2019-05-29 07:18:09 -07:00
// SPDX-License-Identifier: GPL-2.0-only
2014-11-13 17:36:49 -08:00
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
# include <linux/bpf.h>
2022-02-11 11:49:48 -08:00
# include <linux/btf.h>
2021-12-15 18:55:37 -08:00
# include <linux/bpf-cgroup.h>
2014-11-13 17:36:49 -08:00
# include <linux/rcupdate.h>
2015-03-14 02:27:16 +01:00
# include <linux/random.h>
2015-03-14 02:27:17 +01:00
# include <linux/smp.h>
2016-10-21 12:46:33 +02:00
# include <linux/topology.h>
2015-05-29 23:23:06 +02:00
# include <linux/ktime.h>
2015-06-12 19:39:12 -07:00
# include <linux/sched.h>
# include <linux/uidgid.h>
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
# include <linux/filter.h>
2019-03-18 17:55:26 -07:00
# include <linux/ctype.h>
2020-01-22 15:36:46 -08:00
# include <linux/jiffies.h>
2020-03-04 17:41:56 -03:00
# include <linux/pid_namespace.h>
2022-09-12 08:45:44 -07:00
# include <linux/poison.h>
2020-03-04 17:41:56 -03:00
# include <linux/proc_ns.h>
bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b46471a to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b46471a where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:
I starting seeing this with F-34. When I run a container that is traced with
BPF to record the syscalls it is doing, auditd is flooded with messages like:
type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality }
for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
tclass=lockdown permissive=0
This seems to be leading to auditd running out of space in the backlog buffer
and eventually OOMs the machine.
[...]
auditd running at 99% CPU presumably processing all the messages, eventually I get:
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
[...]
[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
Serhei Makarov says:
Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
ppc64le. Example stack trace:
[...]
[ 730.868702] stack backtrace:
[ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
[ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[ 730.873278] Call Trace:
[ 730.873770] dump_stack+0x7f/0xa1
[ 730.874433] check_noncircular+0xdf/0x100
[ 730.875232] __lock_acquire+0x1202/0x1e10
[ 730.876031] ? __lock_acquire+0xfc0/0x1e10
[ 730.876844] lock_acquire+0xc2/0x3a0
[ 730.877551] ? __wake_up_common_lock+0x52/0x90
[ 730.878434] ? lock_acquire+0xc2/0x3a0
[ 730.879186] ? lock_is_held_type+0xa7/0x120
[ 730.880044] ? skb_queue_tail+0x1b/0x50
[ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90
[ 730.881656] ? __wake_up_common_lock+0x52/0x90
[ 730.882532] __wake_up_common_lock+0x52/0x90
[ 730.883375] audit_log_end+0x5b/0x100
[ 730.884104] slow_avc_audit+0x69/0x90
[ 730.884836] avc_has_perm+0x8b/0xb0
[ 730.885532] selinux_lockdown+0xa5/0xd0
[ 730.886297] security_locked_down+0x20/0x40
[ 730.887133] bpf_probe_read_compat+0x66/0xd0
[ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820
[ 730.888917] trace_call_bpf+0xe9/0x240
[ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0
[ 730.890579] perf_trace_sched_switch+0x142/0x180
[ 730.891485] ? __schedule+0x6d8/0xb20
[ 730.892209] __schedule+0x6d8/0xb20
[ 730.892899] schedule+0x5b/0xc0
[ 730.893522] exit_to_user_mode_prepare+0x11d/0x240
[ 730.894457] syscall_exit_to_user_mode+0x27/0x70
[ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
2021-05-28 09:16:31 +00:00
# include <linux/security.h>
2022-01-24 10:54:01 -08:00
# include <linux/btf_ids.h>
2019-03-18 17:55:26 -07:00
# include "../../lib/kstrtox.h"
2014-11-13 17:36:49 -08:00
/* If kernel subsystem is allowing eBPF programs to call this function,
* inside its own verifier_ops - > get_func_proto ( ) callback it should return
* bpf_map_lookup_elem_proto , so that verifier can properly check the arguments
*
* Different map implementations will rely on rcu in map methods
* lookup / update / delete , therefore eBPF programs must run under rcu lock
* if program is allowed to access maps , so check rcu_read_lock_held in
* all three functions .
*/
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_2 ( bpf_map_lookup_elem , struct bpf_map * , map , void * , key )
2014-11-13 17:36:49 -08:00
{
2021-06-24 18:05:54 +02:00
WARN_ON_ONCE ( ! rcu_read_lock_held ( ) & & ! rcu_read_lock_bh_held ( ) ) ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
return ( unsigned long ) map - > ops - > map_lookup_elem ( map , key ) ;
2014-11-13 17:36:49 -08:00
}
2015-03-01 12:31:42 +01:00
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
2015-05-29 23:23:07 +02:00
. func = bpf_map_lookup_elem ,
. gpl_only = false ,
bpf: direct packet write and access for helpers for clsact progs
This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.
For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.
At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a22089 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.
For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
. pkt_access = true ,
2015-05-29 23:23:07 +02:00
. ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL ,
. arg1_type = ARG_CONST_MAP_PTR ,
. arg2_type = ARG_PTR_TO_MAP_KEY ,
2014-11-13 17:36:49 -08:00
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_4 ( bpf_map_update_elem , struct bpf_map * , map , void * , key ,
void * , value , u64 , flags )
2014-11-13 17:36:49 -08:00
{
2021-06-24 18:05:54 +02:00
WARN_ON_ONCE ( ! rcu_read_lock_held ( ) & & ! rcu_read_lock_bh_held ( ) ) ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
return map - > ops - > map_update_elem ( map , key , value , flags ) ;
2014-11-13 17:36:49 -08:00
}
2015-03-01 12:31:42 +01:00
const struct bpf_func_proto bpf_map_update_elem_proto = {
2015-05-29 23:23:07 +02:00
. func = bpf_map_update_elem ,
. gpl_only = false ,
bpf: direct packet write and access for helpers for clsact progs
This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.
