_syscall_64+0x5b/0x1d0 [ 771.387569] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 0fdcf78d5973 ("net: use flow_indr_dev_setup_offload()") Signed-off-by: wenxu <wenxu@ucloud.cn> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-18 15:49:11 +03:00
if (dev->netdev_ops->ndo_setup_tc) {
int err;
err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_BLOCK, &bo);
net/sched: cls_api: fix nooffloaddevcnt warning dmesg log The block->nooffloaddevcnt should always count for indr block. even the indr block offload successful. The representor maybe gone away and the ingress qdisc can work in software mode. block->nooffloaddevcnt warning with following dmesg log: [ 760.667058] ##################################################### [ 760.668186] ## TEST test-ecmp-add-vxlan-encap-disable-sriov.sh ## [ 760.669179] ##################################################### [ 761.780655] :test: Fedora 30 (Thirty) [ 761.783794] :test: Linux reg-r-vrt-018-180 5.7.0+ [ 761.822890] :test: NIC ens1f0 FW 16.26.6000 PCI 0000:81:00.0 DEVICE 0x1019 ConnectX-5 Ex [ 761.860244] mlx5_core 0000:81:00.0 ens1f0: Link up [ 761.880693] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 762.059732] mlx5_core 0000:81:00.1 ens1f1: Link up [ 762.234341] :test: unbind vfs of ens1f0 [ 762.257825] :test: Change ens1f0 eswitch (0000:81:00.0) mode to switchdev [ 762.291363] :test: unbind vfs of ens1f1 [ 762.306914] :test: Change ens1f1 eswitch (0000:81:00.1) mode to switchdev [ 762.309237] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(LEGACY), nvfs(2), active vports(3) [ 763.282598] mlx5_core 0000:81:00.1: E-Switch: Supported tc offload range - chains: 4294967294, prios: 4294967295 [ 763.362825] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.444465] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 763.460088] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.502586] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.552429] ens1f1_0: renamed from eth0 [ 763.569569] mlx5_core 0000:81:00.1: E-Switch: Enable: mode(OFFLOADS), nvfs(2), active vports(3) [ 763.629694] ens1f1_1: renamed from eth1 [ 764.631552] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_0: link becomes ready [ 764.670841] :test: unbind vfs of ens1f0 [ 764.681966] :test: unbind vfs of ens1f1 [ 764.726762] mlx5_core 0000:81:00.0 ens1f0: Link up [ 764.766511] mlx5_core 0000:81:00.1 ens1f1: Link up [ 764.797325] :test: Add multipath vxlan encap rule and disable sriov [ 764.798544] :test: config multipath route [ 764.812732] mlx5_core 0000:81:00.0: lag map port 1:2 port 2:2 [ 764.874556] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:2 [ 765.603681] :test: OK [ 765.659048] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_1: link becomes ready [ 765.675085] :test: verify rule in hw [ 765.694237] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 765.711892] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1: link becomes ready [ 766.979230] :test: OK [ 768.125419] :test: OK [ 768.127519] :test: - disable sriov ens1f1 [ 768.131160] pci 0000:81:02.2: Removing from iommu group 75 [ 768.132646] pci 0000:81:02.3: Removing from iommu group 76 [ 769.179749] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 769.455627] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:1 [ 769.703990] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 769.988637] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 769.990022] :test: - disable sriov ens1f0 [ 769.994922] pci 0000:81:00.2: Removing from iommu group 73 [ 769.997048] pci 0000:81:00.3: Removing from iommu group 74 [ 771.035813] mlx5_core 0000:81:00.0: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 771.339091] ------------[ cut here ]------------ [ 771.340812] WARNING: CPU: 6 PID: 3448 at net/sched/cls_api.c:749 tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.341728] Modules linked in: act_mirred act_tunnel_key cls_flower dummy vxlan ip6_udp_tunnel udp_tunnel sch_ingress nfsv3 nfs_acl nfs lockd grace fscache tun bridge stp llc sunrpc rdma_ucm rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp mlxfw act_ct nf_flow_table kvm_intel nf_nat kvm nf_conntrack irqbypass crct10dif_pclmul igb crc32_pclmul nf_defrag_ipv6 libcrc32c nf_defrag_ipv4 crc32c_intel ghash_clmulni_intel ptp ipmi_ssif intel_cstate pps_c ore ses intel_uncore mei_me iTCO_wdt joydev ipmi_si iTCO_vendor_support i2c_i801 enclosure mei ioatdma dca lpc_ich wmi ipmi_devintf pcspkr acpi_power_meter ipmi_msghandler acpi_pad ast i2c_algo_bit drm_vram_helper drm_kms_helper drm_ttm_helper ttm drm mpt3sas raid_class scsi_transport_sas [ 771.347818] CPU: 6 PID: 3448 Comm: test-ecmp-add-v Not tainted 5.7.0+ #1146 [ 771.348727] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 771.349646] RIP: 0010:tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.350553] Code: 4a fd ff ff 83 f8 a1 74 0e 5b 4c 89 e7 5d 41 5c 41 5d e9 07 93 89 ff 8b 83 a0 00 00 00 8d 50 ff 89 93 a0 00 00 00 85 c0 75 df <0f> 0b eb db 0f 1f 44 00 00 41 57 41 56 41 55 41 89 cd 41 54 49 89 [ 771.352420] RSP: 0018:ffffb33144cd3b00 EFLAGS: 00010246 [ 771.353353] RAX: 0000000000000000 RBX: ffff8b37cf4b2800 RCX: 0000000000000000 [ 771.354294] RDX: 00000000ffffffff RSI: ffff8b3b9aad0000 RDI: ffffffff8d5c6e20 [ 771.355245] RBP: ffff8b37eb546948 R08: ffffffffc0b7a348 R09: ffff8b3b9aad0000 [ 771.356189] R10: 0000000000000001 R11: ffff8b3ba7a0a1c0 R12: ffff8b37cf4b2850 [ 771.357123] R13: ffff8b3b9aad0000 R14: ffff8b37cf4b2820 R15: ffff8b37cf4b2820 [ 771.358039] FS: 00007f8a19b6e740(0000) GS:ffff8b3befa00000(0000) knlGS:0000000000000000 [ 771.358965] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 771.359885] CR2: 00007f3afb91c1a0 CR3: 000000045133c004 CR4: 00000000001606e0 [ 771.360825] Call Trace: [ 771.361764] __tcf_block_put+0x84/0x150 [ 771.362712] ingress_destroy+0x1b/0x20 [sch_ingress] [ 771.363658] qdisc_destroy+0x3e/0xc0 [ 771.364594] dev_shutdown+0x7a/0xa5 [ 771.365522] rollback_registered_many+0x20d/0x530 [ 771.366458] ? netdev_upper_dev_unlink+0x15d/0x1c0 [ 771.367387] unregister_netdevice_many.part.0+0xf/0x70 [ 771.368310] vxlan_netdevice_event+0xa4/0x110 [vxlan] [ 771.369454] notifier_call_chain+0x4c/0x70 [ 771.370579] rollback_registered_many+0x2f5/0x530 [ 771.371719] rollback_registered+0x56/0x90 [ 771.372843] unregister_netdevice_queue+0x73/0xb0 [ 771.373982] unregister_netdev+0x18/0x20 [ 771.375168] mlx5e_vport_rep_unload+0x56/0xc0 [mlx5_core] [ 771.376327] esw_offloads_disable+0x81/0x90 [mlx5_core] [ 771.377512] mlx5_eswitch_disable_locked.cold+0xcb/0x1af [mlx5_core] [ 771.378679] mlx5_eswitch_disable+0x44/0x60 [mlx5_core] [ 771.379822] mlx5_device_disable_sriov+0xad/0xb0 [mlx5_core] [ 771.380968] mlx5_core_sriov_configure+0xc1/0xe0 [mlx5_core] [ 771.382087] sriov_numvfs_store+0xfc/0x130 [ 771.383195] kernfs_fop_write+0xce/0x1b0 [ 771.384302] vfs_write+0xb6/0x1a0 [ 771.385410] ksys_write+0x5f/0xe0 [ 771.386500] do_syscall_64+0x5b/0x1d0 [ 771.387569] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 0fdcf78d5973 ("net: use flow_indr_dev_setup_offload()") Signed-off-by: wenxu <wenxu@ucloud.cn> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-18 15:49:11 +03:00
if (err < 0) {
if (err != -EOPNOTSUPP)
NL_SET_ERR_MSG(extack, "Driver ndo_setup_tc failed");
return err;
}
return tcf_block_setup(block, &bo);
}
flow_indr_dev_setup_offload(dev, sch, TC_SETUP_BLOCK, block, &bo,
net/sched: cls_api: fix nooffloaddevcnt warning dmesg log The block->nooffloaddevcnt should always count for indr block. even the indr block offload successful. The representor maybe gone away and the ingress qdisc can work in software mode. block->nooffloaddevcnt warning with following dmesg log: [ 760.667058] ##################################################### [ 760.668186] ## TEST test-ecmp-add-vxlan-encap-disable-sriov.sh ## [ 760.669179] ##################################################### [ 761.780655] :test: Fedora 30 (Thirty) [ 761.783794] :test: Linux reg-r-vrt-018-180 5.7.0+ [ 761.822890] :test: NIC ens1f0 FW 16.26.6000 PCI 0000:81:00.0 DEVICE 0x1019 ConnectX-5 Ex [ 761.860244] mlx5_core 0000:81:00.0 ens1f0: Link up [ 761.880693] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 762.059732] mlx5_core 0000:81:00.1 ens1f1: Link up [ 762.234341] :test: unbind vfs of ens1f0 [ 762.257825] :test: Change ens1f0 eswitch (0000:81:00.0) mode to switchdev [ 762.291363] :test: unbind vfs of ens1f1 [ 762.306914] :test: Change ens1f1 eswitch (0000:81:00.1) mode to switchdev [ 762.309237] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(LEGACY), nvfs(2), active vports(3) [ 763.282598] mlx5_core 0000:81:00.1: E-Switch: Supported tc offload range - chains: 4294967294, prios: 4294967295 [ 763.362825] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.444465] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 763.460088] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.502586] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 763.552429] ens1f1_0: renamed from eth0 [ 763.569569] mlx5_core 0000:81:00.1: E-Switch: Enable: mode(OFFLOADS), nvfs(2), active vports(3) [ 763.629694] ens1f1_1: renamed from eth1 [ 764.631552] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_0: link becomes ready [ 764.670841] :test: unbind vfs of ens1f0 [ 764.681966] :test: unbind vfs of ens1f1 [ 764.726762] mlx5_core 0000:81:00.0 ens1f0: Link up [ 764.766511] mlx5_core 0000:81:00.1 ens1f1: Link up [ 764.797325] :test: Add multipath vxlan encap rule and disable sriov [ 764.798544] :test: config multipath route [ 764.812732] mlx5_core 0000:81:00.0: lag map port 1:2 port 2:2 [ 764.874556] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:2 [ 765.603681] :test: OK [ 765.659048] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1_1: link becomes ready [ 765.675085] :test: verify rule in hw [ 765.694237] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f0: link becomes ready [ 765.711892] IPv6: ADDRCONF(NETDEV_CHANGE): ens1f1: link becomes ready [ 766.979230] :test: OK [ 768.125419] :test: OK [ 768.127519] :test: - disable sriov ens1f1 [ 768.131160] pci 0000:81:02.2: Removing from iommu group 75 [ 768.132646] pci 0000:81:02.3: Removing from iommu group 76 [ 769.179749] mlx5_core 0000:81:00.1: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 769.455627] mlx5_core 0000:81:00.0: modify lag map port 1:1 port 2:1 [ 769.703990] mlx5_core 0000:81:00.1: MLX5E: StrdRq(1) RqSz(8) StrdSz(2048) RxCqeCmprss(0) [ 769.988637] mlx5_core 0000:81:00.1 ens1f1: renamed from eth0 [ 769.990022] :test: - disable sriov ens1f0 [ 769.994922] pci 0000:81:00.2: Removing from iommu group 73 [ 769.997048] pci 0000:81:00.3: Removing from iommu group 74 [ 771.035813] mlx5_core 0000:81:00.0: E-Switch: Disable: mode(OFFLOADS), nvfs(2), active vports(3) [ 771.339091] ------------[ cut here ]------------ [ 771.340812] WARNING: CPU: 6 PID: 3448 at net/sched/cls_api.c:749 tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.341728] Modules linked in: act_mirred act_tunnel_key cls_flower dummy vxlan ip6_udp_tunnel udp_tunnel sch_ingress nfsv3 nfs_acl nfs lockd grace fscache tun bridge stp llc sunrpc rdma_ucm rdma_cm iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp mlxfw act_ct nf_flow_table kvm_intel nf_nat kvm nf_conntrack irqbypass crct10dif_pclmul igb crc32_pclmul nf_defrag_ipv6 libcrc32c nf_defrag_ipv4 crc32c_intel ghash_clmulni_intel ptp ipmi_ssif intel_cstate pps_c ore ses intel_uncore mei_me iTCO_wdt joydev ipmi_si iTCO_vendor_support i2c_i801 enclosure mei ioatdma dca lpc_ich wmi ipmi_devintf pcspkr acpi_power_meter ipmi_msghandler acpi_pad ast i2c_algo_bit drm_vram_helper drm_kms_helper drm_ttm_helper ttm drm mpt3sas raid_class scsi_transport_sas [ 771.347818] CPU: 6 PID: 3448 Comm: test-ecmp-add-v Not tainted 5.7.0+ #1146 [ 771.348727] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 771.349646] RIP: 0010:tcf_block_offload_unbind.isra.0+0x5c/0x60 [ 771.350553] Code: 4a fd ff ff 83 f8 a1 74 0e 5b 4c 89 e7 5d 41 5c 41 5d e9 07 93 89 ff 8b 83 a0 00 00 00 8d 50 ff 89 93 a0 00 00 00 85 c0 75 df <0f> 0b eb db 0f 1f 44 00 00 41 57 41 56 41 55 41 89 cd 41 54 49 89 [ 771.352420] RSP: 0018:ffffb33144cd3b00 EFLAGS: 00010246 [ 771.353353] RAX: 0000000000000000 RBX: ffff8b37cf4b2800 RCX: 0000000000000000 [ 771.354294] RDX: 00000000ffffffff RSI: ffff8b3b9aad0000 RDI: ffffffff8d5c6e20 [ 771.355245] RBP: ffff8b37eb546948 R08: ffffffffc0b7a348 R09: ffff8b3b9aad0000 [ 771.356189] R10: 0000000000000001 R11: ffff8b3ba7a0a1c0 R12: ffff8b37cf4b2850 [ 771.357123] R13: ffff8b3b9aad0000 R14: ffff8b37cf4b2820 R15: ffff8b37cf4b2820 [ 771.358039] FS: 00007f8a19b6e740(0000) GS:ffff8b3befa00000(0000) knlGS:0000000000000000 [ 771.358965] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 771.359885] CR2: 00007f3afb91c1a0 CR3: 000000045133c004 CR4: 00000000001606e0 [ 771.360825] Call Trace: [ 771.361764] __tcf_block_put+0x84/0x150 [ 771.362712] ingress_destroy+0x1b/0x20 [sch_ingress] [ 771.363658] qdisc_destroy+0x3e/0xc0 [ 771.364594] dev_shutdown+0x7a/0xa5 [ 771.365522] rollback_registered_many+0x20d/0x530 [ 771.366458] ? netdev_upper_dev_unlink+0x15d/0x1c0 [ 771.367387] unregister_netdevice_many.part.0+0xf/0x70 [ 771.368310] vxlan_netdevice_event+0xa4/0x110 [vxlan] [ 771.369454] notifier_call_chain+0x4c/0x70 [ 771.370579] rollback_registered_many+0x2f5/0x530 [ 771.371719] rollback_registered+0x56/0x90 [ 771.372843] unregister_netdevice_queue+0x73/0xb0 [ 771.373982] unregister_netdev+0x18/0x20 [ 771.375168] mlx5e_vport_rep_unload+0x56/0xc0 [mlx5_core] [ 771.376327] esw_offloads_disable+0x81/0x90 [mlx5_core] [ 771.377512] mlx5_eswitch_disable_locked.cold+0xcb/0x1af [mlx5_core] [ 771.378679] mlx5_eswitch_disable+0x44/0x60 [mlx5_core] [ 771.379822] mlx5_device_disable_sriov+0xad/0xb0 [mlx5_core] [ 771.380968] mlx5_core_sriov_configure+0xc1/0xe0 [mlx5_core] [ 771.382087] sriov_numvfs_store+0xfc/0x130 [ 771.383195] kernfs_fop_write+0xce/0x1b0 [ 771.384302] vfs_write+0xb6/0x1a0 [ 771.385410] ksys_write+0x5f/0xe0 [ 771.386500] do_syscall_64+0x5b/0x1d0 [ 771.387569] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 0fdcf78d5973 ("net: use flow_indr_dev_setup_offload()") Signed-off-by: wenxu <wenxu@ucloud.cn> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-18 15:49:11 +03:00
tc_block_indr_cleanup);
tcf_block_setup(block, &bo);
return -EOPNOTSUPP;
}
static int tcf_block_offload_bind(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct net_device *dev = q->dev_queue->dev;
int err;
down_write(&block->cb_lock);
/* If tc offload feature is disabled and the block we try to bind
* to already has some offloaded filters, forbid to bind.