For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.
At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a22089 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.
For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
. pkt_access = true ,
2015-05-29 23:23:07 +02:00
. ret_type = RET_INTEGER ,
. arg1_type = ARG_CONST_MAP_PTR ,
. arg2_type = ARG_PTR_TO_MAP_KEY ,
. arg3_type = ARG_PTR_TO_MAP_VALUE ,
. arg4_type = ARG_ANYTHING ,
2014-11-13 17:36:49 -08:00
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_2 ( bpf_map_delete_elem , struct bpf_map * , map , void * , key )
2014-11-13 17:36:49 -08:00
{
2021-06-24 18:05:54 +02:00
WARN_ON_ONCE ( ! rcu_read_lock_held ( ) & & ! rcu_read_lock_bh_held ( ) ) ;
2014-11-13 17:36:49 -08:00
return map - > ops - > map_delete_elem ( map , key ) ;
}
2015-03-01 12:31:42 +01:00
const struct bpf_func_proto bpf_map_delete_elem_proto = {
2015-05-29 23:23:07 +02:00
. func = bpf_map_delete_elem ,
. gpl_only = false ,
bpf: direct packet write and access for helpers for clsact progs
This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.
For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.
At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a22089 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.
For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-20 00:26:13 +02:00
. pkt_access = true ,
2015-05-29 23:23:07 +02:00
. ret_type = RET_INTEGER ,
. arg1_type = ARG_CONST_MAP_PTR ,
. arg2_type = ARG_PTR_TO_MAP_KEY ,
2014-11-13 17:36:49 -08:00
} ;
2015-03-14 02:27:16 +01:00
2018-10-18 15:16:25 +02:00
BPF_CALL_3 ( bpf_map_push_elem , struct bpf_map * , map , void * , value , u64 , flags )
{
return map - > ops - > map_push_elem ( map , value , flags ) ;
}
const struct bpf_func_proto bpf_map_push_elem_proto = {
. func = bpf_map_push_elem ,
. gpl_only = false ,
. pkt_access = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_CONST_MAP_PTR ,
. arg2_type = ARG_PTR_TO_MAP_VALUE ,
. arg3_type = ARG_ANYTHING ,
} ;
BPF_CALL_2 ( bpf_map_pop_elem , struct bpf_map * , map , void * , value )
{
return map - > ops - > map_pop_elem ( map , value ) ;
}
const struct bpf_func_proto bpf_map_pop_elem_proto = {
. func = bpf_map_pop_elem ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_CONST_MAP_PTR ,
2022-05-09 15:42:52 -07:00
. arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT ,
2018-10-18 15:16:25 +02:00
} ;
BPF_CALL_2 ( bpf_map_peek_elem , struct bpf_map * , map , void * , value )
{
return map - > ops - > map_peek_elem ( map , value ) ;
}
const struct bpf_func_proto bpf_map_peek_elem_proto = {
2021-01-19 21:53:18 +01:00
. func = bpf_map_peek_elem ,
2018-10-18 15:16:25 +02:00
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_CONST_MAP_PTR ,
2022-05-09 15:42:52 -07:00
. arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT ,
2018-10-18 15:16:25 +02:00
} ;
2022-05-11 17:38:53 +08:00
BPF_CALL_3 ( bpf_map_lookup_percpu_elem , struct bpf_map * , map , void * , key , u32 , cpu )
{
WARN_ON_ONCE ( ! rcu_read_lock_held ( ) & & ! rcu_read_lock_bh_held ( ) ) ;
return ( unsigned long ) map - > ops - > map_lookup_percpu_elem ( map , key , cpu ) ;
}
const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
. func = bpf_map_lookup_percpu_elem ,
. gpl_only = false ,
. pkt_access = true ,
. ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL ,
. arg1_type = ARG_CONST_MAP_PTR ,
. arg2_type = ARG_PTR_TO_MAP_KEY ,
. arg3_type = ARG_ANYTHING ,
} ;
2015-03-14 02:27:16 +01:00
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
bpf: split state from prandom_u32() and consolidate {c, e}BPF prngs
While recently arguing on a seccomp discussion that raw prandom_u32()
access shouldn't be exposed to unpriviledged user space, I forgot the
fact that SKF_AD_RANDOM extension actually already does it for some time
in cBPF via commit 4cd3675ebf74 ("filter: added BPF random opcode").
Since prandom_u32() is being used in a lot of critical networking code,
lets be more conservative and split their states. Furthermore, consolidate
eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF,
bpf_get_prandom_u32() was only accessible for priviledged users, but
should that change one day, we also don't want to leak raw sequences
through things like eBPF maps.
One thought was also to have own per bpf_prog states, but due to ABI
reasons this is not easily possible, i.e. the program code currently
cannot access bpf_prog itself, and copying the rnd_state to/from the
stack scratch space whenever a program uses the prng seems not really
worth the trouble and seems too hacky. If needed, taus113 could in such
cases be implemented within eBPF using a map entry to keep the state
space, or get_random_bytes() could become a second helper in cases where
performance would not be critical.