*/
if (dev->netdev_ops->ndo_setup_tc &&
!tc_can_offload(dev) &&
tcf_block_offload_in_use(block)) {
NL_SET_ERR_MSG(extack, "Bind to offloaded block failed as dev has offload disabled");
err = -EOPNOTSUPP;
goto err_unlock;
}
err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_BIND, extack);
if (err == -EOPNOTSUPP)
goto no_offload_dev_inc;
if (err)
goto err_unlock;
up_write(&block->cb_lock);
return 0;
no_offload_dev_inc:
if (tcf_block_offload_in_use(block))
goto err_unlock;
err = 0;
block->nooffloaddevcnt++;
err_unlock:
up_write(&block->cb_lock);
return err;
}
static void tcf_block_offload_unbind(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei)
{
struct net_device *dev = q->dev_queue->dev;
int err;
down_write(&block->cb_lock);
err = tcf_block_offload_cmd(block, dev, q, ei, FLOW_BLOCK_UNBIND, NULL);
if (err == -EOPNOTSUPP)
goto no_offload_dev_dec;
up_write(&block->cb_lock);
return;
no_offload_dev_dec:
WARN_ON(block->nooffloaddevcnt-- == 0);
up_write(&block->cb_lock);
}
static int
tcf_chain0_head_change_cb_add(struct tcf_block *block,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct tcf_filter_chain_list_item *item;
struct tcf_chain *chain0;
item = kmalloc(sizeof(*item), GFP_KERNEL);
if (!item) {
NL_SET_ERR_MSG(extack, "Memory allocation for head change callback item failed");
return -ENOMEM;
}
item->chain_head_change = ei->chain_head_change;
item->chain_head_change_priv = ei->chain_head_change_priv;
mutex_lock(&block->lock);
chain0 = block->chain0.chain;
if (chain0)
tcf_chain_hold(chain0);
else
list_add(&item->list, &block->chain0.filter_chain_list);
mutex_unlock(&block->lock);
if (chain0) {
struct tcf_proto *tp_head;
mutex_lock(&chain0->filter_chain_lock);
tp_head = tcf_chain_dereference(chain0->filter_chain, chain0);
if (tp_head)
tcf_chain_head_change_item(item, tp_head);
mutex_lock(&block->lock);
list_add(&item->list, &block->chain0.filter_chain_list);
mutex_unlock(&block->lock);
mutex_unlock(&chain0->filter_chain_lock);
tcf_chain_put(chain0);
}
return 0;
}
static void
tcf_chain0_head_change_cb_del(struct tcf_block *block,
struct tcf_block_ext_info *ei)
{
struct tcf_filter_chain_list_item *item;
mutex_lock(&block->lock);
list_for_each_entry(item, &block->chain0.filter_chain_list, list) {
if ((!ei->chain_head_change && !ei->chain_head_change_priv) ||
(item->chain_head_change == ei->chain_head_change &&
item->chain_head_change_priv == ei->chain_head_change_priv)) {
if (block->chain0.chain)
tcf_chain_head_change_item(item, NULL);
list_del(&item->list);
mutex_unlock(&block->lock);
kfree(item);
return;
}
}
mutex_unlock(&block->lock);
WARN_ON(1);
}
struct tcf_net {
spinlock_t idr_lock; /* Protects idr */
struct idr idr;
};
static unsigned int tcf_net_id;
static int tcf_block_insert(struct tcf_block *block, struct net *net,
struct netlink_ext_ack *extack)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
int err;
idr_preload(GFP_KERNEL);
spin_lock(&tn->idr_lock);
err = idr_alloc_u32(&tn->idr, block, &block->index, block->index,
GFP_NOWAIT);
spin_unlock(&tn->idr_lock);
idr_preload_end();
return err;
}
static void tcf_block_remove(struct tcf_block *block, struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
spin_lock(&tn->idr_lock);
idr_remove(&tn->idr, block->index);
spin_unlock(&tn->idr_lock);
}
static struct tcf_block *tcf_block_create(struct net *net, struct Qdisc *q,
u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
block = kzalloc(sizeof(*block), GFP_KERNEL);
if (!block) {
NL_SET_ERR_MSG(extack, "Memory allocation for block failed");
return ERR_PTR(-ENOMEM);
}
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
mutex_init(&block->lock);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
mutex_init(&block->proto_destroy_lock);
init_rwsem(&block->cb_lock);
flow_block_init(&block->flow_block);
INIT_LIST_HEAD(&block->chain_list);
INIT_LIST_HEAD(&block->owner_list);
INIT_LIST_HEAD(&block->chain0.filter_chain_list);
refcount_set(&block->refcnt, 1);
block->net = net;
block->index = block_index;
/* Don't store q pointer for blocks which are shared */
if (!tcf_block_shared(block))
block->q = q;
return block;
}
static struct tcf_block *tcf_block_lookup(struct net *net, u32 block_index)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
return idr_find(&tn->idr, block_index);
}
static struct tcf_block *tcf_block_refcnt_get(struct net *net, u32 block_index)
{
struct tcf_block *block;
rcu_read_lock();
block = tcf_block_lookup(net, block_index);
if (block && !refcount_inc_not_zero(&block->refcnt))
block = NULL;
rcu_read_unlock();
return block;
}
static struct tcf_chain *
__tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain)
{
mutex_lock(&block->lock);
if (chain)
chain = list_is_last(&chain->list, &block->chain_list) ?
NULL : list_next_entry(chain, list);
else
chain = list_first_entry_or_null(&block->chain_list,
struct tcf_chain, list);
/* skip all action-only chains */
while (chain && tcf_chain_held_by_acts_only(chain))
chain = list_is_last(&chain->list, &block->chain_list) ?
NULL : list_next_entry(chain, list);
if (chain)
tcf_chain_hold(chain);
mutex_unlock(&block->lock);
return chain;
}
/* Function to be used by all clients that want to iterate over all chains on
* block. It properly obtains block->lock and takes reference to chain before
* returning it. Users of this function must be tolerant to concurrent chain
* insertion/deletion or ensure that no concurrent chain modification is
* possible. Note that all netlink dump callbacks cannot guarantee to provide
* consistent dump because rtnl lock is released each time skb is filled with
* data and sent to user-space.
*/
struct tcf_chain *
tcf_get_next_chain(struct tcf_block *block, struct tcf_chain *chain)
{
struct tcf_chain *chain_next = __tcf_get_next_chain(block, chain);
if (chain)
tcf_chain_put(chain);
return chain_next;
}
EXPORT_SYMBOL(tcf_get_next_chain);
static struct tcf_proto *
__tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp)
{
u32 prio = 0;
ASSERT_RTNL();
mutex_lock(&chain->filter_chain_lock);
if (!tp) {
tp = tcf_chain_dereference(chain->filter_chain, chain);
} else if (tcf_proto_is_deleting(tp)) {
/* 'deleting' flag is set and chain->filter_chain_lock was
* unlocked, which means next pointer could be invalid. Restart
* search.
*/
prio = tp->prio + 1;
tp = tcf_chain_dereference(chain->filter_chain, chain);
for (; tp; tp = tcf_chain_dereference(tp->next, chain))
if (!tp->deleting && tp->prio >= prio)
break;
} else {
tp = tcf_chain_dereference(tp->next, chain);
}
if (tp)
tcf_proto_get(tp);
mutex_unlock(&chain->filter_chain_lock);
return tp;
}
/* Function to be used by all clients that want to iterate over all tp's on
* chain. Users of this function must be tolerant to concurrent tp
* insertion/deletion or ensure that no concurrent chain modification is
* possible. Note that all netlink dump callbacks cannot guarantee to provide
* consistent dump because rtnl lock is released each time skb is filled with
* data and sent to user-space.
*/
struct tcf_proto *
tcf_get_next_proto(struct tcf_chain *chain, struct tcf_proto *tp)
{
struct tcf_proto *tp_next = __tcf_get_next_proto(chain, tp);
if (tp)
tcf_proto_put(tp, true, NULL);
return tp_next;
}
EXPORT_SYMBOL(tcf_get_next_proto);
static void tcf_block_flush_all_chains(struct tcf_block *block, bool rtnl_held)
{
struct tcf_chain *chain;
/* Last reference to block. At this point chains cannot be added or
* removed concurrently.
*/
for (chain = tcf_get_next_chain(block, NULL);
chain;
chain = tcf_get_next_chain(block, chain)) {
tcf_chain_put_explicitly_created(chain);
tcf_chain_flush(chain, rtnl_held);
}
}
/* Lookup Qdisc and increments its reference counter.
* Set parent, if necessary.
*/
static int __tcf_qdisc_find(struct net *net, struct Qdisc **q,
u32 *parent, int ifindex, bool rtnl_held,
struct netlink_ext_ack *extack)
{
const struct Qdisc_class_ops *cops;
struct net_device *dev;
int err = 0;
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK)
return 0;
rcu_read_lock();
/* Find link */
dev = dev_get_by_index_rcu(net, ifindex);
if (!dev) {
rcu_read_unlock();
return -ENODEV;
}
/* Find qdisc */
if (!*parent) {
*q = dev->qdisc;
*parent = (*q)->handle;
} else {
*q = qdisc_lookup_rcu(dev, TC_H_MAJ(*parent));
if (!*q) {
NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists");
err = -EINVAL;
goto errout_rcu;
}
}
*q = qdisc_refcount_inc_nz(*q);
if (!*q) {
NL_SET_ERR_MSG(extack, "Parent Qdisc doesn't exists");
err = -EINVAL;
goto errout_rcu;
}
/* Is it classful? */
cops = (*q)->ops->cl_ops;
if (!cops) {
NL_SET_ERR_MSG(extack, "Qdisc not classful");
err = -EINVAL;
goto errout_qdisc;
}
if (!cops->tcf_block) {
NL_SET_ERR_MSG(extack, "Class doesn't support blocks");
err = -EOPNOTSUPP;
goto errout_qdisc;
}
errout_rcu:
/* At this point we know that qdisc is not noop_qdisc,
* which means that qdisc holds a reference to net_device
* and we hold a reference to qdisc, so it is safe to release
* rcu read lock.
*/
rcu_read_unlock();
return err;
errout_qdisc:
rcu_read_unlock();
if (rtnl_held)
qdisc_put(*q);
else
qdisc_put_unlocked(*q);
*q = NULL;
return err;
}
static int __tcf_qdisc_cl_find(struct Qdisc *q, u32 parent, unsigned long *cl,
int ifindex, struct netlink_ext_ack *extack)
{
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK)
return 0;
/* Do we search for filter, attached to class? */
if (TC_H_MIN(parent)) {
const struct Qdisc_class_ops *cops = q->ops->cl_ops;
*cl = cops->find(q, parent);
if (*cl == 0) {
NL_SET_ERR_MSG(extack, "Specified class doesn't exist");
return -ENOENT;
}
}
return 0;
}
static struct tcf_block *__tcf_block_find(struct net *net, struct Qdisc *q,
unsigned long cl, int ifindex,
u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
if (ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, block_index);
if (!block) {
NL_SET_ERR_MSG(extack, "Block of given index was not found");
return ERR_PTR(-EINVAL);
}
} else {
const struct Qdisc_class_ops *cops = q->ops->cl_ops;
block = cops->tcf_block(q, cl, extack);
if (!block)
return ERR_PTR(-EINVAL);
if (tcf_block_shared(block)) {
NL_SET_ERR_MSG(extack, "This filter block is shared. Please use the block index to manipulate the filters");
return ERR_PTR(-EOPNOTSUPP);
}
/* Always take reference to block in order to support execution
* of rules update path of cls API without rtnl lock. Caller
* must release block when it is finished using it. 'if' block
* of this conditional obtain reference to block by calling
* tcf_block_refcnt_get().
*/
refcount_inc(&block->refcnt);
}
return block;
}
static void __tcf_block_put(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei, bool rtnl_held)
{
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
if (refcount_dec_and_mutex_lock(&block->refcnt, &block->lock)) {
/* Flushing/putting all chains will cause the block to be
* deallocated when last chain is freed. However, if chain_list
* is empty, block has to be manually deallocated. After block
* reference counter reached 0, it is no longer possible to
* increment it or add new chains to block.
*/
bool free_block = list_empty(&block->chain_list);
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
mutex_unlock(&block->lock);
if (tcf_block_shared(block))
tcf_block_remove(block, block->net);
if (q)
tcf_block_offload_unbind(block, q, ei);
if (free_block)
net: sched: protect block state with mutex Currently, tcf_block doesn't use any synchronization mechanisms to protect critical sections that manage lifetime of its chains. block->chain_list and multiple variables in tcf_chain that control its lifetime assume external synchronization provided by global rtnl lock. Converting chain reference counting to atomic reference counters is not possible because cls API uses multiple counters and flags to control chain lifetime, so all of them must be synchronized in chain get/put code. Use single per-block lock to protect block data and manage lifetime of all chains on the block. Always take block->lock when accessing chain_list. Chain get and put modify chain lifetime-management data and parent block's chain_list, so take the lock in these functions. Verify block->lock state with assertions in functions that expect to be called with the lock taken and are called from multiple places. Take block->lock when accessing filter_chain_list. In order to allow parallel update of rules on single block, move all calls to classifiers outside of critical sections protected by new block->lock. Rearrange chain get and put functions code to only access protected chain data while holding block lock: - Rearrange code to only access chain reference counter and chain action reference counter while holding block lock. - Extract code that requires block->lock from tcf_chain_destroy() into standalone tcf_chain_destroy() function that is called by __tcf_chain_put() in same critical section that changes chain reference counters. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-02-11 11:55:32 +03:00
tcf_block_destroy(block);
else
tcf_block_flush_all_chains(block, rtnl_held);
} else if (q) {
tcf_block_offload_unbind(block, q, ei);
}
}
static void tcf_block_refcnt_put(struct tcf_block *block, bool rtnl_held)
{
__tcf_block_put(block, NULL, NULL, rtnl_held);
}
/* Find tcf block.
* Set q, parent, cl when appropriate.
*/
static struct tcf_block *tcf_block_find(struct net *net, struct Qdisc **q,
u32 *parent, unsigned long *cl,
int ifindex, u32 block_index,
struct netlink_ext_ack *extack)
{
struct tcf_block *block;
int err = 0;
ASSERT_RTNL();
err = __tcf_qdisc_find(net, q, parent, ifindex, true, extack);
if (err)
goto errout;
err = __tcf_qdisc_cl_find(*q, *parent, cl, ifindex, extack);
if (err)
goto errout_qdisc;
block = __tcf_block_find(net, *q, *cl, ifindex, block_index, extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout_qdisc;
}
return block;
errout_qdisc:
if (*q)
qdisc_put(*q);
errout:
*q = NULL;
return ERR_PTR(err);
}
static void tcf_block_release(struct Qdisc *q, struct tcf_block *block,
bool rtnl_held)
{
if (!IS_ERR_OR_NULL(block))
tcf_block_refcnt_put(block, rtnl_held);
if (q) {
if (rtnl_held)
qdisc_put(q);
else
qdisc_put_unlocked(q);
}
}
struct tcf_block_owner_item {
struct list_head list;
struct Qdisc *q;
enum flow_block_binder_type binder_type;
};
static void
tcf_block_owner_netif_keep_dst(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
if (block->keep_dst &&
binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS)
netif_keep_dst(qdisc_dev(q));
}
void tcf_block_netif_keep_dst(struct tcf_block *block)
{
struct tcf_block_owner_item *item;
block->keep_dst = true;
list_for_each_entry(item, &block->owner_list, list)
tcf_block_owner_netif_keep_dst(block, item->q,
item->binder_type);
}
EXPORT_SYMBOL(tcf_block_netif_keep_dst);
static int tcf_block_owner_add(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
struct tcf_block_owner_item *item;
item = kmalloc(sizeof(*item), GFP_KERNEL);
if (!item)
return -ENOMEM;
item->q = q;
item->binder_type = binder_type;
list_add(&item->list, &block->owner_list);
return 0;
}
static void tcf_block_owner_del(struct tcf_block *block,
struct Qdisc *q,
enum flow_block_binder_type binder_type)
{
struct tcf_block_owner_item *item;
list_for_each_entry(item, &block->owner_list, list) {
if (item->q == q && item->binder_type == binder_type) {
list_del(&item->list);
kfree(item);
return;
}
}
WARN_ON(1);
}
int tcf_block_get_ext(struct tcf_block **p_block, struct Qdisc *q,
struct tcf_block_ext_info *ei,
struct netlink_ext_ack *extack)
{
struct net *net = qdisc_net(q);
struct tcf_block *block = NULL;
int err;
if (ei->block_index)
/* block_index not 0 means the shared block is requested */
block = tcf_block_refcnt_get(net, ei->block_index);
if (!block) {
block = tcf_block_create(net, q, ei->block_index, extack);
if (IS_ERR(block))
return PTR_ERR(block);
if (tcf_block_shared(block)) {
err = tcf_block_insert(block, net, extack);
if (err)
goto err_block_insert;
}
}
err = tcf_block_owner_add(block, q, ei->binder_type);
if (err)
goto err_block_owner_add;
tcf_block_owner_netif_keep_dst(block, q, ei->binder_type);
err = tcf_chain0_head_change_cb_add(block, ei, extack);
if (err)
goto err_chain0_head_change_cb_add;
err = tcf_block_offload_bind(block, q, ei, extack);
if (err)
goto err_block_offload_bind;
*p_block = block;
return 0;
err_block_offload_bind:
tcf_chain0_head_change_cb_del(block, ei);
err_chain0_head_change_cb_add:
tcf_block_owner_del(block, q, ei->binder_type);
err_block_owner_add:
err_block_insert:
tcf_block_refcnt_put(block, true);
return err;
}
EXPORT_SYMBOL(tcf_block_get_ext);
static void tcf_chain_head_change_dflt(struct tcf_proto *tp_head, void *priv)
{
struct tcf_proto __rcu **p_filter_chain = priv;
rcu_assign_pointer(*p_filter_chain, tp_head);
}
int tcf_block_get(struct tcf_block **p_block,
struct tcf_proto __rcu **p_filter_chain, struct Qdisc *q,
struct netlink_ext_ack *extack)
{
struct tcf_block_ext_info ei = {
.chain_head_change = tcf_chain_head_change_dflt,
.chain_head_change_priv = p_filter_chain,
};
WARN_ON(!p_filter_chain);
return tcf_block_get_ext(p_block, q, &ei, extack);
}
EXPORT_SYMBOL(tcf_block_get);
/* XXX: Standalone actions are not allowed to jump to any chain, and bound
* actions should be all removed after flushing.
*/
void tcf_block_put_ext(struct tcf_block *block, struct Qdisc *q,
struct tcf_block_ext_info *ei)
{
if (!block)
return;
tcf_chain0_head_change_cb_del(block, ei);
tcf_block_owner_del(block, q, ei->binder_type);
__tcf_block_put(block, q, ei, true);
}
EXPORT_SYMBOL(tcf_block_put_ext);
void tcf_block_put(struct tcf_block *block)
{
struct tcf_block_ext_info ei = {0, };
if (!block)
return;
tcf_block_put_ext(block, block->q, &ei);
}
EXPORT_SYMBOL(tcf_block_put);
static int
tcf_block_playback_offloads(struct tcf_block *block, flow_setup_cb_t *cb,
void *cb_priv, bool add, bool offload_in_use,
struct netlink_ext_ack *extack)
{
struct tcf_chain *chain, *chain_prev;
struct tcf_proto *tp, *tp_prev;
int err;
lockdep_assert_held(&block->cb_lock);
for (chain = __tcf_get_next_chain(block, NULL);
chain;
chain_prev = chain,
chain = __tcf_get_next_chain(block, chain),
tcf_chain_put(chain_prev)) {
for (tp = __tcf_get_next_proto(chain, NULL); tp;
tp_prev = tp,
tp = __tcf_get_next_proto(chain, tp),
tcf_proto_put(tp_prev, true, NULL)) {
if (tp->ops->reoffload) {
err = tp->ops->reoffload(tp, add, cb, cb_priv,
extack);
if (err && add)
goto err_playback_remove;
} else if (add && offload_in_use) {
err = -EOPNOTSUPP;
NL_SET_ERR_MSG(extack, "Filter HW offload failed - classifier without re-offloading support");
goto err_playback_remove;
}
}
}
return 0;
err_playback_remove:
tcf_proto_put(tp, true, NULL);
tcf_chain_put(chain);
tcf_block_playback_offloads(block, cb, cb_priv, false, offload_in_use,
extack);
return err;
}
static int tcf_block_bind(struct tcf_block *block,
struct flow_block_offload *bo)
{
struct flow_block_cb *block_cb, *next;
int err, i = 0;
lockdep_assert_held(&block->cb_lock);
list_for_each_entry(block_cb, &bo->cb_list, list) {
err = tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, true,
tcf_block_offload_in_use(block),
bo->extack);
if (err)
goto err_unroll;
if (!bo->unlocked_driver_cb)
block->lockeddevcnt++;
i++;
}
list_splice(&bo->cb_list, &block->flow_block.cb_list);
return 0;
err_unroll:
list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) {
if (i-- > 0) {
list_del(&block_cb->list);
tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, false,
tcf_block_offload_in_use(block),
NULL);
if (!bo->unlocked_driver_cb)
block->lockeddevcnt--;
}
flow_block_cb_free(block_cb);
}
return err;
}
static void tcf_block_unbind(struct tcf_block *block,
struct flow_block_offload *bo)
{
struct flow_block_cb *block_cb, *next;
lockdep_assert_held(&block->cb_lock);
list_for_each_entry_safe(block_cb, next, &bo->cb_list, list) {
tcf_block_playback_offloads(block, block_cb->cb,
block_cb->cb_priv, false,
tcf_block_offload_in_use(block),
NULL);
list_del(&block_cb->list);
flow_block_cb_free(block_cb);
if (!bo->unlocked_driver_cb)
block->lockeddevcnt--;
}
}
static int tcf_block_setup(struct tcf_block *block,
struct flow_block_offload *bo)
{
int err;
switch (bo->command) {
case FLOW_BLOCK_BIND:
err = tcf_block_bind(block, bo);
break;
case FLOW_BLOCK_UNBIND:
err = 0;
tcf_block_unbind(block, bo);
break;
default:
WARN_ON_ONCE(1);
err = -EOPNOTSUPP;
}
return err;
}
/* Main classifier routine: scans classifier chain attached
* to this qdisc, (optionally) tests for protocol and asks
* specific classifiers.