Both sides can trigger a one-time late init via prandom_init_once() on
the shared state. Performance-wise, there should even be a tiny gain
as bpf_user_rnd_u32() saves one function call. The PRNG needs to live
inside the BPF core since kernels could have a NET-less config as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Chema Gonzalez <chema@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 01:20:39 +02:00
. func = bpf_user_rnd_u32 ,
2015-03-14 02:27:16 +01:00
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2015-03-14 02:27:17 +01:00
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_0 ( bpf_get_smp_processor_id )
2015-03-14 02:27:17 +01:00
{
2016-06-28 12:18:26 +02:00
return smp_processor_id ( ) ;
2015-03-14 02:27:17 +01:00
}
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
. func = bpf_get_smp_processor_id ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2015-05-29 23:23:06 +02:00
2016-10-21 12:46:33 +02:00
BPF_CALL_0 ( bpf_get_numa_node_id )
{
return numa_node_id ( ) ;
}
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
. func = bpf_get_numa_node_id ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_0 ( bpf_ktime_get_ns )
2015-05-29 23:23:06 +02:00
{
/* NMI safe access to clock monotonic */
return ktime_get_mono_fast_ns ( ) ;
}
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
. func = bpf_ktime_get_ns ,
2020-04-20 11:47:50 -07:00
. gpl_only = false ,
2015-05-29 23:23:06 +02:00
. ret_type = RET_INTEGER ,
} ;
2015-06-12 19:39:12 -07:00
2020-04-26 09:15:25 -07:00
BPF_CALL_0 ( bpf_ktime_get_boot_ns )
{
/* NMI safe access to clock boottime */
return ktime_get_boot_fast_ns ( ) ;
}
const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
. func = bpf_ktime_get_boot_ns ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2020-11-17 18:45:49 +00:00
BPF_CALL_0 ( bpf_ktime_get_coarse_ns )
{
return ktime_get_coarse_ns ( ) ;
}
const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
. func = bpf_ktime_get_coarse_ns ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2022-08-09 08:08:02 +02:00
BPF_CALL_0 ( bpf_ktime_get_tai_ns )
{
/* NMI safe access to clock tai */
return ktime_get_tai_fast_ns ( ) ;
}
const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
. func = bpf_ktime_get_tai_ns ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_0 ( bpf_get_current_pid_tgid )
2015-06-12 19:39:12 -07:00
{
struct task_struct * task = current ;
2016-09-09 02:45:28 +02:00
if ( unlikely ( ! task ) )
2015-06-12 19:39:12 -07:00
return - EINVAL ;
return ( u64 ) task - > tgid < < 32 | task - > pid ;
}
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
. func = bpf_get_current_pid_tgid ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_0 ( bpf_get_current_uid_gid )
2015-06-12 19:39:12 -07:00
{
struct task_struct * task = current ;
kuid_t uid ;
kgid_t gid ;
2016-09-09 02:45:28 +02:00
if ( unlikely ( ! task ) )
2015-06-12 19:39:12 -07:00
return - EINVAL ;
current_uid_gid ( & uid , & gid ) ;
return ( u64 ) from_kgid ( & init_user_ns , gid ) < < 32 |
2016-09-09 02:45:28 +02:00
from_kuid ( & init_user_ns , uid ) ;
2015-06-12 19:39:12 -07:00
}
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
. func = bpf_get_current_uid_gid ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
bpf: add BPF_CALL_x macros for declaring helpers
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-09 02:45:31 +02:00
BPF_CALL_2 ( bpf_get_current_comm , char * , buf , u32 , size )
2015-06-12 19:39:12 -07:00
{
struct task_struct * task = current ;
2016-04-13 00:10:52 +02:00
if ( unlikely ( ! task ) )
goto err_clear ;
2015-06-12 19:39:12 -07:00
2022-03-04 15:04:08 +08:00
/* Verifier guarantees that size > 0 */
strscpy ( buf , task - > comm , size ) ;
2015-06-12 19:39:12 -07:00
return 0 ;
2016-04-13 00:10:52 +02:00
err_clear :
memset ( buf , 0 , size ) ;
return - EINVAL ;
2015-06-12 19:39:12 -07:00
}
const struct bpf_func_proto bpf_get_current_comm_proto = {
. func = bpf_get_current_comm ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
2017-01-09 10:19:50 -08:00
. arg1_type = ARG_PTR_TO_UNINIT_MEM ,
. arg2_type = ARG_CONST_SIZE ,
2015-06-12 19:39:12 -07:00
} ;
2018-06-03 15:59:41 -07:00
2019-01-31 15:40:04 -08:00
# if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
static inline void __bpf_spin_lock ( struct bpf_spin_lock * lock )
{
arch_spinlock_t * l = ( void * ) lock ;
union {
__u32 val ;
arch_spinlock_t lock ;
} u = { . lock = __ARCH_SPIN_LOCK_UNLOCKED } ;
compiletime_assert ( u . val = = 0 , " __ARCH_SPIN_LOCK_UNLOCKED not 0 " ) ;
BUILD_BUG_ON ( sizeof ( * l ) ! = sizeof ( __u32 ) ) ;
BUILD_BUG_ON ( sizeof ( * lock ) ! = sizeof ( __u32 ) ) ;
arch_spin_lock ( l ) ;
}
static inline void __bpf_spin_unlock ( struct bpf_spin_lock * lock )
{
arch_spinlock_t * l = ( void * ) lock ;
arch_spin_unlock ( l ) ;
}
# else
static inline void __bpf_spin_lock ( struct bpf_spin_lock * lock )