*/
static inline int __tcf_classify(struct sk_buff *skb,
const struct tcf_proto *tp,
const struct tcf_proto *orig_tp,
struct tcf_result *res,
bool compat_mode,
u32 *last_executed_chain)
{
#ifdef CONFIG_NET_CLS_ACT
const int max_reclassify_loop = 16;
const struct tcf_proto *first_tp;
int limit = 0;
reclassify:
#endif
for (; tp; tp = rcu_dereference_bh(tp->next)) {
sched: consistently handle layer3 header accesses in the presence of VLANs There are a couple of places in net/sched/ that check skb->protocol and act on the value there. However, in the presence of VLAN tags, the value stored in skb->protocol can be inconsistent based on whether VLAN acceleration is enabled. The commit quoted in the Fixes tag below fixed the users of skb->protocol to use a helper that will always see the VLAN ethertype. However, most of the callers don't actually handle the VLAN ethertype, but expect to find the IP header type in the protocol field. This means that things like changing the ECN field, or parsing diffserv values, stops working if there's a VLAN tag, or if there are multiple nested VLAN tags (QinQ). To fix this, change the helper to take an argument that indicates whether the caller wants to skip the VLAN tags or not. When skipping VLAN tags, we make sure to skip all of them, so behaviour is consistent even in QinQ mode. To make the helper usable from the ECN code, move it to if_vlan.h instead of pkt_sched.h. v3: - Remove empty lines - Move vlan variable definitions inside loop in skb_protocol() - Also use skb_protocol() helper in IP{,6}_ECN_decapsulate() and bpf_skb_ecn_set_ce() v2: - Use eth_type_vlan() helper in skb_protocol() - Also fix code that reads skb->protocol directly - Change a couple of 'if/else if' statements to switch constructs to avoid calling the helper twice Reported-by: Ilya Ponetayev <i.ponetaev@ndmsystems.com> Fixes: d8b9605d2697 ("net: sched: fix skb->protocol use in case of accelerated vlan path") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-03 23:26:43 +03:00
__be16 protocol = skb_protocol(skb, false);
int err;
if (tp->protocol != protocol &&
tp->protocol != htons(ETH_P_ALL))
continue;
err = tp->classify(skb, tp, res);
#ifdef CONFIG_NET_CLS_ACT
if (unlikely(err == TC_ACT_RECLASSIFY && !compat_mode)) {
first_tp = orig_tp;
*last_executed_chain = first_tp->chain->index;
goto reset;
} else if (unlikely(TC_ACT_EXT_CMP(err, TC_ACT_GOTO_CHAIN))) {
first_tp = res->goto_tp;
*last_executed_chain = err & TC_ACT_EXT_VAL_MASK;
goto reset;
}
#endif
if (err >= 0)
return err;
}
return TC_ACT_UNSPEC; /* signal: continue lookup */
#ifdef CONFIG_NET_CLS_ACT
reset:
if (unlikely(limit++ >= max_reclassify_loop)) {
net_notice_ratelimited("%u: reclassify loop, rule prio %u, protocol %02x\n",
tp->chain->block->index,
tp->prio & 0xffff,
ntohs(tp->protocol));
return TC_ACT_SHOT;
}
tp = first_tp;
goto reclassify;
#endif
}
int tcf_classify(struct sk_buff *skb,
const struct tcf_block *block,
const struct tcf_proto *tp,
struct tcf_result *res, bool compat_mode)
{
#if !IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
u32 last_executed_chain = 0;
return __tcf_classify(skb, tp, tp, res, compat_mode,
&last_executed_chain);
#else
u32 last_executed_chain = tp ? tp->chain->index : 0;
const struct tcf_proto *orig_tp = tp;
struct tc_skb_ext *ext;
int ret;
if (block) {
ext = skb_ext_find(skb, TC_SKB_EXT);
if (ext && ext->chain) {
struct tcf_chain *fchain;
fchain = tcf_chain_lookup_rcu(block, ext->chain);
if (!fchain)
return TC_ACT_SHOT;
/* Consume, so cloned/redirect skbs won't inherit ext */
skb_ext_del(skb, TC_SKB_EXT);
tp = rcu_dereference_bh(fchain->filter_chain);
last_executed_chain = fchain->index;
}
}
ret = __tcf_classify(skb, tp, orig_tp, res, compat_mode,
&last_executed_chain);
/* If we missed on some chain */
if (ret == TC_ACT_UNSPEC && last_executed_chain) {
net: zero-initialize tc skb extension on allocation Function skb_ext_add() doesn't initialize created skb extension with any value and leaves it up to the user. However, since extension of type TC_SKB_EXT originally contained only single value tc_skb_ext->chain its users used to just assign the chain value without setting whole extension memory to zero first. This assumption changed when TC_SKB_EXT extension was extended with additional fields but not all users were updated to initialize the new fields which leads to use of uninitialized memory afterwards. UBSAN log: [ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28 [ 778.301495] load of value 107 is not a valid value for type '_Bool' [ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2 [ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 778.307901] Call Trace: [ 778.308680] <IRQ> [ 778.309358] dump_stack+0xbb/0x107 [ 778.310307] ubsan_epilogue+0x5/0x40 [ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48 [ 778.312454] ? memset+0x20/0x40 [ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch] [ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch] [ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch] [ 778.317188] ? create_prof_cpu_mask+0x20/0x20 [ 778.318220] ? arch_stack_walk+0x82/0xf0 [ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb [ 778.320399] ? stack_trace_save+0x91/0xc0 [ 778.321362] ? stack_trace_consume_entry+0x160/0x160 [ 778.322517] ? lock_release+0x52e/0x760 [ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch] [ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch] [ 778.325950] __netif_receive_skb_core+0x771/0x2db0 [ 778.327067] ? lock_downgrade+0x6e0/0x6f0 [ 778.328021] ? lock_acquire+0x565/0x720 [ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0 [ 778.329902] ? inet_gro_receive+0x2a7/0x10a0 [ 778.330914] ? lock_downgrade+0x6f0/0x6f0 [ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0 [ 778.332876] ? lock_release+0x52e/0x760 [ 778.333808] ? dev_gro_receive+0xcc8/0x2380 [ 778.334810] ? lock_downgrade+0x6f0/0x6f0 [ 778.335769] __netif_receive_skb_list_core+0x295/0x820 [ 778.336955] ? process_backlog+0x780/0x780 [ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core] [ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0 [ 778.341033] ? kvm_clock_get_cycles+0x14/0x20 [ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0 [ 778.343288] ? __kasan_kmalloc+0x7a/0x90 [ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core] [ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core] [ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820 [ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core] [ 778.349688] ? napi_gro_flush+0x26c/0x3c0 [ 778.350641] napi_complete_done+0x188/0x6b0 [ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core] [ 778.352853] __napi_poll+0x9f/0x510 [ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core] [ 778.355158] net_rx_action+0x34c/0xa40 [ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0 [ 778.357083] ? sched_clock_cpu+0x18/0x190 [ 778.358041] ? __common_interrupt+0x8e/0x1a0 [ 778.359045] __do_softirq+0x1ce/0x984 [ 778.359938] __irq_exit_rcu+0x137/0x1d0 [ 778.360865] irq_exit_rcu+0xa/0x20 [ 778.361708] common_interrupt+0x80/0xa0 [ 778.362640] </IRQ> [ 778.363212] asm_common_interrupt+0x1e/0x40 [ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10 [ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00 [ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246 [ 778.370570] RAX: ffff88842de46a80 RBX: ffffffff84425840 RCX: ffffffff83418468 [ 778.372143] RDX: 000000000026f1da RSI: 0000000000000004 RDI: ffffffff8343af5e [ 778.373722] RBP: fffffbfff0884b08 R08: 0000000000000000 R09: ffff88842de46bcb [ 778.375292] R10: ffffed1085bc8d79 R11: 0000000000000001 R12: 0000000000000000 [ 778.376860] R13: ffffffff851124a0 R14: 0000000000000000 R15: dffffc0000000000 [ 778.378491] ? rcu_eqs_enter.constprop.0+0xb8/0xe0 [ 778.379606] ? default_idle_call+0x5e/0xe0 [ 778.380578] default_idle+0xa/0x10 [ 778.381406] default_idle_call+0x96/0xe0 [ 778.382350] do_idle+0x3d4/0x550 [ 778.383153] ? arch_cpu_idle_exit+0x40/0x40 [ 778.384143] cpu_startup_entry+0x19/0x20 [ 778.385078] start_kernel+0x3c7/0x3e5 [ 778.385978] secondary_startup_64_no_verify+0xb0/0xbb Fix the issue by providing new function tc_skb_ext_alloc() that allocates tc skb extension and initializes its memory to 0 before returning it to the caller. Change all existing users to use new API instead of calling skb_ext_add() directly. Fixes: 038ebb1a713d ("net/sched: act_ct: fix miss set mru for ovs after defrag in act_ct") Fixes: d29334c15d33 ("net/sched: act_api: fix miss set post_ct for ovs after do conntrack in act_ct") Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Acked-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-05-25 16:21:52 +03:00
ext = tc_skb_ext_alloc(skb);
if (WARN_ON_ONCE(!ext))
return TC_ACT_SHOT;
ext->chain = last_executed_chain;
ext->mru = qdisc_skb_cb(skb)->mru;
ext->post_ct = qdisc_skb_cb(skb)->post_ct;
}
return ret;
#endif
}
EXPORT_SYMBOL(tcf_classify);
struct tcf_chain_info {
struct tcf_proto __rcu **pprev;
struct tcf_proto __rcu *next;
};
static struct tcf_proto *tcf_chain_tp_prev(struct tcf_chain *chain,
struct tcf_chain_info *chain_info)
{
return tcf_chain_dereference(*chain_info->pprev, chain);
}
static int tcf_chain_tp_insert(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
struct tcf_proto *tp)
{
if (chain->flushing)
return -EAGAIN;
if (*chain_info->pprev == chain->filter_chain)
tcf_chain0_head_change(chain, tp);
tcf_proto_get(tp);
RCU_INIT_POINTER(tp->next, tcf_chain_tp_prev(chain, chain_info));
rcu_assign_pointer(*chain_info->pprev, tp);
return 0;
}
static void tcf_chain_tp_remove(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
struct tcf_proto *tp)
{
struct tcf_proto *next = tcf_chain_dereference(chain_info->next, chain);
tcf_proto_mark_delete(tp);
if (tp == chain->filter_chain)
tcf_chain0_head_change(chain, next);
RCU_INIT_POINTER(*chain_info->pprev, next);
}
static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
u32 protocol, u32 prio,
bool prio_allocate);
/* Try to insert new proto.
* If proto with specified priority already exists, free new proto
* and return existing one.
*/
static struct tcf_proto *tcf_chain_tp_insert_unique(struct tcf_chain *chain,
struct tcf_proto *tp_new,
u32 protocol, u32 prio,
bool rtnl_held)
{
struct tcf_chain_info chain_info;
struct tcf_proto *tp;
int err = 0;
mutex_lock(&chain->filter_chain_lock);
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
if (tcf_proto_exists_destroying(chain, tp_new)) {
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
return ERR_PTR(-EAGAIN);
}
tp = tcf_chain_tp_find(chain, &chain_info,
protocol, prio, false);
if (!tp)
err = tcf_chain_tp_insert(chain, &chain_info, tp_new);
mutex_unlock(&chain->filter_chain_lock);
if (tp) {
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
tp_new = tp;
} else if (err) {
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
tcf_proto_destroy(tp_new, rtnl_held, false, NULL);
tp_new = ERR_PTR(err);
}
return tp_new;
}
static void tcf_chain_tp_delete_empty(struct tcf_chain *chain,
struct tcf_proto *tp, bool rtnl_held,
struct netlink_ext_ack *extack)
{
struct tcf_chain_info chain_info;
struct tcf_proto *tp_iter;
struct tcf_proto **pprev;
struct tcf_proto *next;
mutex_lock(&chain->filter_chain_lock);
/* Atomically find and remove tp from chain. */
for (pprev = &chain->filter_chain;
(tp_iter = tcf_chain_dereference(*pprev, chain));
pprev = &tp_iter->next) {
if (tp_iter == tp) {
chain_info.pprev = pprev;
chain_info.next = tp_iter->next;
WARN_ON(tp_iter->deleting);
break;
}
}
/* Verify that tp still exists and no new filters were inserted
* concurrently.
* Mark tp for deletion if it is empty.
*/
net/sched: add delete_empty() to filters and use it in cls_flower Revert "net/sched: cls_u32: fix refcount leak in the error path of u32_change()", and fix the u32 refcount leak in a more generic way that preserves the semantic of rule dumping. On tc filters that don't support lockless insertion/removal, there is no need to guard against concurrent insertion when a removal is in progress. Therefore, for most of them we can avoid a full walk() when deleting, and just decrease the refcount, like it was done on older Linux kernels. This fixes situations where walk() was wrongly detecting a non-empty filter, like it happened with cls_u32 in the error path of change(), thus leading to failures in the following tdc selftests: 6aa7: (filter, u32) Add/Replace u32 with source match and invalid indev 6658: (filter, u32) Add/Replace u32 with custom hash table and invalid handle 74c2: (filter, u32) Add/Replace u32 filter with invalid hash table id On cls_flower, and on (future) lockless filters, this check is necessary: move all the check_empty() logic in a callback so that each filter can have its own implementation. For cls_flower, it's sufficient to check if no IDRs have been allocated. This reverts commit 275c44aa194b7159d1191817b20e076f55f0e620. Changes since v1: - document the need for delete_empty() when TCF_PROTO_OPS_DOIT_UNLOCKED is used, thanks to Vlad Buslov - implement delete_empty() without doing fl_walk(), thanks to Vlad Buslov - squash revert and new fix in a single patch, to be nice with bisect tests that run tdc on u32 filter, thanks to Dave Miller Fixes: 275c44aa194b ("net/sched: cls_u32: fix refcount leak in the error path of u32_change()") Fixes: 6676d5e416ee ("net: sched: set dedicated tcf_walker flag when tp is empty") Suggested-by: Jamal Hadi Salim <jhs@mojatatu.com> Suggested-by: Vlad Buslov <vladbu@mellanox.com> Signed-off-by: Davide Caratti <dcaratti@redhat.com> Reviewed-by: Vlad Buslov <vladbu@mellanox.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-28 18:36:58 +03:00
if (!tp_iter || !tcf_proto_check_delete(tp)) {
mutex_unlock(&chain->filter_chain_lock);
return;
}
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
tcf_proto_signal_destroying(chain, tp);
next = tcf_chain_dereference(chain_info.next, chain);
if (tp == chain->filter_chain)
tcf_chain0_head_change(chain, next);
RCU_INIT_POINTER(*chain_info.pprev, next);
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_put(tp, rtnl_held, extack);
}
static struct tcf_proto *tcf_chain_tp_find(struct tcf_chain *chain,
struct tcf_chain_info *chain_info,
u32 protocol, u32 prio,
bool prio_allocate)
{
struct tcf_proto **pprev;
struct tcf_proto *tp;
/* Check the chain for existence of proto-tcf with this priority */
for (pprev = &chain->filter_chain;
(tp = tcf_chain_dereference(*pprev, chain));
pprev = &tp->next) {
if (tp->prio >= prio) {
if (tp->prio == prio) {
if (prio_allocate ||
(tp->protocol != protocol && protocol))
return ERR_PTR(-EINVAL);
} else {
tp = NULL;
}
break;
}
}
chain_info->pprev = pprev;
if (tp) {
chain_info->next = tp->next;
tcf_proto_get(tp);
} else {
chain_info->next = NULL;
}
return tp;
}
static int tcf_fill_node(struct net *net, struct sk_buff *skb,
struct tcf_proto *tp, struct tcf_block *block,
struct Qdisc *q, u32 parent, void *fh,
u32 portid, u32 seq, u16 flags, int event,
bool terse_dump, bool rtnl_held)
{
struct tcmsg *tcm;
struct nlmsghdr *nlh;
unsigned char *b = skb_tail_pointer(skb);
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags);
if (!nlh)
goto out_nlmsg_trim;
tcm = nlmsg_data(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
if (q) {
tcm->tcm_ifindex = qdisc_dev(q)->ifindex;
tcm->tcm_parent = parent;
} else {
tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK;
tcm->tcm_block_index = block->index;
}
tcm->tcm_info = TC_H_MAKE(tp->prio, tp->protocol);
if (nla_put_string(skb, TCA_KIND, tp->ops->kind))
goto nla_put_failure;
if (nla_put_u32(skb, TCA_CHAIN, tp->chain->index))
goto nla_put_failure;
if (!fh) {
tcm->tcm_handle = 0;
} else if (terse_dump) {
if (tp->ops->terse_dump) {
if (tp->ops->terse_dump(net, tp, fh, skb, tcm,
rtnl_held) < 0)
goto nla_put_failure;
} else {
goto cls_op_not_supp;
}
} else {
if (tp->ops->dump &&
tp->ops->dump(net, tp, fh, skb, tcm, rtnl_held) < 0)
goto nla_put_failure;
}
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
out_nlmsg_trim:
nla_put_failure:
cls_op_not_supp:
nlmsg_trim(skb, b);
return -1;
}
static int tfilter_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct tcf_proto *tp,
struct tcf_block *block, struct Qdisc *q,
u32 parent, void *fh, int event, bool unicast,
bool rtnl_held)
{
struct sk_buff *skb;
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
int err = 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid,
n->nlmsg_seq, n->nlmsg_flags, event,
false, rtnl_held) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
return err;
}
static int tfilter_del_notify(struct net *net, struct sk_buff *oskb,
struct nlmsghdr *n, struct tcf_proto *tp,
struct tcf_block *block, struct Qdisc *q,
u32 parent, void *fh, bool unicast, bool *last,
bool rtnl_held, struct netlink_ext_ack *extack)
{
struct sk_buff *skb;
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
int err;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tcf_fill_node(net, skb, tp, block, q, parent, fh, portid,
n->nlmsg_seq, n->nlmsg_flags, RTM_DELTFILTER,
false, rtnl_held) <= 0) {
NL_SET_ERR_MSG(extack, "Failed to build del event notification");
kfree_skb(skb);
return -EINVAL;
}
err = tp->ops->delete(tp, fh, last, rtnl_held, extack);
if (err) {
kfree_skb(skb);
return err;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
n->nlmsg_flags & NLM_F_ECHO);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send filter delete notification");
return err;
}
static void tfilter_notify_chain(struct net *net, struct sk_buff *oskb,
struct tcf_block *block, struct Qdisc *q,
u32 parent, struct nlmsghdr *n,
struct tcf_chain *chain, int event)
{
struct tcf_proto *tp;
for (tp = tcf_get_next_proto(chain, NULL);
tp; tp = tcf_get_next_proto(chain, tp))
tfilter_notify(net, oskb, n, tp, block,
q, parent, NULL, event, false, true);
}
static void tfilter_put(struct tcf_proto *tp, void *fh)
{
if (tp->ops->put && fh)
tp->ops->put(tp, fh);
}
static int tc_new_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
bool prio_allocate;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain_info chain_info;
struct tcf_chain *chain = NULL;
struct tcf_block *block;
struct tcf_proto *tp;
unsigned long cl;
void *fh;
int err;
net, sched: fix soft lockup in tc_classify Shahar reported a soft lockup in tc_classify(), where we run into an endless loop when walking the classifier chain due to tp->next == tp which is a state we should never run into. The issue only seems to trigger under load in the tc control path. What happens is that in tc_ctl_tfilter(), thread A allocates a new tp, initializes it, sets tp_created to 1, and calls into tp->ops->change() with it. In that classifier callback we had to unlock/lock the rtnl mutex and returned with -EAGAIN. One reason why we need to drop there is, for example, that we need to request an action module to be loaded. This happens via tcf_exts_validate() -> tcf_action_init/_1() meaning after we loaded and found the requested action, we need to redo the whole request so we don't race against others. While we had to unlock rtnl in that time, thread B's request was processed next on that CPU. Thread B added a new tp instance successfully to the classifier chain. When thread A returned grabbing the rtnl mutex again, propagating -EAGAIN and destroying its tp instance which never got linked, we goto replay and redo A's request. This time when walking the classifier chain in tc_ctl_tfilter() for checking for existing tp instances we had a priority match and found the tp instance that was created and linked by thread B. Now calling again into tp->ops->change() with that tp was successful and returned without error. tp_created was never cleared in the second round, thus kernel thinks that we need to link it into the classifier chain (once again). tp and *back point to the same object due to the match we had earlier on. Thus for thread B's already public tp, we reset tp->next to tp itself and link it into the chain, which eventually causes the mentioned endless loop in tc_classify() once a packet hits the data path. Fix is to clear tp_created at the beginning of each request, also when we replay it. On the paths that can cause -EAGAIN we already destroy the original tp instance we had and on replay we really need to start from scratch. It seems that this issue was first introduced in commit 12186be7d2e1 ("net_cls: fix unconfigured struct tcf_proto keeps chaining and avoid kernel panic when we use cls_cgroup"). Fixes: 12186be7d2e1 ("net_cls: fix unconfigured struct tcf_proto keeps chaining and avoid kernel panic when we use cls_cgroup") Reported-by: Shahar Klein <shahark@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Tested-by: Shahar Klein <shahark@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-21 20:04:11 +03:00
int tp_created;
bool rtnl_held = false;
net/sched: cls_api, reset flags on replay tc_new_tfilter() can replay a request if it got EAGAIN. The cited commit didn't account for this when it converted TC action ->init() API to use flags instead of parameters. This can lead to passing stale flags down the call chain which results in trying to lock rtnl when it's already locked, deadlocking the entire system. Fix by making sure to reset flags on each replay. ============================================ WARNING: possible recursive locking detected 5.14.0-rc3-custom-49011-g3d2bbb4f104d #447 Not tainted -------------------------------------------- tc/37605 is trying to acquire lock: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_setup_cb_add+0x14b/0x4d0 but task is already holding lock: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_new_tfilter+0xb12/0x22e0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(rtnl_mutex); lock(rtnl_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by tc/37605: #0: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_new_tfilter+0xb12/0x22e0 stack backtrace: CPU: 0 PID: 37605 Comm: tc Not tainted 5.14.0-rc3-custom-49011-g3d2bbb4f104d #447 Hardware name: Mellanox Technologies Ltd. MSN2010/SA002610, BIOS 5.6.5 08/24/2017 Call Trace: dump_stack_lvl+0x8b/0xb3 __lock_acquire.cold+0x175/0x3cb lock_acquire+0x1a4/0x4f0 __mutex_lock+0x136/0x10d0 fl_hw_replace_filter+0x458/0x630 [cls_flower] fl_change+0x25f2/0x4a64 [cls_flower] tc_new_tfilter+0xa65/0x22e0 rtnetlink_rcv_msg+0x86c/0xc60 netlink_rcv_skb+0x14d/0x430 netlink_unicast+0x539/0x7e0 netlink_sendmsg+0x84d/0xd80 ____sys_sendmsg+0x7ff/0x970 ___sys_sendmsg+0xf8/0x170 __sys_sendmsg+0xea/0x1b0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f7b93b6c0a7 Code: 0c 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> RSP: 002b:00007ffe365b3818 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7b93b6c0a7 RDX: 0000000000000000 RSI: 00007ffe365b3880 RDI: 0000000000000003 RBP: 00000000610a75f6 R08: 0000000000000001 R09: 0000000000000000 R10: fffffffffffff3a9 R11: 0000000000000246 R12: 0000000000000001 R13: 0000000000000000 R14: 00007ffe365b7b58 R15: 00000000004822c0 Fixes: 695176bfe5de ("net_sched: refactor TC action init API") Signed-off-by: Mark Bloch <mbloch@nvidia.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Ido Schimmel <idosch@nvidia.com> Tested-by: Ido Schimmel <idosch@nvidia.com> Link: https://lore.kernel.org/r/20210810034305.63997-1-mbloch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-10 06:43:05 +03:00
u32 flags;
if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN))
return -EPERM;
replay:
net, sched: fix soft lockup in tc_classify Shahar reported a soft lockup in tc_classify(), where we run into an endless loop when walking the classifier chain due to tp->next == tp which is a state we should never run into. The issue only seems to trigger under load in the tc control path. What happens is that in tc_ctl_tfilter(), thread A allocates a new tp, initializes it, sets tp_created to 1, and calls into tp->ops->change() with it. In that classifier callback we had to unlock/lock the rtnl mutex and returned with -EAGAIN. One reason why we need to drop there is, for example, that we need to request an action module to be loaded. This happens via tcf_exts_validate() -> tcf_action_init/_1() meaning after we loaded and found the requested action, we need to redo the whole request so we don't race against others. While we had to unlock rtnl in that time, thread B's request was processed next on that CPU. Thread B added a new tp instance successfully to the classifier chain. When thread A returned grabbing the rtnl mutex again, propagating -EAGAIN and destroying its tp instance which never got linked, we goto replay and redo A's request. This time when walking the classifier chain in tc_ctl_tfilter() for checking for existing tp instances we had a priority match and found the tp instance that was created and linked by thread B. Now calling again into tp->ops->change() with that tp was successful and returned without error. tp_created was never cleared in the second round, thus kernel thinks that we need to link it into the classifier chain (once again). tp and *back point to the same object due to the match we had earlier on. Thus for thread B's already public tp, we reset tp->next to tp itself and link it into the chain, which eventually causes the mentioned endless loop in tc_classify() once a packet hits the data path. Fix is to clear tp_created at the beginning of each request, also when we replay it. On the paths that can cause -EAGAIN we already destroy the original tp instance we had and on replay we really need to start from scratch. It seems that this issue was first introduced in commit 12186be7d2e1 ("net_cls: fix unconfigured struct tcf_proto keeps chaining and avoid kernel panic when we use cls_cgroup"). Fixes: 12186be7d2e1 ("net_cls: fix unconfigured struct tcf_proto keeps chaining and avoid kernel panic when we use cls_cgroup") Reported-by: Shahar Klein <shahark@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Eric Dumazet <edumazet@google.com> Tested-by: Shahar Klein <shahark@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-12-21 20:04:11 +03:00
tp_created = 0;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
prio_allocate = false;
parent = t->tcm_parent;
tp = NULL;
cl = 0;
block = NULL;
net/sched: cls_api, reset flags on replay tc_new_tfilter() can replay a request if it got EAGAIN. The cited commit didn't account for this when it converted TC action ->init() API to use flags instead of parameters. This can lead to passing stale flags down the call chain which results in trying to lock rtnl when it's already locked, deadlocking the entire system. Fix by making sure to reset flags on each replay. ============================================ WARNING: possible recursive locking detected 5.14.0-rc3-custom-49011-g3d2bbb4f104d #447 Not tainted -------------------------------------------- tc/37605 is trying to acquire lock: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_setup_cb_add+0x14b/0x4d0 but task is already holding lock: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_new_tfilter+0xb12/0x22e0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(rtnl_mutex); lock(rtnl_mutex); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by tc/37605: #0: ffffffff841df2f0 (rtnl_mutex){+.+.}-{3:3}, at: tc_new_tfilter+0xb12/0x22e0 stack backtrace: CPU: 0 PID: 37605 Comm: tc Not tainted 5.14.0-rc3-custom-49011-g3d2bbb4f104d #447 Hardware name: Mellanox Technologies Ltd. MSN2010/SA002610, BIOS 5.6.5 08/24/2017 Call Trace: dump_stack_lvl+0x8b/0xb3 __lock_acquire.cold+0x175/0x3cb lock_acquire+0x1a4/0x4f0 __mutex_lock+0x136/0x10d0 fl_hw_replace_filter+0x458/0x630 [cls_flower] fl_change+0x25f2/0x4a64 [cls_flower] tc_new_tfilter+0xa65/0x22e0 rtnetlink_rcv_msg+0x86c/0xc60 netlink_rcv_skb+0x14d/0x430 netlink_unicast+0x539/0x7e0 netlink_sendmsg+0x84d/0xd80 ____sys_sendmsg+0x7ff/0x970 ___sys_sendmsg+0xf8/0x170 __sys_sendmsg+0xea/0x1b0 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f7b93b6c0a7 Code: 0c 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 2e 00 00 00 0f 05 <48> RSP: 002b:00007ffe365b3818 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f7b93b6c0a7 RDX: 0000000000000000 RSI: 00007ffe365b3880 RDI: 0000000000000003 RBP: 00000000610a75f6 R08: 0000000000000001 R09: 0000000000000000 R10: fffffffffffff3a9 R11: 0000000000000246 R12: 0000000000000001 R13: 0000000000000000 R14: 00007ffe365b7b58 R15: 00000000004822c0 Fixes: 695176bfe5de ("net_sched: refactor TC action init API") Signed-off-by: Mark Bloch <mbloch@nvidia.com> Reviewed-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Ido Schimmel <idosch@nvidia.com> Tested-by: Ido Schimmel <idosch@nvidia.com> Link: https://lore.kernel.org/r/20210810034305.63997-1-mbloch@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-10 06:43:05 +03:00
flags = 0;
if (prio == 0) {
/* If no priority is provided by the user,
* we allocate one.
*/
if (n->nlmsg_flags & NLM_F_CREATE) {
prio = TC_H_MAKE(0x80000000U, 0U);
prio_allocate = true;
} else {
NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero");
return -ENOENT;
net, cls: allow for deleting all filters for given parent Add a possibility where the user can just specify the parent and all filters under that parent are then being purged. Currently, for example for scripting, one needs to specify pref/prio to have a well-defined number for 'tc filter del' command for addressing the previously created instance or additionally filter handle in case of priorities being the same. Improve usage by allowing the option for tc to specify the parent and removing the whole chain for that given parent. Example usage after patch, no tc changes required: # tc qdisc replace dev foo clsact # tc filter add dev foo egress bpf da obj ./bpf.o # tc filter add dev foo egress bpf da obj ./bpf.o # tc filter show dev foo egress filter protocol all pref 49151 bpf filter protocol all pref 49151 bpf handle 0x1 bpf.o:[classifier] direct-action filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bpf.o:[classifier] direct-action # tc filter del dev foo egress # tc filter show dev foo egress # Previously, RTM_DELTFILTER requests with invalid prio of 0 were rejected, so only netlink requests with RTM_NEWTFILTER and NLM_F_CREATE flag were allowed where the kernel would auto-generate a pref/prio. We can piggyback on that and use prio of 0 as a wildcard for requests of RTM_DELTFILTER. For notifying tc netlink monitoring users (e.g. libnl uses this for caching), there are two options, that is, sending individual tfilter_notify() notifications for each tcf_proto, or sending a single one indicating wildcard removal. I tried both and there are pros and cons for each, eventually I decided for sending individual tfilter_notify(), so that user space can support this seamlessly and there won't be a mess of changing each and every application to make sure expectations from the kernel won't break when they don't understand single notification. Since linear chains don't really scale, I expect only a handful of classifiers to be attached at max for a given parent anyway. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 00:10:22 +03:00
}
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if rtnl_held was set to true on previous iteration,
* block is shared (no qdisc found), qdisc is not unlocked, classifier
* type is not specified, classifier is not unlocked.
*/
if (rtnl_held ||
(q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
net_sched: fix tcm_parent in tc filter dump When we tell kernel to dump filters from root (ffff:ffff), those filters on ingress (ffff:0000) are matched, but their true parents must be dumped as they are. However, kernel dumps just whatever we tell it, that is either ffff:ffff or ffff:0000: $ nl-cls-list --dev=dummy0 --parent=root cls basic dev dummy0 id none parent root prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent root prio 49152 protocol ip match-all $ nl-cls-list --dev=dummy0 --parent=ffff: cls basic dev dummy0 id none parent ffff: prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent ffff: prio 49152 protocol ip match-all This is confusing and misleading, more importantly this is a regression since 4.15, so the old behavior must be restored. And, when tc filters are installed on a tc class, the parent should be the classid, rather than the qdisc handle. Commit edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") removed the classid we save for filters, we can just restore this classid in tcf_block. Steps to reproduce this: ip li set dev dummy0 up tc qd add dev dummy0 ingress tc filter add dev dummy0 parent ffff: protocol arp basic action pass tc filter show dev dummy0 root Before this patch: filter protocol arp pref 49152 basic filter protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 After this patch: filter parent ffff: protocol arp pref 49152 basic filter parent ffff: protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 Fixes: a10fa20101ae ("net: sched: propagate q and parent from caller down to tcf_fill_node") Fixes: edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 06:53:49 +03:00
block->classid = parent;
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, true);
if (!chain) {
NL_SET_ERR_MSG(extack, "Cannot create specified filter chain");
err = -ENOMEM;