{
atomic_t * l = ( void * ) lock ;
BUILD_BUG_ON ( sizeof ( * l ) ! = sizeof ( * lock ) ) ;
do {
atomic_cond_read_relaxed ( l , ! VAL ) ;
} while ( atomic_xchg ( l , 1 ) ) ;
}
static inline void __bpf_spin_unlock ( struct bpf_spin_lock * lock )
{
atomic_t * l = ( void * ) lock ;
atomic_set_release ( l , 0 ) ;
}
# endif
static DEFINE_PER_CPU ( unsigned long , irqsave_flags ) ;
2021-07-14 17:54:08 -07:00
static inline void __bpf_spin_lock_irqsave ( struct bpf_spin_lock * lock )
2019-01-31 15:40:04 -08:00
{
unsigned long flags ;
local_irq_save ( flags ) ;
__bpf_spin_lock ( lock ) ;
__this_cpu_write ( irqsave_flags , flags ) ;
2021-07-14 17:54:08 -07:00
}
notrace BPF_CALL_1 ( bpf_spin_lock , struct bpf_spin_lock * , lock )
{
__bpf_spin_lock_irqsave ( lock ) ;
2019-01-31 15:40:04 -08:00
return 0 ;
}
const struct bpf_func_proto bpf_spin_lock_proto = {
. func = bpf_spin_lock ,
. gpl_only = false ,
. ret_type = RET_VOID ,
. arg1_type = ARG_PTR_TO_SPIN_LOCK ,
} ;
2021-07-14 17:54:08 -07:00
static inline void __bpf_spin_unlock_irqrestore ( struct bpf_spin_lock * lock )
2019-01-31 15:40:04 -08:00
{
unsigned long flags ;
flags = __this_cpu_read ( irqsave_flags ) ;
__bpf_spin_unlock ( lock ) ;
local_irq_restore ( flags ) ;
2021-07-14 17:54:08 -07:00
}
notrace BPF_CALL_1 ( bpf_spin_unlock , struct bpf_spin_lock * , lock )
{
__bpf_spin_unlock_irqrestore ( lock ) ;
2019-01-31 15:40:04 -08:00
return 0 ;
}
const struct bpf_func_proto bpf_spin_unlock_proto = {
. func = bpf_spin_unlock ,
. gpl_only = false ,
. ret_type = RET_VOID ,
. arg1_type = ARG_PTR_TO_SPIN_LOCK ,
} ;
2019-01-31 15:40:09 -08:00
void copy_map_value_locked ( struct bpf_map * map , void * dst , void * src ,
bool lock_src )
{
struct bpf_spin_lock * lock ;
if ( lock_src )
lock = src + map - > spin_lock_off ;
else
lock = dst + map - > spin_lock_off ;
preempt_disable ( ) ;
2021-07-14 17:54:08 -07:00
__bpf_spin_lock_irqsave ( lock ) ;
2019-01-31 15:40:09 -08:00
copy_map_value ( map , dst , src ) ;
2021-07-14 17:54:08 -07:00
__bpf_spin_unlock_irqrestore ( lock ) ;
2019-01-31 15:40:09 -08:00
preempt_enable ( ) ;
}
2020-01-22 15:36:46 -08:00
BPF_CALL_0 ( bpf_jiffies64 )
{
return get_jiffies_64 ( ) ;
}
const struct bpf_func_proto bpf_jiffies64_proto = {
. func = bpf_jiffies64 ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2018-06-03 15:59:41 -07:00
# ifdef CONFIG_CGROUPS
BPF_CALL_0 ( bpf_get_current_cgroup_id )
{
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
struct cgroup * cgrp ;
u64 cgrp_id ;
2018-06-03 15:59:41 -07:00
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
rcu_read_lock ( ) ;
cgrp = task_dfl_cgroup ( current ) ;
cgrp_id = cgroup_id ( cgrp ) ;
rcu_read_unlock ( ) ;
return cgrp_id ;
2018-06-03 15:59:41 -07:00
}
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
. func = bpf_get_current_cgroup_id ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
2018-08-02 14:27:24 -07:00
2020-03-27 16:58:54 +01:00
BPF_CALL_1 ( bpf_get_current_ancestor_cgroup_id , int , ancestor_level )
{
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
struct cgroup * cgrp ;
2020-03-27 16:58:54 +01:00
struct cgroup * ancestor ;
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
u64 cgrp_id ;
2020-03-27 16:58:54 +01:00
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
rcu_read_lock ( ) ;
cgrp = task_dfl_cgroup ( current ) ;
2020-03-27 16:58:54 +01:00
ancestor = cgroup_ancestor ( cgrp , ancestor_level ) ;
bpf: Add rcu_read_lock in bpf_get_current_[ancestor_]cgroup_id() helpers
Currently, if bpf_get_current_cgroup_id() or
bpf_get_current_ancestor_cgroup_id() helper is
called with sleepable programs e.g., sleepable
fentry/fmod_ret/fexit/lsm programs, a rcu warning
may appear. For example, if I added the following
hack to test_progs/test_lsm sleepable fentry program
test_sys_setdomainname:
--- a/tools/testing/selftests/bpf/progs/lsm.c
+++ b/tools/testing/selftests/bpf/progs/lsm.c
@@ -168,6 +168,10 @@ int BPF_PROG(test_sys_setdomainname, struct pt_regs *regs)
int buf = 0;
long ret;
+ __u64 cg_id = bpf_get_current_cgroup_id();
+ if (cg_id == 1000)
+ copy_test++;
+
ret = bpf_copy_from_user(&buf, sizeof(buf), ptr);
if (len == -2 && ret == 0 && buf == 1234)
copy_test++;
I will hit the following rcu warning:
include/linux/cgroup.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by test_progs/260:
#0: ffffffffa5173360 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xa0
stack backtrace:
CPU: 1 PID: 260 Comm: test_progs Tainted: G O 5.14.0-rc2+ #176
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack_lvl+0x56/0x7b
bpf_get_current_cgroup_id+0x9c/0xb1
bpf_prog_a29888d1c6706e09_test_sys_setdomainname+0x3e/0x89c
bpf_trampoline_6442469132_0+0x2d/0x1000
__x64_sys_setdomainname+0x5/0x110
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
I can get similar warning using bpf_get_current_ancestor_cgroup_id() helper.