net, cls: allow for deleting all filters for given parent Add a possibility where the user can just specify the parent and all filters under that parent are then being purged. Currently, for example for scripting, one needs to specify pref/prio to have a well-defined number for 'tc filter del' command for addressing the previously created instance or additionally filter handle in case of priorities being the same. Improve usage by allowing the option for tc to specify the parent and removing the whole chain for that given parent. Example usage after patch, no tc changes required: # tc qdisc replace dev foo clsact # tc filter add dev foo egress bpf da obj ./bpf.o # tc filter add dev foo egress bpf da obj ./bpf.o # tc filter show dev foo egress filter protocol all pref 49151 bpf filter protocol all pref 49151 bpf handle 0x1 bpf.o:[classifier] direct-action filter protocol all pref 49152 bpf filter protocol all pref 49152 bpf handle 0x1 bpf.o:[classifier] direct-action # tc filter del dev foo egress # tc filter show dev foo egress # Previously, RTM_DELTFILTER requests with invalid prio of 0 were rejected, so only netlink requests with RTM_NEWTFILTER and NLM_F_CREATE flag were allowed where the kernel would auto-generate a pref/prio. We can piggyback on that and use prio of 0 as a wildcard for requests of RTM_DELTFILTER. For notifying tc netlink monitoring users (e.g. libnl uses this for caching), there are two options, that is, sending individual tfilter_notify() notifications for each tcf_proto, or sending a single one indicating wildcard removal. I tried both and there are pros and cons for each, eventually I decided for sending individual tfilter_notify(), so that user space can support this seamlessly and there won't be a mess of changing each and every application to make sure expectations from the kernel won't break when they don't understand single notification. Since linear chains don't really scale, I expect only a handful of classifiers to be attached at max for a given parent anyway. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11 00:10:22 +03:00
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, prio_allocate);
if (IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = PTR_ERR(tp);
goto errout_locked;
}
if (tp == NULL) {
struct tcf_proto *tp_new = NULL;
if (chain->flushing) {
err = -EAGAIN;
goto errout_locked;
}
/* Proto-tcf does not exist, create new one */
if (tca[TCA_KIND] == NULL || !protocol) {
NL_SET_ERR_MSG(extack, "Filter kind and protocol must be specified");
err = -EINVAL;
goto errout_locked;
}
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter");
err = -ENOENT;
goto errout_locked;
}
if (prio_allocate)
prio = tcf_auto_prio(tcf_chain_tp_prev(chain,
&chain_info));
mutex_unlock(&chain->filter_chain_lock);
net_sched: use validated TCA_KIND attribute in tc_new_tfilter() sysbot found another issue in tc_new_tfilter(). We probably should use @name which contains the sanitized version of TCA_KIND. BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:608 [inline] BUG: KMSAN: uninit-value in string+0x522/0x690 lib/vsprintf.c:689 CPU: 1 PID: 10753 Comm: syz-executor.1 Not tainted 5.5.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 string_nocheck lib/vsprintf.c:608 [inline] string+0x522/0x690 lib/vsprintf.c:689 vsnprintf+0x207d/0x31b0 lib/vsprintf.c:2574 __request_module+0x2ad/0x11c0 kernel/kmod.c:143 tcf_proto_lookup_ops+0x241/0x720 net/sched/cls_api.c:139 tcf_proto_create net/sched/cls_api.c:262 [inline] tc_new_tfilter+0x2a4e/0x5010 net/sched/cls_api.c:2058 rtnetlink_rcv_msg+0xcb7/0x1570 net/core/rtnetlink.c:5415 netlink_rcv_skb+0x451/0x650 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:5442 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0xf9e/0x1100 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x1248/0x14d0 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:639 [inline] sock_sendmsg net/socket.c:659 [inline] ____sys_sendmsg+0x12b6/0x1350 net/socket.c:2330 ___sys_sendmsg net/socket.c:2384 [inline] __sys_sendmsg+0x451/0x5f0 net/socket.c:2417 __do_sys_sendmsg net/socket.c:2426 [inline] __se_sys_sendmsg+0x97/0xb0 net/socket.c:2424 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2424 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45b349 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f88b3948c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f88b39496d4 RCX: 000000000045b349 RDX: 0000000000000000 RSI: 00000000200001c0 RDI: 0000000000000003 RBP: 000000000075bfc8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 000000000000099f R14: 00000000004cb163 R15: 000000000075bfd4 Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:144 [inline] kmsan_internal_poison_shadow+0x66/0xd0 mm/kmsan/kmsan.c:127 kmsan_slab_alloc+0x8a/0xe0 mm/kmsan/kmsan_hooks.c:82 slab_alloc_node mm/slub.c:2774 [inline] __kmalloc_node_track_caller+0xb40/0x1200 mm/slub.c:4382 __kmalloc_reserve net/core/skbuff.c:141 [inline] __alloc_skb+0x2fd/0xac0 net/core/skbuff.c:209 alloc_skb include/linux/skbuff.h:1049 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1174 [inline] netlink_sendmsg+0x7d3/0x14d0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:639 [inline] sock_sendmsg net/socket.c:659 [inline] ____sys_sendmsg+0x12b6/0x1350 net/socket.c:2330 ___sys_sendmsg net/socket.c:2384 [inline] __sys_sendmsg+0x451/0x5f0 net/socket.c:2417 __do_sys_sendmsg net/socket.c:2426 [inline] __se_sys_sendmsg+0x97/0xb0 net/socket.c:2424 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2424 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 6f96c3c6904c ("net_sched: fix backward compatibility for TCA_KIND") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-21 22:02:20 +03:00
tp_new = tcf_proto_create(name, protocol, prio, chain,
rtnl_held, extack);
if (IS_ERR(tp_new)) {
err = PTR_ERR(tp_new);
goto errout_tp;
}
tp_created = 1;
tp = tcf_chain_tp_insert_unique(chain, tp_new, protocol, prio,
rtnl_held);
if (IS_ERR(tp)) {
err = PTR_ERR(tp);
goto errout_tp;
}
} else {
mutex_unlock(&chain->filter_chain_lock);
}
if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout;
}
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWTFILTER and NLM_F_CREATE to create a new filter");
err = -ENOENT;
goto errout;
}
} else if (n->nlmsg_flags & NLM_F_EXCL) {
tfilter_put(tp, fh);
NL_SET_ERR_MSG(extack, "Filter already exists");
err = -EEXIST;
goto errout;
}
if (chain->tmplt_ops && chain->tmplt_ops != tp->ops) {
NL_SET_ERR_MSG(extack, "Chain template is set to a different filter kind");
err = -EINVAL;
goto errout;
}
if (!(n->nlmsg_flags & NLM_F_CREATE))
flags |= TCA_ACT_FLAGS_REPLACE;
if (!rtnl_held)
flags |= TCA_ACT_FLAGS_NO_RTNL;
err = tp->ops->change(net, skb, tp, cl, t->tcm_handle, tca, &fh,
flags, extack);
if (err == 0) {
tfilter_notify(net, skb, n, tp, block, q, parent, fh,
RTM_NEWTFILTER, false, rtnl_held);
tfilter_put(tp, fh);
net: sched: verify that q!=NULL before setting q->flags In function int tc_new_tfilter() q pointer can be NULL when adding filter on a shared block. With recent change that resets TCQ_F_CAN_BYPASS after filter creation, following NULL pointer dereference happens in case parent block is shared: [ 212.925060] BUG: kernel NULL pointer dereference, address: 0000000000000010 [ 212.925445] #PF: supervisor write access in kernel mode [ 212.925709] #PF: error_code(0x0002) - not-present page [ 212.925965] PGD 8000000827923067 P4D 8000000827923067 PUD 827924067 PMD 0 [ 212.926302] Oops: 0002 [#1] SMP KASAN PTI [ 212.926539] CPU: 18 PID: 2617 Comm: tc Tainted: G B 5.2.0+ #512 [ 212.926938] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 212.927364] RIP: 0010:tc_new_tfilter+0x698/0xd40 [ 212.927633] Code: 74 0d 48 85 c0 74 08 48 89 ef e8 03 aa 62 00 48 8b 84 24 a0 00 00 00 48 8d 78 10 48 89 44 24 18 e8 4d 0c 6b ff 48 8b 44 24 18 <83> 60 10 f b 48 85 ed 0f 85 3d fe ff ff e9 4f fe ff ff e8 81 26 f8 [ 212.928607] RSP: 0018:ffff88884fd5f5d8 EFLAGS: 00010296 [ 212.928905] RAX: 0000000000000000 RBX: 0000000000000000 RCX: dffffc0000000000 [ 212.929201] RDX: 0000000000000007 RSI: 0000000000000004 RDI: 0000000000000297 [ 212.929402] RBP: ffff88886bedd600 R08: ffffffffb91d4b51 R09: fffffbfff7616e4d [ 212.929609] R10: fffffbfff7616e4c R11: ffffffffbb0b7263 R12: ffff88886bc61040 [ 212.929803] R13: ffff88884fd5f950 R14: ffffc900039c5000 R15: ffff88835e927680 [ 212.929999] FS: 00007fe7c50b6480(0000) GS:ffff88886f980000(0000) knlGS:0000000000000000 [ 212.930235] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 212.930394] CR2: 0000000000000010 CR3: 000000085bd04002 CR4: 00000000001606e0 [ 212.930588] Call Trace: [ 212.930682] ? tc_del_tfilter+0xa40/0xa40 [ 212.930811] ? __lock_acquire+0x5b5/0x2460 [ 212.930948] ? find_held_lock+0x85/0xa0 [ 212.931081] ? tc_del_tfilter+0xa40/0xa40 [ 212.931201] rtnetlink_rcv_msg+0x4ab/0x5f0 [ 212.931332] ? rtnl_dellink+0x490/0x490 [ 212.931454] ? lockdep_hardirqs_on+0x260/0x260 [ 212.931589] ? netlink_deliver_tap+0xab/0x5a0 [ 212.931717] ? match_held_lock+0x1b/0x240 [ 212.931844] netlink_rcv_skb+0xd0/0x200 [ 212.931958] ? rtnl_dellink+0x490/0x490 [ 212.932079] ? netlink_ack+0x440/0x440 [ 212.932205] ? netlink_deliver_tap+0x161/0x5a0 [ 212.932335] ? lock_downgrade+0x360/0x360 [ 212.932457] ? lock_acquire+0xe5/0x210 [ 212.932579] netlink_unicast+0x296/0x350 [ 212.932705] ? netlink_attachskb+0x390/0x390 [ 212.932834] ? _copy_from_iter_full+0xe0/0x3a0 [ 212.932976] netlink_sendmsg+0x394/0x600 [ 212.937998] ? netlink_unicast+0x350/0x350 [ 212.943033] ? move_addr_to_kernel.part.0+0x90/0x90 [ 212.948115] ? netlink_unicast+0x350/0x350 [ 212.953185] sock_sendmsg+0x96/0xa0 [ 212.958099] ___sys_sendmsg+0x482/0x520 [ 212.962881] ? match_held_lock+0x1b/0x240 [ 212.967618] ? copy_msghdr_from_user+0x250/0x250 [ 212.972337] ? lock_downgrade+0x360/0x360 [ 212.976973] ? rwlock_bug.part.0+0x60/0x60 [ 212.981548] ? __mod_node_page_state+0x1f/0xa0 [ 212.986060] ? match_held_lock+0x1b/0x240 [ 212.990567] ? find_held_lock+0x85/0xa0 [ 212.994989] ? do_user_addr_fault+0x349/0x5b0 [ 212.999387] ? lock_downgrade+0x360/0x360 [ 213.003713] ? find_held_lock+0x85/0xa0 [ 213.007972] ? __fget_light+0xa1/0xf0 [ 213.012143] ? sockfd_lookup_light+0x91/0xb0 [ 213.016165] __sys_sendmsg+0xba/0x130 [ 213.020040] ? __sys_sendmsg_sock+0xb0/0xb0 [ 213.023870] ? handle_mm_fault+0x337/0x470 [ 213.027592] ? page_fault+0x8/0x30 [ 213.031316] ? lockdep_hardirqs_off+0xbe/0x100 [ 213.034999] ? mark_held_locks+0x24/0x90 [ 213.038671] ? do_syscall_64+0x1e/0xe0 [ 213.042297] do_syscall_64+0x74/0xe0 [ 213.045828] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 213.049354] RIP: 0033:0x7fe7c527c7b8 [ 213.052792] Code: 89 02 48 c7 c0 ff ff ff ff eb bb 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 8d 05 65 8f 0c 00 8b 00 85 c0 75 17 b8 2e 00 00 00 0f 05 <48> 3d 00 f 0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 89 54 [ 213.060269] RSP: 002b:00007ffc3f7908a8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e [ 213.064144] RAX: ffffffffffffffda RBX: 000000005d34716f RCX: 00007fe7c527c7b8 [ 213.068094] RDX: 0000000000000000 RSI: 00007ffc3f790910 RDI: 0000000000000003 [ 213.072109] RBP: 0000000000000000 R08: 0000000000000001 R09: 00007fe7c5340cc0 [ 213.076113] R10: 0000000000404ec2 R11: 0000000000000246 R12: 0000000000000080 [ 213.080146] R13: 0000000000480640 R14: 0000000000000080 R15: 0000000000000000 [ 213.084147] Modules linked in: act_gact cls_flower sch_ingress nfsv3 nfs_acl nfs lockd grace fscache bridge stp llc sunrpc intel_rapl_msr intel_rapl_common [<1;69;32Msb_edac rdma_ucm rdma_cm x86_pkg_temp_thermal iw_cm intel_powerclamp ib_cm coretemp kvm_intel kvm irqbypass mlx5_ib ib_uverbs ib_core crct10dif_pclmul crc32_pc lmul crc32c_intel ghash_clmulni_intel mlx5_core intel_cstate intel_uncore iTCO_wdt igb iTCO_vendor_support mlxfw mei_me ptp ses intel_rapl_perf mei pcspkr ipmi _ssif i2c_i801 joydev enclosure pps_core lpc_ich ioatdma wmi dca ipmi_si ipmi_devintf ipmi_msghandler acpi_power_meter acpi_pad ast i2c_algo_bit drm_vram_helpe r ttm drm_kms_helper drm mpt3sas raid_class scsi_transport_sas [ 213.112326] CR2: 0000000000000010 [ 213.117429] ---[ end trace adb58eb0a4ee6283 ]--- Verify that q pointer is not NULL before setting the 'flags' field. Fixes: 3f05e6886a59 ("net_sched: unset TCQ_F_CAN_BYPASS when adding filters") Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-21 17:44:12 +03:00
/* q pointer is NULL for shared blocks */
if (q)
q->flags &= ~TCQ_F_CAN_BYPASS;
}
errout:
if (err && tp_created)
tcf_chain_tp_delete_empty(chain, tp, rtnl_held, NULL);
errout_tp:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
if (!tp_created)
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
if (err == -EAGAIN) {
/* Take rtnl lock in case EAGAIN is caused by concurrent flush
* of target chain.
*/
rtnl_held = true;
/* Replay the request. */
goto replay;
}
return err;
errout_locked:
mutex_unlock(&chain->filter_chain_lock);
goto errout;
}
static int tc_del_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain_info chain_info;
struct tcf_chain *chain = NULL;
struct tcf_block *block = NULL;
struct tcf_proto *tp = NULL;
unsigned long cl = 0;
void *fh = NULL;
int err;
bool rtnl_held = false;
if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN))
return -EPERM;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
parent = t->tcm_parent;
if (prio == 0 && (protocol || t->tcm_handle || tca[TCA_KIND])) {
NL_SET_ERR_MSG(extack, "Cannot flush filters with protocol, handle or kind set");
return -ENOENT;
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if flushing whole chain, block is shared (no qdisc
* found), qdisc is not unlocked, classifier type is not specified,
* classifier is not unlocked.
*/
if (!prio ||
(q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, false);
if (!chain) {
/* User requested flush on non-existent chain. Nothing to do,
* so just return success.
*/
if (prio == 0) {
err = 0;
goto errout;
}
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -ENOENT;
goto errout;
}
if (prio == 0) {
tfilter_notify_chain(net, skb, block, q, parent, n,
chain, RTM_DELTFILTER);
tcf_chain_flush(chain, rtnl_held);
err = 0;
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, false);
if (!tp || IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = tp ? PTR_ERR(tp) : -ENOENT;
goto errout_locked;
} else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout_locked;
} else if (t->tcm_handle == 0) {
net: sched: prevent duplicate flower rules from tcf_proto destroy race When a new filter is added to cls_api, the function tcf_chain_tp_insert_unique() looks up the protocol/priority/chain to determine if the tcf_proto is duplicated in the chain's hashtable. It then creates a new entry or continues with an existing one. In cls_flower, this allows the function fl_ht_insert_unque to determine if a filter is a duplicate and reject appropriately, meaning that the duplicate will not be passed to drivers via the offload hooks. However, when a tcf_proto is destroyed it is removed from its chain before a hardware remove hook is hit. This can lead to a race whereby the driver has not received the remove message but duplicate flows can be accepted. This, in turn, can lead to the offload driver receiving incorrect duplicate flows and out of order add/delete messages. Prevent duplicates by utilising an approach suggested by Vlad Buslov. A hash table per block stores each unique chain/protocol/prio being destroyed. This entry is only removed when the full destroy (and hardware offload) has completed. If a new flow is being added with the same identiers as a tc_proto being detroyed, then the add request is replayed until the destroy is complete. Fixes: 8b64678e0af8 ("net: sched: refactor tp insert/delete for concurrent execution") Signed-off-by: John Hurley <john.hurley@netronome.com> Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Reported-by: Louis Peens <louis.peens@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02 17:17:47 +03:00
tcf_proto_signal_destroying(chain, tp);
tcf_chain_tp_remove(chain, &chain_info, tp);
mutex_unlock(&chain->filter_chain_lock);
tcf_proto_put(tp, rtnl_held, NULL);
tfilter_notify(net, skb, n, tp, block, q, parent, fh,
RTM_DELTFILTER, false, rtnl_held);
err = 0;
goto errout;
}
mutex_unlock(&chain->filter_chain_lock);
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
NL_SET_ERR_MSG(extack, "Specified filter handle not found");
err = -ENOENT;
} else {
bool last;
err = tfilter_del_notify(net, skb, n, tp, block,
q, parent, fh, false, &last,
rtnl_held, extack);
if (err)
goto errout;
if (last)
tcf_chain_tp_delete_empty(chain, tp, rtnl_held, extack);
}
errout:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
return err;
errout_locked:
mutex_unlock(&chain->filter_chain_lock);
goto errout;
}
static int tc_get_tfilter(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
char name[IFNAMSIZ];
struct tcmsg *t;
u32 protocol;
u32 prio;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain_info chain_info;
struct tcf_chain *chain = NULL;
struct tcf_block *block = NULL;
struct tcf_proto *tp = NULL;
unsigned long cl = 0;
void *fh = NULL;
int err;
bool rtnl_held = false;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
protocol = TC_H_MIN(t->tcm_info);
prio = TC_H_MAJ(t->tcm_info);
parent = t->tcm_parent;
if (prio == 0) {
NL_SET_ERR_MSG(extack, "Invalid filter command with priority of zero");
return -ENOENT;
}
/* Find head of filter chain. */
err = __tcf_qdisc_find(net, &q, &parent, t->tcm_ifindex, false, extack);
if (err)
return err;
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC filter name too long");
err = -EINVAL;
goto errout;
}
/* Take rtnl mutex if block is shared (no qdisc found), qdisc is not
* unlocked, classifier type is not specified, classifier is not
* unlocked.
*/
if ((q && !(q->ops->cl_ops->flags & QDISC_CLASS_OPS_DOIT_UNLOCKED)) ||
!tcf_proto_is_unlocked(name)) {
rtnl_held = true;
rtnl_lock();
}
err = __tcf_qdisc_cl_find(q, parent, &cl, t->tcm_ifindex, extack);
if (err)
goto errout;
block = __tcf_block_find(net, q, cl, t->tcm_ifindex, t->tcm_block_index,
extack);
if (IS_ERR(block)) {
err = PTR_ERR(block);
goto errout;
}
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout;
}
chain = tcf_chain_get(block, chain_index, false);
if (!chain) {
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -EINVAL;
goto errout;
}
mutex_lock(&chain->filter_chain_lock);
tp = tcf_chain_tp_find(chain, &chain_info, protocol,
prio, false);
mutex_unlock(&chain->filter_chain_lock);
if (!tp || IS_ERR(tp)) {
NL_SET_ERR_MSG(extack, "Filter with specified priority/protocol not found");
err = tp ? PTR_ERR(tp) : -ENOENT;
goto errout;
} else if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], tp->ops->kind)) {
NL_SET_ERR_MSG(extack, "Specified filter kind does not match existing one");
err = -EINVAL;
goto errout;
}
fh = tp->ops->get(tp, t->tcm_handle);
if (!fh) {
NL_SET_ERR_MSG(extack, "Specified filter handle not found");
err = -ENOENT;
} else {
err = tfilter_notify(net, skb, n, tp, block, q, parent,
fh, RTM_NEWTFILTER, true, rtnl_held);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send filter notify message");
}
tfilter_put(tp, fh);
errout:
if (chain) {
if (tp && !IS_ERR(tp))
tcf_proto_put(tp, rtnl_held, NULL);
tcf_chain_put(chain);
}
tcf_block_release(q, block, rtnl_held);
if (rtnl_held)
rtnl_unlock();
return err;
}
struct tcf_dump_args {
struct tcf_walker w;
struct sk_buff *skb;
struct netlink_callback *cb;
struct tcf_block *block;
struct Qdisc *q;
u32 parent;
bool terse_dump;
};
static int tcf_node_dump(struct tcf_proto *tp, void *n, struct tcf_walker *arg)
{
struct tcf_dump_args *a = (void *)arg;
struct net *net = sock_net(a->skb->sk);
return tcf_fill_node(net, a->skb, tp, a->block, a->q, a->parent,
n, NETLINK_CB(a->cb->skb).portid,
a->cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWTFILTER, a->terse_dump, true);
}
static bool tcf_chain_dump(struct tcf_chain *chain, struct Qdisc *q, u32 parent,
struct sk_buff *skb, struct netlink_callback *cb,
long index_start, long *p_index, bool terse)
{
struct net *net = sock_net(skb->sk);
struct tcf_block *block = chain->block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
struct tcf_proto *tp, *tp_prev;
struct tcf_dump_args arg;
for (tp = __tcf_get_next_proto(chain, NULL);
tp;
tp_prev = tp,
tp = __tcf_get_next_proto(chain, tp),
tcf_proto_put(tp_prev, true, NULL),
(*p_index)++) {
if (*p_index < index_start)
continue;
if (TC_H_MAJ(tcm->tcm_info) &&
TC_H_MAJ(tcm->tcm_info) != tp->prio)
continue;
if (TC_H_MIN(tcm->tcm_info) &&
TC_H_MIN(tcm->tcm_info) != tp->protocol)
continue;
if (*p_index > index_start)
memset(&cb->args[1], 0,
sizeof(cb->args) - sizeof(cb->args[0]));
if (cb->args[1] == 0) {
if (tcf_fill_node(net, skb, tp, block, q, parent, NULL,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWTFILTER, false, true) <= 0)
goto errout;
cb->args[1] = 1;
}
if (!tp->ops->walk)
continue;
arg.w.fn = tcf_node_dump;
arg.skb = skb;
arg.cb = cb;
arg.block = block;
arg.q = q;
arg.parent = parent;
arg.w.stop = 0;
arg.w.skip = cb->args[1] - 1;
arg.w.count = 0;
arg.w.cookie = cb->args[2];
arg.terse_dump = terse;
tp->ops->walk(tp, &arg.w, true);
cb->args[2] = arg.w.cookie;
cb->args[1] = arg.w.count + 1;
if (arg.w.stop)
goto errout;
}
return true;
errout:
tcf_proto_put(tp, true, NULL);
return false;
}
static const struct nla_policy tcf_tfilter_dump_policy[TCA_MAX + 1] = {
[TCA_DUMP_FLAGS] = NLA_POLICY_BITFIELD32(TCA_DUMP_FLAGS_TERSE),
};
/* called with RTNL */
static int tc_dump_tfilter(struct sk_buff *skb, struct netlink_callback *cb)
{
struct tcf_chain *chain, *chain_prev;
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct Qdisc *q = NULL;
struct tcf_block *block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
bool terse_dump = false;
long index_start;
long index;
u32 parent;
int err;
if (nlmsg_len(cb->nlh) < sizeof(*tcm))
return skb->len;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX,
tcf_tfilter_dump_policy, cb->extack);
if (err)
return err;
if (tca[TCA_DUMP_FLAGS]) {
struct nla_bitfield32 flags =
nla_get_bitfield32(tca[TCA_DUMP_FLAGS]);
terse_dump = flags.value & TCA_DUMP_FLAGS_TERSE;
}
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, tcm->tcm_block_index);
if (!block)
goto out;
/* If we work with block index, q is NULL and parent value
* will never be used in the following code. The check
* in tcf_fill_node prevents it. However, compiler does not
* see that far, so set parent to zero to silence the warning
* about parent being uninitialized.
*/
parent = 0;
} else {
const struct Qdisc_class_ops *cops;
struct net_device *dev;
unsigned long cl = 0;
dev = __dev_get_by_index(net, tcm->tcm_ifindex);
if (!dev)
return skb->len;
parent = tcm->tcm_parent;
net_sched: fix tcm_parent in tc filter dump When we tell kernel to dump filters from root (ffff:ffff), those filters on ingress (ffff:0000) are matched, but their true parents must be dumped as they are. However, kernel dumps just whatever we tell it, that is either ffff:ffff or ffff:0000: $ nl-cls-list --dev=dummy0 --parent=root cls basic dev dummy0 id none parent root prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent root prio 49152 protocol ip match-all $ nl-cls-list --dev=dummy0 --parent=ffff: cls basic dev dummy0 id none parent ffff: prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent ffff: prio 49152 protocol ip match-all This is confusing and misleading, more importantly this is a regression since 4.15, so the old behavior must be restored. And, when tc filters are installed on a tc class, the parent should be the classid, rather than the qdisc handle. Commit edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") removed the classid we save for filters, we can just restore this classid in tcf_block. Steps to reproduce this: ip li set dev dummy0 up tc qd add dev dummy0 ingress tc filter add dev dummy0 parent ffff: protocol arp basic action pass tc filter show dev dummy0 root Before this patch: filter protocol arp pref 49152 basic filter protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 After this patch: filter parent ffff: protocol arp pref 49152 basic filter parent ffff: protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 Fixes: a10fa20101ae ("net: sched: propagate q and parent from caller down to tcf_fill_node") Fixes: edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 06:53:49 +03:00
if (!parent)
q = dev->qdisc;
net_sched: fix tcm_parent in tc filter dump When we tell kernel to dump filters from root (ffff:ffff), those filters on ingress (ffff:0000) are matched, but their true parents must be dumped as they are. However, kernel dumps just whatever we tell it, that is either ffff:ffff or ffff:0000: $ nl-cls-list --dev=dummy0 --parent=root cls basic dev dummy0 id none parent root prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent root prio 49152 protocol ip match-all $ nl-cls-list --dev=dummy0 --parent=ffff: cls basic dev dummy0 id none parent ffff: prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent ffff: prio 49152 protocol ip match-all This is confusing and misleading, more importantly this is a regression since 4.15, so the old behavior must be restored. And, when tc filters are installed on a tc class, the parent should be the classid, rather than the qdisc handle. Commit edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") removed the classid we save for filters, we can just restore this classid in tcf_block. Steps to reproduce this: ip li set dev dummy0 up tc qd add dev dummy0 ingress tc filter add dev dummy0 parent ffff: protocol arp basic action pass tc filter show dev dummy0 root Before this patch: filter protocol arp pref 49152 basic filter protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 After this patch: filter parent ffff: protocol arp pref 49152 basic filter parent ffff: protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 Fixes: a10fa20101ae ("net: sched: propagate q and parent from caller down to tcf_fill_node") Fixes: edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 06:53:49 +03:00
else
q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent));
if (!q)
goto out;
cops = q->ops->cl_ops;
if (!cops)
goto out;
if (!cops->tcf_block)
goto out;
if (TC_H_MIN(tcm->tcm_parent)) {
cl = cops->find(q, tcm->tcm_parent);
if (cl == 0)
goto out;
}
block = cops->tcf_block(q, cl, NULL);
if (!block)
goto out;
net_sched: fix tcm_parent in tc filter dump When we tell kernel to dump filters from root (ffff:ffff), those filters on ingress (ffff:0000) are matched, but their true parents must be dumped as they are. However, kernel dumps just whatever we tell it, that is either ffff:ffff or ffff:0000: $ nl-cls-list --dev=dummy0 --parent=root cls basic dev dummy0 id none parent root prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent root prio 49152 protocol ip match-all $ nl-cls-list --dev=dummy0 --parent=ffff: cls basic dev dummy0 id none parent ffff: prio 49152 protocol ip match-all cls basic dev dummy0 id :1 parent ffff: prio 49152 protocol ip match-all This is confusing and misleading, more importantly this is a regression since 4.15, so the old behavior must be restored. And, when tc filters are installed on a tc class, the parent should be the classid, rather than the qdisc handle. Commit edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") removed the classid we save for filters, we can just restore this classid in tcf_block. Steps to reproduce this: ip li set dev dummy0 up tc qd add dev dummy0 ingress tc filter add dev dummy0 parent ffff: protocol arp basic action pass tc filter show dev dummy0 root Before this patch: filter protocol arp pref 49152 basic filter protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 After this patch: filter parent ffff: protocol arp pref 49152 basic filter parent ffff: protocol arp pref 49152 basic handle 0x1 action order 1: gact action pass random type none pass val 0 index 1 ref 1 bind 1 Fixes: a10fa20101ae ("net: sched: propagate q and parent from caller down to tcf_fill_node") Fixes: edf6711c9840 ("net: sched: remove classid and q fields from tcf_proto") Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-01 06:53:49 +03:00
parent = block->classid;
if (tcf_block_shared(block))
q = NULL;
}
index_start = cb->args[0];
index = 0;
for (chain = __tcf_get_next_chain(block, NULL);
chain;
chain_prev = chain,
chain = __tcf_get_next_chain(block, chain),
tcf_chain_put(chain_prev)) {
if (tca[TCA_CHAIN] &&
nla_get_u32(tca[TCA_CHAIN]) != chain->index)
continue;
if (!tcf_chain_dump(chain, q, parent, skb, cb,
index_start, &index, terse_dump)) {
tcf_chain_put(chain);
err = -EMSGSIZE;
break;
}
}
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK)
tcf_block_refcnt_put(block, true);
cb->args[0] = index;
out:
/* If we did no progress, the error (EMSGSIZE) is real */
if (skb->len == 0 && err)
return err;
return skb->len;
}
static int tc_chain_fill_node(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct net *net, struct sk_buff *skb,
struct tcf_block *block,
u32 portid, u32 seq, u16 flags, int event)
{
unsigned char *b = skb_tail_pointer(skb);
const struct tcf_proto_ops *ops;
struct nlmsghdr *nlh;
struct tcmsg *tcm;
void *priv;
ops = tmplt_ops;
priv = tmplt_priv;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags);
if (!nlh)
goto out_nlmsg_trim;
tcm = nlmsg_data(nlh);
tcm->tcm_family = AF_UNSPEC;
tcm->tcm__pad1 = 0;
tcm->tcm__pad2 = 0;
tcm->tcm_handle = 0;
if (block->q) {
tcm->tcm_ifindex = qdisc_dev(block->q)->ifindex;
tcm->tcm_parent = block->q->handle;
} else {
tcm->tcm_ifindex = TCM_IFINDEX_MAGIC_BLOCK;
tcm->tcm_block_index = block->index;
}
if (nla_put_u32(skb, TCA_CHAIN, chain_index))
goto nla_put_failure;
if (ops) {
if (nla_put_string(skb, TCA_KIND, ops->kind))
goto nla_put_failure;
if (ops->tmplt_dump(skb, net, priv) < 0)
goto nla_put_failure;
}
nlh->nlmsg_len = skb_tail_pointer(skb) - b;
return skb->len;
out_nlmsg_trim:
nla_put_failure:
nlmsg_trim(skb, b);
return -EMSGSIZE;
}
static int tc_chain_notify(struct tcf_chain *chain, struct sk_buff *oskb,
u32 seq, u16 flags, int event, bool unicast)
{
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
struct tcf_block *block = chain->block;
struct net *net = block->net;
struct sk_buff *skb;
int err = 0;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv,
chain->index, net, skb, block, portid,
seq, flags, event) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
err = rtnl_unicast(skb, net, portid);
else
err = rtnetlink_send(skb, net, portid, RTNLGRP_TC,
flags & NLM_F_ECHO);
return err;
}
static int tc_chain_notify_delete(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv, u32 chain_index,
struct tcf_block *block, struct sk_buff *oskb,
u32 seq, u16 flags, bool unicast)
{
u32 portid = oskb ? NETLINK_CB(oskb).portid : 0;
struct net *net = block->net;
struct sk_buff *skb;
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return -ENOBUFS;
if (tc_chain_fill_node(tmplt_ops, tmplt_priv, chain_index, net, skb,
block, portid, seq, flags, RTM_DELCHAIN) <= 0) {
kfree_skb(skb);
return -EINVAL;
}
if (unicast)
return rtnl_unicast(skb, net, portid);
return rtnetlink_send(skb, net, portid, RTNLGRP_TC, flags & NLM_F_ECHO);
}
static int tc_chain_tmplt_add(struct tcf_chain *chain, struct net *net,
struct nlattr **tca,
struct netlink_ext_ack *extack)
{
const struct tcf_proto_ops *ops;
net_sched: validate TCA_KIND attribute in tc_chain_tmplt_add() Use the new tcf_proto_check_kind() helper to make sure user provided value is well formed. BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:606 [inline] BUG: KMSAN: uninit-value in string+0x4be/0x600 lib/vsprintf.c:668 CPU: 0 PID: 12358 Comm: syz-executor.1 Not tainted 5.4.0-rc8-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0x128/0x220 mm/kmsan/kmsan_report.c:108 __msan_warning+0x64/0xc0 mm/kmsan/kmsan_instr.c:245 string_nocheck lib/vsprintf.c:606 [inline] string+0x4be/0x600 lib/vsprintf.c:668 vsnprintf+0x218f/0x3210 lib/vsprintf.c:2510 __request_module+0x2b1/0x11c0 kernel/kmod.c:143 tcf_proto_lookup_ops+0x171/0x700 net/sched/cls_api.c:139 tc_chain_tmplt_add net/sched/cls_api.c:2730 [inline] tc_ctl_chain+0x1904/0x38a0 net/sched/cls_api.c:2850 rtnetlink_rcv_msg+0x115a/0x1580 net/core/rtnetlink.c:5224 netlink_rcv_skb+0x431/0x620 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:5242 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0xf3e/0x1020 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x110f/0x1330 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg net/socket.c:657 [inline] ___sys_sendmsg+0x14ff/0x1590 net/socket.c:2311 __sys_sendmsg net/socket.c:2356 [inline] __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg+0x305/0x460 net/socket.c:2363 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2363 do_syscall_64+0xb6/0x160 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45a649 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f0790795c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 000000000045a649 RDX: 0000000000000000 RSI: 0000000020000300 RDI: 0000000000000006 RBP: 000000000075bfc8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f07907966d4 R13: 00000000004c8db5 R14: 00000000004df630 R15: 00000000ffffffff Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:149 [inline] kmsan_internal_poison_shadow+0x5c/0x110 mm/kmsan/kmsan.c:132 kmsan_slab_alloc+0x97/0x100 mm/kmsan/kmsan_hooks.c:86 slab_alloc_node mm/slub.c:2773 [inline] __kmalloc_node_track_caller+0xe27/0x11a0 mm/slub.c:4381 __kmalloc_reserve net/core/skbuff.c:141 [inline] __alloc_skb+0x306/0xa10 net/core/skbuff.c:209 alloc_skb include/linux/skbuff.h:1049 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1174 [inline] netlink_sendmsg+0x783/0x1330 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg net/socket.c:657 [inline] ___sys_sendmsg+0x14ff/0x1590 net/socket.c:2311 __sys_sendmsg net/socket.c:2356 [inline] __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg+0x305/0x460 net/socket.c:2363 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2363 do_syscall_64+0xb6/0x160 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 6f96c3c6904c ("net_sched: fix backward compatibility for TCA_KIND") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-07 22:34:45 +03:00
char name[IFNAMSIZ];
void *tmplt_priv;
/* If kind is not set, user did not specify template. */
if (!tca[TCA_KIND])
return 0;
net_sched: validate TCA_KIND attribute in tc_chain_tmplt_add() Use the new tcf_proto_check_kind() helper to make sure user provided value is well formed. BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:606 [inline] BUG: KMSAN: uninit-value in string+0x4be/0x600 lib/vsprintf.c:668 CPU: 0 PID: 12358 Comm: syz-executor.1 Not tainted 5.4.0-rc8-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0x128/0x220 mm/kmsan/kmsan_report.c:108 __msan_warning+0x64/0xc0 mm/kmsan/kmsan_instr.c:245 string_nocheck lib/vsprintf.c:606 [inline] string+0x4be/0x600 lib/vsprintf.c:668 vsnprintf+0x218f/0x3210 lib/vsprintf.c:2510 __request_module+0x2b1/0x11c0 kernel/kmod.c:143 tcf_proto_lookup_ops+0x171/0x700 net/sched/cls_api.c:139 tc_chain_tmplt_add net/sched/cls_api.c:2730 [inline] tc_ctl_chain+0x1904/0x38a0 net/sched/cls_api.c:2850 rtnetlink_rcv_msg+0x115a/0x1580 net/core/rtnetlink.c:5224 netlink_rcv_skb+0x431/0x620 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:5242 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0xf3e/0x1020 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x110f/0x1330 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg net/socket.c:657 [inline] ___sys_sendmsg+0x14ff/0x1590 net/socket.c:2311 __sys_sendmsg net/socket.c:2356 [inline] __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg+0x305/0x460 net/socket.c:2363 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2363 do_syscall_64+0xb6/0x160 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45a649 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007f0790795c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 000000000045a649 RDX: 0000000000000000 RSI: 0000000020000300 RDI: 0000000000000006 RBP: 000000000075bfc8 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f07907966d4 R13: 00000000004c8db5 R14: 00000000004df630 R15: 00000000ffffffff Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:149 [inline] kmsan_internal_poison_shadow+0x5c/0x110 mm/kmsan/kmsan.c:132 kmsan_slab_alloc+0x97/0x100 mm/kmsan/kmsan_hooks.c:86 slab_alloc_node mm/slub.c:2773 [inline] __kmalloc_node_track_caller+0xe27/0x11a0 mm/slub.c:4381 __kmalloc_reserve net/core/skbuff.c:141 [inline] __alloc_skb+0x306/0xa10 net/core/skbuff.c:209 alloc_skb include/linux/skbuff.h:1049 [inline] netlink_alloc_large_skb net/netlink/af_netlink.c:1174 [inline] netlink_sendmsg+0x783/0x1330 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg net/socket.c:657 [inline] ___sys_sendmsg+0x14ff/0x1590 net/socket.c:2311 __sys_sendmsg net/socket.c:2356 [inline] __do_sys_sendmsg net/socket.c:2365 [inline] __se_sys_sendmsg+0x305/0x460 net/socket.c:2363 __x64_sys_sendmsg+0x4a/0x70 net/socket.c:2363 do_syscall_64+0xb6/0x160 arch/x86/entry/common.c:291 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 6f96c3c6904c ("net_sched: fix backward compatibility for TCA_KIND") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Acked-by: Cong Wang <xiyou.wangcong@gmail.com> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-07 22:34:45 +03:00
if (tcf_proto_check_kind(tca[TCA_KIND], name)) {
NL_SET_ERR_MSG(extack, "Specified TC chain template name too long");
return -EINVAL;
}
ops = tcf_proto_lookup_ops(name, true, extack);
if (IS_ERR(ops))
return PTR_ERR(ops);
if (!ops->tmplt_create || !ops->tmplt_destroy || !ops->tmplt_dump) {
NL_SET_ERR_MSG(extack, "Chain templates are not supported with specified classifier");
return -EOPNOTSUPP;
}
tmplt_priv = ops->tmplt_create(net, chain, tca, extack);
if (IS_ERR(tmplt_priv)) {
module_put(ops->owner);
return PTR_ERR(tmplt_priv);
}
chain->tmplt_ops = ops;
chain->tmplt_priv = tmplt_priv;
return 0;
}
static void tc_chain_tmplt_del(const struct tcf_proto_ops *tmplt_ops,
void *tmplt_priv)
{
/* If template ops are set, no work to do for us. */
if (!tmplt_ops)
return;
tmplt_ops->tmplt_destroy(tmplt_priv);
module_put(tmplt_ops->owner);
}
/* Add/delete/get a chain */
static int tc_ctl_chain(struct sk_buff *skb, struct nlmsghdr *n,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct tcmsg *t;
u32 parent;
u32 chain_index;
struct Qdisc *q = NULL;
struct tcf_chain *chain = NULL;
struct tcf_block *block;
unsigned long cl;
int err;
if (n->nlmsg_type != RTM_GETCHAIN &&
!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN))
return -EPERM;
replay:
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(n, sizeof(*t), tca, TCA_MAX,
rtm_tca_policy, extack);
if (err < 0)
return err;
t = nlmsg_data(n);
parent = t->tcm_parent;
cl = 0;
block = tcf_block_find(net, &q, &parent, &cl,
t->tcm_ifindex, t->tcm_block_index, extack);
if (IS_ERR(block))
return PTR_ERR(block);
chain_index = tca[TCA_CHAIN] ? nla_get_u32(tca[TCA_CHAIN]) : 0;
if (chain_index > TC_ACT_EXT_VAL_MASK) {
NL_SET_ERR_MSG(extack, "Specified chain index exceeds upper limit");
err = -EINVAL;
goto errout_block;
}
mutex_lock(&block->lock);
chain = tcf_chain_lookup(block, chain_index);
if (n->nlmsg_type == RTM_NEWCHAIN) {
if (chain) {
if (tcf_chain_held_by_acts_only(chain)) {
/* The chain exists only because there is
* some action referencing it.
*/
tcf_chain_hold(chain);
} else {
NL_SET_ERR_MSG(extack, "Filter chain already exists");
err = -EEXIST;
goto errout_block_locked;
}
} else {
if (!(n->nlmsg_flags & NLM_F_CREATE)) {
NL_SET_ERR_MSG(extack, "Need both RTM_NEWCHAIN and NLM_F_CREATE to create a new chain");
err = -ENOENT;
goto errout_block_locked;
}
chain = tcf_chain_create(block, chain_index);
if (!chain) {
NL_SET_ERR_MSG(extack, "Failed to create filter chain");
err = -ENOMEM;
goto errout_block_locked;
}
}
} else {
if (!chain || tcf_chain_held_by_acts_only(chain)) {
NL_SET_ERR_MSG(extack, "Cannot find specified filter chain");
err = -EINVAL;
goto errout_block_locked;
}
tcf_chain_hold(chain);
}
if (n->nlmsg_type == RTM_NEWCHAIN) {
/* Modifying chain requires holding parent block lock. In case
* the chain was successfully added, take a reference to the
* chain. This ensures that an empty chain does not disappear at
* the end of this function.