syzbot reported a similar issue in [1] for syscall program. Helper
bpf_get_current_cgroup_id() or bpf_get_current_ancestor_cgroup_id()
has the following callchain:
task_dfl_cgroup
task_css_set
task_css_set_check
and we have
#define task_css_set_check(task, __c) \
rcu_dereference_check((task)->cgroups, \
lockdep_is_held(&cgroup_mutex) || \
lockdep_is_held(&css_set_lock) || \
((task)->flags & PF_EXITING) || (__c))
Since cgroup_mutex/css_set_lock is not held and the task
is not existing and rcu read_lock is not held, a warning
will be issued. Note that bpf sleepable program is protected by
rcu_read_lock_trace().
The above sleepable bpf programs are already protected
by migrate_disable(). Adding rcu_read_lock() in these
two helpers will silence the above warning.
I marked the patch fixing 95b861a7935b
("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
which added bpf_get_current_ancestor_cgroup_id() to tracing programs
in 5.14. I think backporting 5.14 is probably good enough as sleepable
progrems are not widely used.
This patch should fix [1] as well since syscall program is a sleepable
program protected with migrate_disable().
[1] https://lore.kernel.org/bpf/0000000000006d5cab05c7d9bb87@google.com/
Fixes: 95b861a7935b ("bpf: Allow bpf_get_current_ancestor_cgroup_id for tracing")
Reported-by: syzbot+7ee5c2c09c284495371f@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210810230537.2864668-1-yhs@fb.com
2021-08-10 16:05:37 -07:00
cgrp_id = ancestor ? cgroup_id ( ancestor ) : 0 ;
rcu_read_unlock ( ) ;
return cgrp_id ;
2020-03-27 16:58:54 +01:00
}
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
. func = bpf_get_current_ancestor_cgroup_id ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_ANYTHING ,
} ;
2022-08-23 15:25:53 -07:00
# endif /* CONFIG_CGROUPS */
2020-03-27 16:58:54 +01:00
2019-03-18 17:55:26 -07:00
# define BPF_STRTOX_BASE_MASK 0x1F
static int __bpf_strtoull ( const char * buf , size_t buf_len , u64 flags ,
unsigned long long * res , bool * is_negative )
{
unsigned int base = flags & BPF_STRTOX_BASE_MASK ;
const char * cur_buf = buf ;
size_t cur_len = buf_len ;
unsigned int consumed ;
size_t val_len ;
char str [ 64 ] ;
if ( ! buf | | ! buf_len | | ! res | | ! is_negative )
return - EINVAL ;
if ( base ! = 0 & & base ! = 8 & & base ! = 10 & & base ! = 16 )
return - EINVAL ;
if ( flags & ~ BPF_STRTOX_BASE_MASK )
return - EINVAL ;
while ( cur_buf < buf + buf_len & & isspace ( * cur_buf ) )
+ + cur_buf ;
* is_negative = ( cur_buf < buf + buf_len & & * cur_buf = = ' - ' ) ;
if ( * is_negative )
+ + cur_buf ;
consumed = cur_buf - buf ;
cur_len - = consumed ;
if ( ! cur_len )
return - EINVAL ;
cur_len = min ( cur_len , sizeof ( str ) - 1 ) ;
memcpy ( str , cur_buf , cur_len ) ;
str [ cur_len ] = ' \0 ' ;
cur_buf = str ;
cur_buf = _parse_integer_fixup_radix ( cur_buf , & base ) ;
val_len = _parse_integer ( cur_buf , base , res ) ;
if ( val_len & KSTRTOX_OVERFLOW )
return - ERANGE ;
if ( val_len = = 0 )
return - EINVAL ;
cur_buf + = val_len ;
consumed + = cur_buf - str ;
return consumed ;
}
static int __bpf_strtoll ( const char * buf , size_t buf_len , u64 flags ,
long long * res )
{
unsigned long long _res ;
bool is_negative ;
int err ;
err = __bpf_strtoull ( buf , buf_len , flags , & _res , & is_negative ) ;
if ( err < 0 )
return err ;
if ( is_negative ) {
if ( ( long long ) - _res > 0 )
return - ERANGE ;
* res = - _res ;
} else {
if ( ( long long ) _res < 0 )
return - ERANGE ;
* res = _res ;
}
return err ;
}
BPF_CALL_4 ( bpf_strtol , const char * , buf , size_t , buf_len , u64 , flags ,
long * , res )
{
long long _res ;
int err ;
err = __bpf_strtoll ( buf , buf_len , flags , & _res ) ;
if ( err < 0 )
return err ;
if ( _res ! = ( long ) _res )
return - ERANGE ;
* res = _res ;
return err ;
}
const struct bpf_func_proto bpf_strtol_proto = {
. func = bpf_strtol ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
2021-12-16 16:31:51 -08:00
. arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY ,
2019-03-18 17:55:26 -07:00
. arg2_type = ARG_CONST_SIZE ,
. arg3_type = ARG_ANYTHING ,
. arg4_type = ARG_PTR_TO_LONG ,
} ;
BPF_CALL_4 ( bpf_strtoul , const char * , buf , size_t , buf_len , u64 , flags ,
unsigned long * , res )
{
unsigned long long _res ;