*/
tcf_chain_hold(chain);
chain->explicitly_created = true;
}
mutex_unlock(&block->lock);
switch (n->nlmsg_type) {
case RTM_NEWCHAIN:
err = tc_chain_tmplt_add(chain, net, tca, extack);
if (err) {
tcf_chain_put_explicitly_created(chain);
goto errout;
}
tc_chain_notify(chain, NULL, 0, NLM_F_CREATE | NLM_F_EXCL,
RTM_NEWCHAIN, false);
break;
case RTM_DELCHAIN:
tfilter_notify_chain(net, skb, block, q, parent, n,
chain, RTM_DELTFILTER);
/* Flush the chain first as the user requested chain removal. */
tcf_chain_flush(chain, true);
/* In case the chain was successfully deleted, put a reference
* to the chain previously taken during addition.
*/
tcf_chain_put_explicitly_created(chain);
break;
case RTM_GETCHAIN:
err = tc_chain_notify(chain, skb, n->nlmsg_seq,
n->nlmsg_flags, n->nlmsg_type, true);
if (err < 0)
NL_SET_ERR_MSG(extack, "Failed to send chain notify message");
break;
default:
err = -EOPNOTSUPP;
NL_SET_ERR_MSG(extack, "Unsupported message type");
goto errout;
}
errout:
tcf_chain_put(chain);
errout_block:
tcf_block_release(q, block, true);
if (err == -EAGAIN)
/* Replay the request. */
goto replay;
return err;
errout_block_locked:
mutex_unlock(&block->lock);
goto errout_block;
}
/* called with RTNL */
static int tc_dump_chain(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct nlattr *tca[TCA_MAX + 1];
struct Qdisc *q = NULL;
struct tcf_block *block;
struct tcmsg *tcm = nlmsg_data(cb->nlh);
struct tcf_chain *chain;
long index_start;
long index;
int err;
if (nlmsg_len(cb->nlh) < sizeof(*tcm))
return skb->len;
netlink: make validation more configurable for future strictness We currently have two levels of strict validation: 1) liberal (default) - undefined (type >= max) & NLA_UNSPEC attributes accepted - attribute length >= expected accepted - garbage at end of message accepted 2) strict (opt-in) - NLA_UNSPEC attributes accepted - attribute length >= expected accepted Split out parsing strictness into four different options: * TRAILING - check that there's no trailing data after parsing attributes (in message or nested) * MAXTYPE - reject attrs > max known type * UNSPEC - reject attributes with NLA_UNSPEC policy entries * STRICT_ATTRS - strictly validate attribute size The default for future things should be *everything*. The current *_strict() is a combination of TRAILING and MAXTYPE, and is renamed to _deprecated_strict(). The current regular parsing has none of this, and is renamed to *_parse_deprecated(). Additionally it allows us to selectively set one of the new flags even on old policies. Notably, the UNSPEC flag could be useful in this case, since it can be arranged (by filling in the policy) to not be an incompatible userspace ABI change, but would then going forward prevent forgetting attribute entries. Similar can apply to the POLICY flag. We end up with the following renames: * nla_parse -> nla_parse_deprecated * nla_parse_strict -> nla_parse_deprecated_strict * nlmsg_parse -> nlmsg_parse_deprecated * nlmsg_parse_strict -> nlmsg_parse_deprecated_strict * nla_parse_nested -> nla_parse_nested_deprecated * nla_validate_nested -> nla_validate_nested_deprecated Using spatch, of course: @@ expression TB, MAX, HEAD, LEN, POL, EXT; @@ -nla_parse(TB, MAX, HEAD, LEN, POL, EXT) +nla_parse_deprecated(TB, MAX, HEAD, LEN, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression NLH, HDRLEN, TB, MAX, POL, EXT; @@ -nlmsg_parse_strict(NLH, HDRLEN, TB, MAX, POL, EXT) +nlmsg_parse_deprecated_strict(NLH, HDRLEN, TB, MAX, POL, EXT) @@ expression TB, MAX, NLA, POL, EXT; @@ -nla_parse_nested(TB, MAX, NLA, POL, EXT) +nla_parse_nested_deprecated(TB, MAX, NLA, POL, EXT) @@ expression START, MAX, POL, EXT; @@ -nla_validate_nested(START, MAX, POL, EXT) +nla_validate_nested_deprecated(START, MAX, POL, EXT) @@ expression NLH, HDRLEN, MAX, POL, EXT; @@ -nlmsg_validate(NLH, HDRLEN, MAX, POL, EXT) +nlmsg_validate_deprecated(NLH, HDRLEN, MAX, POL, EXT) For this patch, don't actually add the strict, non-renamed versions yet so that it breaks compile if I get it wrong. Also, while at it, make nla_validate and nla_parse go down to a common __nla_validate_parse() function to avoid code duplication. Ultimately, this allows us to have very strict validation for every new caller of nla_parse()/nlmsg_parse() etc as re-introduced in the next patch, while existing things will continue to work as is. In effect then, this adds fully strict validation for any new command. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-26 15:07:28 +03:00
err = nlmsg_parse_deprecated(cb->nlh, sizeof(*tcm), tca, TCA_MAX,
rtm_tca_policy, cb->extack);
if (err)
return err;
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK) {
block = tcf_block_refcnt_get(net, tcm->tcm_block_index);
if (!block)
goto out;
} else {
const struct Qdisc_class_ops *cops;
struct net_device *dev;
unsigned long cl = 0;
dev = __dev_get_by_index(net, tcm->tcm_ifindex);
if (!dev)
return skb->len;
if (!tcm->tcm_parent)
q = dev->qdisc;
else
q = qdisc_lookup(dev, TC_H_MAJ(tcm->tcm_parent));
if (!q)
goto out;
cops = q->ops->cl_ops;
if (!cops)
goto out;
if (!cops->tcf_block)
goto out;
if (TC_H_MIN(tcm->tcm_parent)) {
cl = cops->find(q, tcm->tcm_parent);
if (cl == 0)
goto out;
}
block = cops->tcf_block(q, cl, NULL);
if (!block)
goto out;
if (tcf_block_shared(block))
q = NULL;
}
index_start = cb->args[0];
index = 0;
mutex_lock(&block->lock);
list_for_each_entry(chain, &block->chain_list, list) {
if ((tca[TCA_CHAIN] &&
nla_get_u32(tca[TCA_CHAIN]) != chain->index))
continue;
if (index < index_start) {
index++;
continue;
}
if (tcf_chain_held_by_acts_only(chain))
continue;
err = tc_chain_fill_node(chain->tmplt_ops, chain->tmplt_priv,
chain->index, net, skb, block,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
RTM_NEWCHAIN);
if (err <= 0)
break;
index++;
}
mutex_unlock(&block->lock);
if (tcm->tcm_ifindex == TCM_IFINDEX_MAGIC_BLOCK)
tcf_block_refcnt_put(block, true);
cb->args[0] = index;
out:
/* If we did no progress, the error (EMSGSIZE) is real */
if (skb->len == 0 && err)
return err;
return skb->len;
}
void tcf_exts_destroy(struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
net: sched: fix possible crash in tcf_action_destroy() If the allocation done in tcf_exts_init() failed, we end up with a NULL pointer in exts->actions. kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 8198 Comm: syz-executor.3 Not tainted 5.3.0-rc8+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:tcf_action_destroy+0x71/0x160 net/sched/act_api.c:705 Code: c3 08 44 89 ee e8 4f cb bb fb 41 83 fd 20 0f 84 c9 00 00 00 e8 c0 c9 bb fb 48 89 d8 48 b9 00 00 00 00 00 fc ff df 48 c1 e8 03 <80> 3c 08 00 0f 85 c0 00 00 00 4c 8b 33 4d 85 f6 0f 84 9d 00 00 00 RSP: 0018:ffff888096e16ff0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: dffffc0000000000 RDX: 0000000000040000 RSI: ffffffff85b6ab30 RDI: 0000000000000000 RBP: ffff888096e17020 R08: ffff8880993f6140 R09: fffffbfff11cae67 R10: fffffbfff11cae66 R11: ffffffff88e57333 R12: 0000000000000000 R13: 0000000000000000 R14: ffff888096e177a0 R15: 0000000000000001 FS: 00007f62bc84a700(0000) GS:ffff8880ae900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000758040 CR3: 0000000088b64000 CR4: 00000000001426e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: tcf_exts_destroy+0x38/0xb0 net/sched/cls_api.c:3030 tcindex_set_parms+0xf7f/0x1e50 net/sched/cls_tcindex.c:488 tcindex_change+0x230/0x318 net/sched/cls_tcindex.c:519 tc_new_tfilter+0xa4b/0x1c70 net/sched/cls_api.c:2152 rtnetlink_rcv_msg+0x838/0xb00 net/core/rtnetlink.c:5214 netlink_rcv_skb+0x177/0x450 net/netlink/af_netlink.c:2477 rtnetlink_rcv+0x1d/0x30 net/core/rtnetlink.c:5241 netlink_unicast_kernel net/netlink/af_netlink.c:1302 [inline] netlink_unicast+0x531/0x710 net/netlink/af_netlink.c:1328 netlink_sendmsg+0x8a5/0xd60 net/netlink/af_netlink.c:1917 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:657 ___sys_sendmsg+0x3e2/0x920 net/socket.c:2311 __sys_sendmmsg+0x1bf/0x4d0 net/socket.c:2413 __do_sys_sendmmsg net/socket.c:2442 [inline] Fixes: 90b73b77d08e ("net: sched: change action API to use array of pointers to actions") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Vlad Buslov <vladbu@mellanox.com> Cc: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-18 22:57:04 +03:00
if (exts->actions) {
tcf_action_destroy(exts->actions, TCA_ACT_UNBIND);
kfree(exts->actions);
}
exts->nr_actions = 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_destroy);
int tcf_exts_validate_ex(struct net *net, struct tcf_proto *tp, struct nlattr **tb,
struct nlattr *rate_tlv, struct tcf_exts *exts,
u32 flags, u32 fl_flags, struct netlink_ext_ack *extack)
{
#ifdef CONFIG_NET_CLS_ACT
{
int init_res[TCA_ACT_MAX_PRIO] = {};
struct tc_action *act;
size_t attr_size = 0;
if (exts->police && tb[exts->police]) {
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 03:56:57 +03:00
struct tc_action_ops *a_o;
a_o = tc_action_load_ops(tb[exts->police], true,
!(flags & TCA_ACT_FLAGS_NO_RTNL),
extack);
net_sched: fix RTNL deadlock again caused by request_module() tcf_action_init_1() loads tc action modules automatically with request_module() after parsing the tc action names, and it drops RTNL lock and re-holds it before and after request_module(). This causes a lot of troubles, as discovered by syzbot, because we can be in the middle of batch initializations when we create an array of tc actions. One of the problem is deadlock: CPU 0 CPU 1 rtnl_lock(); for (...) { tcf_action_init_1(); -> rtnl_unlock(); -> request_module(); rtnl_lock(); for (...) { tcf_action_init_1(); -> tcf_idr_check_alloc(); // Insert one action into idr, // but it is not committed until // tcf_idr_insert_many(), then drop // the RTNL lock in the _next_ // iteration -> rtnl_unlock(); -> rtnl_lock(); -> a_o->init(); -> tcf_idr_check_alloc(); // Now waiting for the same index // to be committed -> request_module(); -> rtnl_lock() // Now waiting for RTNL lock } rtnl_unlock(); } rtnl_unlock(); This is not easy to solve, we can move the request_module() before this loop and pre-load all the modules we need for this netlink message and then do the rest initializations. So the loop breaks down to two now: for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(name, tb[i]...); ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(ops[i - 1]...); } Although this looks serious, it only has been reported by syzbot, so it seems hard to trigger this by humans. And given the size of this patch, I'd suggest to make it to net-next and not to backport to stable. This patch has been tested by syzbot and tested with tdc.py by me. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-and-tested-by: syzbot+82752bc5331601cf4899@syzkaller.appspotmail.com Reported-and-tested-by: syzbot+b3b63b6bff456bd95294@syzkaller.appspotmail.com Reported-by: syzbot+ba67b12b1ca729912834@syzkaller.appspotmail.com Cc: Jiri Pirko <jiri@resnulli.us> Signed-off-by: Cong Wang <cong.wang@bytedance.com> Tested-by: Jamal Hadi Salim <jhs@mojatatu.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210117005657.14810-1-xiyou.wangcong@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-01-17 03:56:57 +03:00
if (IS_ERR(a_o))
return PTR_ERR(a_o);
flags |= TCA_ACT_FLAGS_POLICE | TCA_ACT_FLAGS_BIND;
act = tcf_action_init_1(net, tp, tb[exts->police],
rate_tlv, a_o, init_res, flags,
extack);
net: sched: fix err handler in tcf_action_init() With recent changes that separated action module load from action initialization tcf_action_init() function error handling code was modified to manually release the loaded modules if loading/initialization of any further action in same batch failed. For the case when all modules successfully loaded and some of the actions were initialized before one of them failed in init handler. In this case for all previous actions the module will be released twice by the error handler: First time by the loop that manually calls module_put() for all ops, and second time by the action destroy code that puts the module after destroying the action. Reproduction: $ sudo tc actions add action simple sdata \"2\" index 2 $ sudo tc actions add action simple sdata \"1\" index 1 \ action simple sdata \"2\" index 2 RTNETLINK answers: File exists We have an error talking to the kernel $ sudo tc actions ls action simple total acts 1 action order 0: Simple <"2"> index 2 ref 1 bind 0 $ sudo tc actions flush action simple $ sudo tc actions ls action simple $ sudo tc actions add action simple sdata \"2\" index 2 Error: Failed to load TC action module. We have an error talking to the kernel $ lsmod | grep simple act_simple 20480 -1 Fix the issue by modifying module reference counting handling in action initialization code: - Get module reference in tcf_idr_create() and put it in tcf_idr_release() instead of taking over the reference held by the caller. - Modify users of tcf_action_init_1() to always release the module reference which they obtain before calling init function instead of assuming that created action takes over the reference. - Finally, modify tcf_action_init_1() to not release the module reference when overwriting existing action as this is no longer necessary since both upper and lower layers obtain and manage their own module references independently. Fixes: d349f9976868 ("net_sched: fix RTNL deadlock again caused by request_module()") Suggested-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-07 18:36:04 +03:00
module_put(a_o->owner);
if (IS_ERR(act))
return PTR_ERR(act);
act->type = exts->type = TCA_OLD_COMPAT;
exts->actions[0] = act;
exts->nr_actions = 1;
net: sched: fix police ext initialization When police action is created by cls API tcf_exts_validate() first conditional that calls tcf_action_init_1() directly, the action idr is not updated according to latest changes in action API that require caller to commit newly created action to idr with tcf_idr_insert_many(). This results such action not being accessible through act API and causes crash reported by syzbot: ================================================================== BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:71 [inline] BUG: KASAN: null-ptr-deref in atomic_read include/asm-generic/atomic-instrumented.h:27 [inline] BUG: KASAN: null-ptr-deref in __tcf_idr_release net/sched/act_api.c:178 [inline] BUG: KASAN: null-ptr-deref in tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598 Read of size 4 at addr 0000000000000010 by task kworker/u4:5/204 CPU: 0 PID: 204 Comm: kworker/u4:5 Not tainted 5.11.0-rc7-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: netns cleanup_net Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x107/0x163 lib/dump_stack.c:120 __kasan_report mm/kasan/report.c:400 [inline] kasan_report.cold+0x5f/0xd5 mm/kasan/report.c:413 check_memory_region_inline mm/kasan/generic.c:179 [inline] check_memory_region+0x13d/0x180 mm/kasan/generic.c:185 instrument_atomic_read include/linux/instrumented.h:71 [inline] atomic_read include/asm-generic/atomic-instrumented.h:27 [inline] __tcf_idr_release net/sched/act_api.c:178 [inline] tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598 tc_action_net_exit include/net/act_api.h:151 [inline] police_exit_net+0x168/0x360 net/sched/act_police.c:390 ops_exit_list+0x10d/0x160 net/core/net_namespace.c:190 cleanup_net+0x4ea/0xb10 net/core/net_namespace.c:604 process_one_work+0x98d/0x15f0 kernel/workqueue.c:2275 worker_thread+0x64c/0x1120 kernel/workqueue.c:2421 kthread+0x3b1/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296 ================================================================== Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 204 Comm: kworker/u4:5 Tainted: G B 5.11.0-rc7-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: netns cleanup_net Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x107/0x163 lib/dump_stack.c:120 panic+0x306/0x73d kernel/panic.c:231 end_report+0x58/0x5e mm/kasan/report.c:100 __kasan_report mm/kasan/report.c:403 [inline] kasan_report.cold+0x67/0xd5 mm/kasan/report.c:413 check_memory_region_inline mm/kasan/generic.c:179 [inline] check_memory_region+0x13d/0x180 mm/kasan/generic.c:185 instrument_atomic_read include/linux/instrumented.h:71 [inline] atomic_read include/asm-generic/atomic-instrumented.h:27 [inline] __tcf_idr_release net/sched/act_api.c:178 [inline] tcf_idrinfo_destroy+0x129/0x1d0 net/sched/act_api.c:598 tc_action_net_exit include/net/act_api.h:151 [inline] police_exit_net+0x168/0x360 net/sched/act_police.c:390 ops_exit_list+0x10d/0x160 net/core/net_namespace.c:190 cleanup_net+0x4ea/0xb10 net/core/net_namespace.c:604 process_one_work+0x98d/0x15f0 kernel/workqueue.c:2275 worker_thread+0x64c/0x1120 kernel/workqueue.c:2421 kthread+0x3b1/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:296 Kernel Offset: disabled Fix the issue by calling tcf_idr_insert_many() after successful action initialization. Fixes: 0fedc63fadf0 ("net_sched: commit action insertions together") Reported-by: syzbot+151e3e714d34ae4ce7e8@syzkaller.appspotmail.com Signed-off-by: Vlad Buslov <vladbu@nvidia.com> Reviewed-by: Cong Wang <xiyou.wangcong@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-16 19:22:00 +03:00
tcf_idr_insert_many(exts->actions);
} else if (exts->action && tb[exts->action]) {
int err;
flags |= TCA_ACT_FLAGS_BIND;
err = tcf_action_init(net, tp, tb[exts->action],
rate_tlv, exts->actions, init_res,
&attr_size, flags, fl_flags,
extack);
if (err < 0)
return err;
exts->nr_actions = err;
}
}
#else
if ((exts->action && tb[exts->action]) ||
(exts->police && tb[exts->police])) {
NL_SET_ERR_MSG(extack, "Classifier actions are not supported per compile options (CONFIG_NET_CLS_ACT)");
return -EOPNOTSUPP;
}
#endif
return 0;
}
EXPORT_SYMBOL(tcf_exts_validate_ex);
int tcf_exts_validate(struct net *net, struct tcf_proto *tp, struct nlattr **tb,
struct nlattr *rate_tlv, struct tcf_exts *exts,
u32 flags, struct netlink_ext_ack *extack)
{
return tcf_exts_validate_ex(net, tp, tb, rate_tlv, exts,
flags, 0, extack);
}
EXPORT_SYMBOL(tcf_exts_validate);
void tcf_exts_change(struct tcf_exts *dst, struct tcf_exts *src)
{
#ifdef CONFIG_NET_CLS_ACT
struct tcf_exts old = *dst;
*dst = *src;
tcf_exts_destroy(&old);
#endif
}
EXPORT_SYMBOL(tcf_exts_change);
#ifdef CONFIG_NET_CLS_ACT
static struct tc_action *tcf_exts_first_act(struct tcf_exts *exts)
{
if (exts->nr_actions == 0)
return NULL;
else
return exts->actions[0];
}
#endif
int tcf_exts_dump(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct nlattr *nest;
if (exts->action && tcf_exts_has_actions(exts)) {
/*
* again for backward compatible mode - we want
* to work with both old and new modes of entering
* tc data even if iproute2 was newer - jhs
*/
if (exts->type != TCA_OLD_COMPAT) {
nest = nla_nest_start_noflag(skb, exts->action);
if (nest == NULL)
goto nla_put_failure;
if (tcf_action_dump(skb, exts->actions, 0, 0, false)
< 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
} else if (exts->police) {
struct tc_action *act = tcf_exts_first_act(exts);
nest = nla_nest_start_noflag(skb, exts->police);
if (nest == NULL || !act)
goto nla_put_failure;
if (tcf_action_dump_old(skb, act, 0, 0) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
}
}
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
#else
return 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_dump);
int tcf_exts_terse_dump(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct nlattr *nest;
if (!exts->action || !tcf_exts_has_actions(exts))
return 0;
nest = nla_nest_start_noflag(skb, exts->action);
if (!nest)
goto nla_put_failure;
if (tcf_action_dump(skb, exts->actions, 0, 0, true) < 0)
goto nla_put_failure;
nla_nest_end(skb, nest);
return 0;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
#else
return 0;
#endif
}
EXPORT_SYMBOL(tcf_exts_terse_dump);
int tcf_exts_dump_stats(struct sk_buff *skb, struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
struct tc_action *a = tcf_exts_first_act(exts);
if (a != NULL && tcf_action_copy_stats(skb, a, 1) < 0)
return -1;
#endif
return 0;
}
EXPORT_SYMBOL(tcf_exts_dump_stats);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
static void tcf_block_offload_inc(struct tcf_block *block, u32 *flags)
{
if (*flags & TCA_CLS_FLAGS_IN_HW)
return;
*flags |= TCA_CLS_FLAGS_IN_HW;
atomic_inc(&block->offloadcnt);
}
static void tcf_block_offload_dec(struct tcf_block *block, u32 *flags)
{
if (!(*flags & TCA_CLS_FLAGS_IN_HW))
return;
*flags &= ~TCA_CLS_FLAGS_IN_HW;
atomic_dec(&block->offloadcnt);
}
static void tc_cls_offload_cnt_update(struct tcf_block *block,
struct tcf_proto *tp, u32 *cnt,
u32 *flags, u32 diff, bool add)
{
lockdep_assert_held(&block->cb_lock);
spin_lock(&tp->lock);
if (add) {
if (!*cnt)
tcf_block_offload_inc(block, flags);
*cnt += diff;
} else {
*cnt -= diff;
if (!*cnt)
tcf_block_offload_dec(block, flags);
}
spin_unlock(&tp->lock);
}
static void
tc_cls_offload_cnt_reset(struct tcf_block *block, struct tcf_proto *tp,
u32 *cnt, u32 *flags)
{
lockdep_assert_held(&block->cb_lock);
spin_lock(&tp->lock);
tcf_block_offload_dec(block, flags);
*cnt = 0;
spin_unlock(&tp->lock);
}
static int
__tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type,
void *type_data, bool err_stop)
{
struct flow_block_cb *block_cb;
int ok_count = 0;
int err;
list_for_each_entry(block_cb, &block->flow_block.cb_list, list) {
err = block_cb->cb(type, type_data, block_cb->cb_priv);
if (err) {
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
if (err_stop)
return err;
} else {
ok_count++;
}
}
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
return ok_count;
}
int tc_setup_cb_call(struct tcf_block *block, enum tc_setup_type type,
void *type_data, bool err_stop, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return ok_count;
}
EXPORT_SYMBOL(tc_setup_cb_call);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
/* Non-destructive filter add. If filter that wasn't already in hardware is
* successfully offloaded, increment block offloads counter. On failure,
* previously offloaded filter is considered to be intact and offloads counter
* is not decremented.
*/
int tc_setup_cb_add(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *flags, unsigned int *in_hw_count, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
/* Make sure all netdevs sharing this block are offload-capable. */
if (block->nooffloaddevcnt && err_stop) {
ok_count = -EOPNOTSUPP;
goto err_unlock;
}
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
if (ok_count < 0)
goto err_unlock;
if (tp->ops->hw_add)
tp->ops->hw_add(tp, type_data);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
if (ok_count > 0)
tc_cls_offload_cnt_update(block, tp, in_hw_count, flags,
ok_count, true);
err_unlock:
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
}
EXPORT_SYMBOL(tc_setup_cb_add);
/* Destructive filter replace. If filter that wasn't already in hardware is
* successfully offloaded, increment block offload counter. On failure,
* previously offloaded filter is considered to be destroyed and offload counter
* is decremented.
*/
int tc_setup_cb_replace(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *old_flags, unsigned int *old_in_hw_count,
u32 *new_flags, unsigned int *new_in_hw_count,
bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
/* Make sure all netdevs sharing this block are offload-capable. */
if (block->nooffloaddevcnt && err_stop) {
ok_count = -EOPNOTSUPP;
goto err_unlock;
}
tc_cls_offload_cnt_reset(block, tp, old_in_hw_count, old_flags);
if (tp->ops->hw_del)
tp->ops->hw_del(tp, type_data);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
if (ok_count < 0)
goto err_unlock;
if (tp->ops->hw_add)
tp->ops->hw_add(tp, type_data);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
if (ok_count > 0)
tc_cls_offload_cnt_update(block, tp, new_in_hw_count,
new_flags, ok_count, true);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
err_unlock:
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
}
EXPORT_SYMBOL(tc_setup_cb_replace);
/* Destroy filter and decrement block offload counter, if filter was previously
* offloaded.
*/
int tc_setup_cb_destroy(struct tcf_block *block, struct tcf_proto *tp,
enum tc_setup_type type, void *type_data, bool err_stop,
u32 *flags, unsigned int *in_hw_count, bool rtnl_held)
{
bool take_rtnl = READ_ONCE(block->lockeddevcnt) && !rtnl_held;
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
int ok_count;
retry:
if (take_rtnl)
rtnl_lock();
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
down_read(&block->cb_lock);
/* Need to obtain rtnl lock if block is bound to devs that require it.
* In block bind code cb_lock is obtained while holding rtnl, so we must
* obtain the locks in same order here.
*/
if (!rtnl_held && !take_rtnl && block->lockeddevcnt) {
up_read(&block->cb_lock);
take_rtnl = true;
goto retry;
}
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
ok_count = __tc_setup_cb_call(block, type, type_data, err_stop);
tc_cls_offload_cnt_reset(block, tp, in_hw_count, flags);
if (tp->ops->hw_del)
tp->ops->hw_del(tp, type_data);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
up_read(&block->cb_lock);
if (take_rtnl)
rtnl_unlock();
return min(ok_count, 0);
net: sched: refactor block offloads counter usage Without rtnl lock protection filters can no longer safely manage block offloads counter themselves. Refactor cls API to protect block offloadcnt with tcf_block->cb_lock that is already used to protect driver callback list and nooffloaddevcnt counter. The counter can be modified by concurrent tasks by new functions that execute block callbacks (which is safe with previous patch that changed its type to atomic_t), however, block bind/unbind code that checks the counter value takes cb_lock in write mode to exclude any concurrent modifications. This approach prevents race conditions between bind/unbind and callback execution code but allows for concurrency for tc rule update path. Move block offload counter, filter in hardware counter and filter flags management from classifiers into cls hardware offloads API. Make functions tcf_block_offload_{inc|dec}() and tc_cls_offload_cnt_update() to be cls API private. Implement following new cls API to be used instead: tc_setup_cb_add() - non-destructive filter add. If filter that wasn't already in hardware is successfully offloaded, increment block offloads counter, set filter in hardware counter and flag. On failure, previously offloaded filter is considered to be intact and offloads counter is not decremented. tc_setup_cb_replace() - destructive filter replace. Release existing filter block offload counter and reset its in hardware counter and flag. Set new filter in hardware counter and flag. On failure, previously offloaded filter is considered to be destroyed and offload counter is decremented. tc_setup_cb_destroy() - filter destroy. Unconditionally decrement block offloads counter. tc_setup_cb_reoffload() - reoffload filter to single cb. Execute cb() and call tc_cls_offload_cnt_update() if cb() didn't return an error. Refactor all offload-capable classifiers to atomically offload filters to hardware, change block offload counter, and set filter in hardware counter and flag by means of the new cls API functions. Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 16:44:59 +03:00
}
EXPORT_SYMBOL(tc_setup_cb_destroy);
int tc_setup_cb_reoffload(struct tcf_block *block, struct tcf_proto *tp,
bool add, flow_setup_cb_t *cb,
enum tc_setup_type type, void *type_data,
void *cb_priv, u32 *flags, unsigned int *in_hw_count)
{
int err = cb(type, type_data, cb_priv);
if (err) {
if (add && tc_skip_sw(*flags))
return err;
} else {
tc_cls_offload_cnt_update(block, tp, in_hw_count, flags, 1,
add);
}
return 0;
}
EXPORT_SYMBOL(tc_setup_cb_reoffload);
static int tcf_act_get_cookie(struct flow_action_entry *entry,
const struct tc_action *act)
{
struct tc_cookie *cookie;
int err = 0;
rcu_read_lock();
cookie = rcu_dereference(act->act_cookie);
if (cookie) {
entry->cookie = flow_action_cookie_create(cookie->data,
cookie->len,
GFP_ATOMIC);
if (!entry->cookie)
err = -ENOMEM;
}
rcu_read_unlock();
return err;
}
static void tcf_act_put_cookie(struct flow_action_entry *entry)
{
flow_action_cookie_destroy(entry->cookie);
}
void tc_cleanup_offload_action(struct flow_action *flow_action)
{
struct flow_action_entry *entry;
int i;
flow_action_for_each(i, entry, flow_action) {
tcf_act_put_cookie(entry);
if (entry->destructor)
entry->destructor(entry->destructor_priv);
}
}
EXPORT_SYMBOL(tc_cleanup_offload_action);
static int tc_setup_offload_act(struct tc_action *act,
struct flow_action_entry *entry,
u32 *index_inc)
{
#ifdef CONFIG_NET_CLS_ACT
if (act->ops->offload_act_setup)
return act->ops->offload_act_setup(act, entry, index_inc, true);
else
return -EOPNOTSUPP;
#else
return 0;
net: sched: take reference to psample group in flow_action infra With recent patch set that removed rtnl lock dependency from cls hardware offload API rtnl lock is only taken when reading action data and can be released after action-specific data is parsed into intermediate representation. However, sample action psample group is passed by pointer without obtaining reference to it first, which makes it possible to concurrently overwrite the action and deallocate object pointed by psample_group pointer after rtnl lock is released but before driver finished using the pointer. To prevent such race condition, obtain reference to psample group while it is used by flow_action infra. Extend psample API with function psample_group_take() that increments psample group reference counter. Extend struct tc_action_ops with new get_psample_group() API. Implement the API for action sample using psample_group_take() and already existing psample_group_put() as a destructor. Use it in tc_setup_flow_action() to take reference to psample group pointed to by entry->sample.psample_group and release it in tc_cleanup_flow_action(). Disable bh when taking psample_groups_lock. The lock is now taken while holding action tcf_lock that is used by data path and requires bh to be disabled, so doing the same for psample_groups_lock is necessary to preserve SOFTIRQ-irq-safety. Fixes: 918190f50eb6 ("net: sched: flower: don't take rtnl lock for cls hw offloads API") Signed-off-by: Vlad Buslov <vladbu@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-13 18:28:40 +03:00
#endif
}
int tc_setup_action(struct flow_action *flow_action,
struct tc_action *actions[])
{
int i, j, index, err = 0;
struct tc_action *act;
BUILD_BUG_ON(TCA_ACT_HW_STATS_ANY != FLOW_ACTION_HW_STATS_ANY);
BUILD_BUG_ON(TCA_ACT_HW_STATS_IMMEDIATE != FLOW_ACTION_HW_STATS_IMMEDIATE);
BUILD_BUG_ON(TCA_ACT_HW_STATS_DELAYED != FLOW_ACTION_HW_STATS_DELAYED);
if (!actions)
return 0;
j = 0;
tcf_act_for_each_action(i, act, actions) {
struct flow_action_entry *entry;
entry = &flow_action->entries[j];
spin_lock_bh(&act->tcfa_lock);
err = tcf_act_get_cookie(entry, act);
if (err)
goto err_out_locked;
entry->hw_stats = tc_act_hw_stats(act->hw_stats);
entry->hw_index = act->tcfa_index;
index = 0;
err = tc_setup_offload_act(act, entry, &index);
if (!err)
j += index;
else
goto err_out_locked;
spin_unlock_bh(&act->tcfa_lock);
}
err_out:
if (err)
tc_cleanup_offload_action(flow_action);
return err;
err_out_locked:
spin_unlock_bh(&act->tcfa_lock);
goto err_out;
}
int tc_setup_offload_action(struct flow_action *flow_action,
const struct tcf_exts *exts)
{
#ifdef CONFIG_NET_CLS_ACT
if (!exts)
return 0;
return tc_setup_action(flow_action, exts->actions);
#else
return 0;
#endif
}
EXPORT_SYMBOL(tc_setup_offload_action);
unsigned int tcf_exts_num_actions(struct tcf_exts *exts)
{
unsigned int num_acts = 0;
struct tc_action *act;
int i;
tcf_exts_for_each_action(i, act, exts) {
if (is_tcf_pedit(act))
num_acts += tcf_pedit_nkeys(act);
else
num_acts++;
}
return num_acts;
}
EXPORT_SYMBOL(tcf_exts_num_actions);
#ifdef CONFIG_NET_CLS_ACT
static int tcf_qevent_parse_block_index(struct nlattr *block_index_attr,
u32 *p_block_index,
struct netlink_ext_ack *extack)
{
*p_block_index = nla_get_u32(block_index_attr);
if (!*p_block_index) {
NL_SET_ERR_MSG(extack, "Block number may not be zero");
return -EINVAL;
}
return 0;
}
int tcf_qevent_init(struct tcf_qevent *qe, struct Qdisc *sch,
enum flow_block_binder_type binder_type,
struct nlattr *block_index_attr,
struct netlink_ext_ack *extack)
{
u32 block_index;
int err;
if (!block_index_attr)
return 0;
err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack);
if (err)
return err;
if (!block_index)
return 0;
qe->info.binder_type = binder_type;
qe->info.chain_head_change = tcf_chain_head_change_dflt;
qe->info.chain_head_change_priv = &qe->filter_chain;
qe->info.block_index = block_index;
return tcf_block_get_ext(&qe->block, sch, &qe->info, extack);
}
EXPORT_SYMBOL(tcf_qevent_init);
void tcf_qevent_destroy(struct tcf_qevent *qe, struct Qdisc *sch)
{
if (qe->info.block_index)
tcf_block_put_ext(qe->block, sch, &qe->info);
}
EXPORT_SYMBOL(tcf_qevent_destroy);
int tcf_qevent_validate_change(struct tcf_qevent *qe, struct nlattr *block_index_attr,
struct netlink_ext_ack *extack)
{
u32 block_index;
int err;
if (!block_index_attr)
return 0;
err = tcf_qevent_parse_block_index(block_index_attr, &block_index, extack);
if (err)
return err;
/* Bounce newly-configured block or change in block. */
if (block_index != qe->info.block_index) {
NL_SET_ERR_MSG(extack, "Change of blocks is not supported");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(tcf_qevent_validate_change);
struct sk_buff *tcf_qevent_handle(struct tcf_qevent *qe, struct Qdisc *sch, struct sk_buff *skb,
struct sk_buff **to_free, int *ret)
{
struct tcf_result cl_res;
struct tcf_proto *fl;
if (!qe->info.block_index)
return skb;
fl = rcu_dereference_bh(qe->filter_chain);
switch (tcf_classify(skb, NULL, fl, &cl_res, false)) {
case TC_ACT_SHOT:
qdisc_qstats_drop(sch);
__qdisc_drop(skb, to_free);
*ret = __NET_XMIT_BYPASS;
return NULL;
case TC_ACT_STOLEN:
case TC_ACT_QUEUED:
case TC_ACT_TRAP:
__qdisc_drop(skb, to_free);
*ret = __NET_XMIT_STOLEN;
return NULL;
case TC_ACT_REDIRECT:
skb_do_redirect(skb);
*ret = __NET_XMIT_STOLEN;
return NULL;
}
return skb;
}
EXPORT_SYMBOL(tcf_qevent_handle);
int tcf_qevent_dump(struct sk_buff *skb, int attr_name, struct tcf_qevent *qe)
{
if (!qe->info.block_index)
return 0;
return nla_put_u32(skb, attr_name, qe->info.block_index);
}
EXPORT_SYMBOL(tcf_qevent_dump);
#endif
static __net_init int tcf_net_init(struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
spin_lock_init(&tn->idr_lock);
idr_init(&tn->idr);
return 0;
}
static void __net_exit tcf_net_exit(struct net *net)
{
struct tcf_net *tn = net_generic(net, tcf_net_id);
idr_destroy(&tn->idr);
}
static struct pernet_operations tcf_net_ops = {
.init = tcf_net_init,
.exit = tcf_net_exit,
.id = &tcf_net_id,
.size = sizeof(struct tcf_net),
};
static int __init tc_filter_init(void)
{
int err;
tc_filter_wq = alloc_ordered_workqueue("tc_filter_workqueue", 0);
if (!tc_filter_wq)
return -ENOMEM;
err = register_pernet_subsys(&tcf_net_ops);
if (err)
goto err_register_pernet_subsys;
rtnl_register(PF_UNSPEC, RTM_NEWTFILTER, tc_new_tfilter, NULL,
RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_DELTFILTER, tc_del_tfilter, NULL,
RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_GETTFILTER, tc_get_tfilter,
tc_dump_tfilter, RTNL_FLAG_DOIT_UNLOCKED);
rtnl_register(PF_UNSPEC, RTM_NEWCHAIN, tc_ctl_chain, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_DELCHAIN, tc_ctl_chain, NULL, 0);
rtnl_register(PF_UNSPEC, RTM_GETCHAIN, tc_ctl_chain,
tc_dump_chain, 0);
return 0;
err_register_pernet_subsys:
destroy_workqueue(tc_filter_wq);
return err;
}
subsys_initcall(tc_filter_init);