bool is_negative ;
int err ;
err = __bpf_strtoull ( buf , buf_len , flags , & _res , & is_negative ) ;
if ( err < 0 )
return err ;
if ( is_negative )
return - EINVAL ;
if ( _res ! = ( unsigned long ) _res )
return - ERANGE ;
* res = _res ;
return err ;
}
const struct bpf_func_proto bpf_strtoul_proto = {
. func = bpf_strtoul ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
2021-12-16 16:31:51 -08:00
. arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY ,
2019-03-18 17:55:26 -07:00
. arg2_type = ARG_CONST_SIZE ,
. arg3_type = ARG_ANYTHING ,
. arg4_type = ARG_PTR_TO_LONG ,
} ;
2020-03-04 17:41:56 -03:00
2021-12-10 22:16:49 +08:00
BPF_CALL_3 ( bpf_strncmp , const char * , s1 , u32 , s1_sz , const char * , s2 )
{
return strncmp ( s1 , s2 , s1_sz ) ;
}
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_strncmp_proto = {
2021-12-10 22:16:49 +08:00
. func = bpf_strncmp ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_MEM ,
. arg2_type = ARG_CONST_SIZE ,
. arg3_type = ARG_PTR_TO_CONST_STR ,
} ;
2020-03-04 17:41:56 -03:00
BPF_CALL_4 ( bpf_get_ns_current_pid_tgid , u64 , dev , u64 , ino ,
struct bpf_pidns_info * , nsdata , u32 , size )
{
struct task_struct * task = current ;
struct pid_namespace * pidns ;
int err = - EINVAL ;
if ( unlikely ( size ! = sizeof ( struct bpf_pidns_info ) ) )
goto clear ;
if ( unlikely ( ( u64 ) ( dev_t ) dev ! = dev ) )
goto clear ;
if ( unlikely ( ! task ) )
goto clear ;
pidns = task_active_pid_ns ( task ) ;
if ( unlikely ( ! pidns ) ) {
err = - ENOENT ;
goto clear ;
}
if ( ! ns_match ( & pidns - > ns , ( dev_t ) dev , ino ) )
goto clear ;
nsdata - > pid = task_pid_nr_ns ( task , pidns ) ;
nsdata - > tgid = task_tgid_nr_ns ( task , pidns ) ;
return 0 ;
clear :
memset ( ( void * ) nsdata , 0 , ( size_t ) size ) ;
return err ;
}
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
. func = bpf_get_ns_current_pid_tgid ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_ANYTHING ,
. arg2_type = ARG_ANYTHING ,
. arg3_type = ARG_PTR_TO_UNINIT_MEM ,
. arg4_type = ARG_CONST_SIZE ,
} ;
2020-04-24 16:59:41 -07:00
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
. func = bpf_get_raw_cpu_id ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
} ;
BPF_CALL_5 ( bpf_event_output_data , void * , ctx , struct bpf_map * , map ,
u64 , flags , void * , data , u64 , size )
{
if ( unlikely ( flags & ~ ( BPF_F_INDEX_MASK ) ) )
return - EINVAL ;
return bpf_event_output ( map , flags , data , size , NULL , 0 , NULL ) ;
}
const struct bpf_func_proto bpf_event_output_data_proto = {
. func = bpf_event_output_data ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_CTX ,
. arg2_type = ARG_CONST_MAP_PTR ,
. arg3_type = ARG_ANYTHING ,
2021-12-16 16:31:51 -08:00
. arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY ,
2020-04-24 16:59:41 -07:00
. arg5_type = ARG_CONST_SIZE_OR_ZERO ,
} ;
2020-08-27 15:01:12 -07:00
BPF_CALL_3 ( bpf_copy_from_user , void * , dst , u32 , size ,
const void __user * , user_ptr )
{
int ret = copy_from_user ( dst , user_ptr , size ) ;
if ( unlikely ( ret ) ) {
memset ( dst , 0 , size ) ;
ret = - EFAULT ;
}
return ret ;
}
const struct bpf_func_proto bpf_copy_from_user_proto = {
. func = bpf_copy_from_user ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_UNINIT_MEM ,
. arg2_type = ARG_CONST_SIZE_OR_ZERO ,
. arg3_type = ARG_ANYTHING ,
} ;
2022-01-24 10:54:01 -08:00
BPF_CALL_5 ( bpf_copy_from_user_task , void * , dst , u32 , size ,
const void __user * , user_ptr , struct task_struct * , tsk , u64 , flags )
{
int ret ;
/* flags is not used yet */
if ( unlikely ( flags ) )
return - EINVAL ;
if ( unlikely ( ! size ) )
return 0 ;
ret = access_process_vm ( tsk , ( unsigned long ) user_ptr , dst , size , 0 ) ;
if ( ret = = size )
return 0 ;
memset ( dst , 0 , size ) ;
/* Return -EFAULT for partial read */
return ret < 0 ? ret : - EFAULT ;
}
const struct bpf_func_proto bpf_copy_from_user_task_proto = {
. func = bpf_copy_from_user_task ,
2022-01-29 02:09:06 +09:00
. gpl_only = true ,
2022-01-24 10:54:01 -08:00
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_UNINIT_MEM ,
. arg2_type = ARG_CONST_SIZE_OR_ZERO ,
. arg3_type = ARG_ANYTHING ,
. arg4_type = ARG_PTR_TO_BTF_ID ,
. arg4_btf_id = & btf_tracing_ids [ BTF_TRACING_TYPE_TASK ] ,
. arg5_type = ARG_ANYTHING
} ;
2020-09-29 16:50:47 -07:00
BPF_CALL_2 ( bpf_per_cpu_ptr , const void * , ptr , u32 , cpu )
{
if ( cpu > = nr_cpu_ids )
return ( unsigned long ) NULL ;
return ( unsigned long ) per_cpu_ptr ( ( const void __percpu * ) ptr , cpu ) ;
}
const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
. func = bpf_per_cpu_ptr ,
. gpl_only = false ,
2021-12-16 16:31:50 -08:00
. ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY ,
2020-09-29 16:50:47 -07:00
. arg1_type = ARG_PTR_TO_PERCPU_BTF_ID ,
. arg2_type = ARG_ANYTHING ,
} ;
2020-09-29 16:50:48 -07:00
BPF_CALL_1 ( bpf_this_cpu_ptr , const void * , percpu_ptr )
{
return ( unsigned long ) this_cpu_ptr ( ( const void __percpu * ) percpu_ptr ) ;
}
const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
. func = bpf_this_cpu_ptr ,
. gpl_only = false ,
2021-12-16 16:31:50 -08:00
. ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY ,
2020-09-29 16:50:48 -07:00
. arg1_type = ARG_PTR_TO_PERCPU_BTF_ID ,
} ;
2021-04-19 17:52:38 +02:00
static int bpf_trace_copy_string ( char * buf , void * unsafe_ptr , char fmt_ptype ,
size_t bufsz )
{
void __user * user_ptr = ( __force void __user * ) unsafe_ptr ;
buf [ 0 ] = 0 ;
switch ( fmt_ptype ) {
case ' s ' :
# ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
if ( ( unsigned long ) unsafe_ptr < TASK_SIZE )
return strncpy_from_user_nofault ( buf , user_ptr , bufsz ) ;
fallthrough ;
# endif
case ' k ' :
return strncpy_from_kernel_nofault ( buf , unsafe_ptr , bufsz ) ;
case ' u ' :
return strncpy_from_user_nofault ( buf , user_ptr , bufsz ) ;
}
return - EINVAL ;
}
2021-05-17 11:28:29 +02:00
/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
* arguments representation .
2021-04-19 17:52:38 +02:00
*/
2021-05-17 11:28:29 +02:00
# define MAX_BPRINTF_BUF_LEN 512
2021-04-19 17:52:38 +02:00
2021-05-11 10:10:54 +02:00
/* Support executing three nested bprintf helper calls on a given CPU */
2021-05-17 11:28:30 +02:00
# define MAX_BPRINTF_NEST_LEVEL 3
2021-05-11 10:10:54 +02:00
struct bpf_bprintf_buffers {
2021-05-17 11:28:30 +02:00
char tmp_bufs [ MAX_BPRINTF_NEST_LEVEL ] [ MAX_BPRINTF_BUF_LEN ] ;
2021-04-19 17:52:38 +02:00
} ;
2021-05-11 10:10:54 +02:00
static DEFINE_PER_CPU ( struct bpf_bprintf_buffers , bpf_bprintf_bufs ) ;
static DEFINE_PER_CPU ( int , bpf_bprintf_nest_level ) ;
2021-04-19 17:52:38 +02:00
static int try_get_fmt_tmp_buf ( char * * tmp_buf )
{
2021-05-11 10:10:54 +02:00
struct bpf_bprintf_buffers * bufs ;
int nest_level ;
2021-04-19 17:52:38 +02:00
preempt_disable ( ) ;
2021-05-11 10:10:54 +02:00
nest_level = this_cpu_inc_return ( bpf_bprintf_nest_level ) ;
2021-05-17 11:28:30 +02:00
if ( WARN_ON_ONCE ( nest_level > MAX_BPRINTF_NEST_LEVEL ) ) {
2021-05-11 10:10:54 +02:00
this_cpu_dec ( bpf_bprintf_nest_level ) ;
2021-04-19 17:52:38 +02:00
preempt_enable ( ) ;
return - EBUSY ;
}
2021-05-11 10:10:54 +02:00
bufs = this_cpu_ptr ( & bpf_bprintf_bufs ) ;
* tmp_buf = bufs - > tmp_bufs [ nest_level - 1 ] ;
2021-04-19 17:52:38 +02:00
return 0 ;
}
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
void bpf_bprintf_cleanup ( void )
2021-04-19 17:52:38 +02:00
{
2021-05-11 10:10:54 +02:00
if ( this_cpu_read ( bpf_bprintf_nest_level ) ) {
this_cpu_dec ( bpf_bprintf_nest_level ) ;
2021-04-19 17:52:38 +02:00
preempt_enable ( ) ;
}
}
/*
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
* bpf_bprintf_prepare - Generic pass on format strings for bprintf - like helpers
2021-04-19 17:52:38 +02:00
*
* Returns a negative value if fmt is an invalid format string or 0 otherwise .
*
* This can be used in two ways :
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
* - Format string verification only : when bin_args is NULL
2021-04-19 17:52:38 +02:00
* - Arguments preparation : in addition to the above verification , it writes in
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
* bin_args a binary representation of arguments usable by bstr_printf where
* pointers from BPF have been sanitized .
2021-04-19 17:52:38 +02:00
*
* In argument preparation mode , if 0 is returned , safe temporary buffers are
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
* allocated and bpf_bprintf_cleanup should be called to free them after use .
2021-04-19 17:52:38 +02:00
*/
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
int bpf_bprintf_prepare ( char * fmt , u32 fmt_size , const u64 * raw_args ,
u32 * * bin_args , u32 num_args )
{
char * unsafe_ptr = NULL , * tmp_buf = NULL , * tmp_buf_end , * fmt_end ;
size_t sizeof_cur_arg , sizeof_cur_ip ;
int err , i , num_spec = 0 ;
2021-04-19 17:52:38 +02:00
u64 cur_arg ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
char fmt_ptype , cur_ip [ 16 ] , ip_spec [ ] = " %pXX " ;
2021-04-19 17:52:38 +02:00
fmt_end = strnchr ( fmt , fmt_size , 0 ) ;
if ( ! fmt_end )
return - EINVAL ;
fmt_size = fmt_end - fmt ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( bin_args ) {
if ( num_args & & try_get_fmt_tmp_buf ( & tmp_buf ) )
return - EBUSY ;
2021-05-17 11:28:29 +02:00
tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
* bin_args = ( u32 * ) tmp_buf ;
}
2021-04-19 17:52:38 +02:00
for ( i = 0 ; i < fmt_size ; i + + ) {
if ( ( ! isprint ( fmt [ i ] ) & & ! isspace ( fmt [ i ] ) ) | | ! isascii ( fmt [ i ] ) ) {
err = - EINVAL ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
if ( fmt [ i ] ! = ' % ' )
continue ;
if ( fmt [ i + 1 ] = = ' % ' ) {
i + + ;
continue ;
}
if ( num_spec > = num_args ) {
err = - EINVAL ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
/* The string is zero-terminated so if fmt[i] != 0, we can
* always access fmt [ i + 1 ] , in the worst case it will be a 0
*/
i + + ;
/* skip optional "[0 +-][num]" width formatting field */
while ( fmt [ i ] = = ' 0 ' | | fmt [ i ] = = ' + ' | | fmt [ i ] = = ' - ' | |
fmt [ i ] = = ' ' )
i + + ;
if ( fmt [ i ] > = ' 1 ' & & fmt [ i ] < = ' 9 ' ) {
i + + ;
while ( fmt [ i ] > = ' 0 ' & & fmt [ i ] < = ' 9 ' )
i + + ;
}
if ( fmt [ i ] = = ' p ' ) {
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
sizeof_cur_arg = sizeof ( long ) ;
2021-04-19 17:52:38 +02:00
if ( ( fmt [ i + 1 ] = = ' k ' | | fmt [ i + 1 ] = = ' u ' ) & &
fmt [ i + 2 ] = = ' s ' ) {
fmt_ptype = fmt [ i + 1 ] ;
i + = 2 ;
goto fmt_str ;
}
if ( fmt [ i + 1 ] = = 0 | | isspace ( fmt [ i + 1 ] ) | |
ispunct ( fmt [ i + 1 ] ) | | fmt [ i + 1 ] = = ' K ' | |
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
fmt [ i + 1 ] = = ' x ' | | fmt [ i + 1 ] = = ' s ' | |
fmt [ i + 1 ] = = ' S ' ) {
2021-04-19 17:52:38 +02:00
/* just kernel pointers */
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( tmp_buf )
2021-04-19 17:52:38 +02:00
cur_arg = raw_args [ num_spec ] ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
i + + ;
goto nocopy_fmt ;
}
if ( fmt [ i + 1 ] = = ' B ' ) {
if ( tmp_buf ) {
err = snprintf ( tmp_buf ,
( tmp_buf_end - tmp_buf ) ,
" %pB " ,
( void * ) ( long ) raw_args [ num_spec ] ) ;
tmp_buf + = ( err + 1 ) ;
}
i + + ;
num_spec + + ;
continue ;
2021-04-19 17:52:38 +02:00
}
/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
if ( ( fmt [ i + 1 ] ! = ' i ' & & fmt [ i + 1 ] ! = ' I ' ) | |
( fmt [ i + 2 ] ! = ' 4 ' & & fmt [ i + 2 ] ! = ' 6 ' ) ) {
err = - EINVAL ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
i + = 2 ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( ! tmp_buf )
goto nocopy_fmt ;
2021-04-19 17:52:38 +02:00
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
sizeof_cur_ip = ( fmt [ i ] = = ' 4 ' ) ? 4 : 16 ;
if ( tmp_buf_end - tmp_buf < sizeof_cur_ip ) {
2021-04-19 17:52:38 +02:00
err = - ENOSPC ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
unsafe_ptr = ( char * ) ( long ) raw_args [ num_spec ] ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
err = copy_from_kernel_nofault ( cur_ip , unsafe_ptr ,
sizeof_cur_ip ) ;
2021-04-19 17:52:38 +02:00
if ( err < 0 )
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
memset ( cur_ip , 0 , sizeof_cur_ip ) ;
2021-04-19 17:52:38 +02:00
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
/* hack: bstr_printf expects IP addresses to be
* pre - formatted as strings , ironically , the easiest way
* to do that is to call snprintf .
*/
ip_spec [ 2 ] = fmt [ i - 1 ] ;
ip_spec [ 3 ] = fmt [ i ] ;
err = snprintf ( tmp_buf , tmp_buf_end - tmp_buf ,
ip_spec , & cur_ip ) ;
tmp_buf + = err + 1 ;
num_spec + + ;
continue ;
2021-04-19 17:52:38 +02:00
} else if ( fmt [ i ] = = ' s ' ) {
fmt_ptype = fmt [ i ] ;
fmt_str :
if ( fmt [ i + 1 ] ! = 0 & &
! isspace ( fmt [ i + 1 ] ) & &
! ispunct ( fmt [ i + 1 ] ) ) {
err = - EINVAL ;
goto out ;
}
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( ! tmp_buf )
goto nocopy_fmt ;
if ( tmp_buf_end = = tmp_buf ) {
2021-04-19 17:52:38 +02:00
err = - ENOSPC ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
unsafe_ptr = ( char * ) ( long ) raw_args [ num_spec ] ;
err = bpf_trace_copy_string ( tmp_buf , unsafe_ptr ,
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
fmt_ptype ,
tmp_buf_end - tmp_buf ) ;
2021-04-19 17:52:38 +02:00
if ( err < 0 ) {
tmp_buf [ 0 ] = ' \0 ' ;
err = 1 ;
}
tmp_buf + = err ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
num_spec + + ;
2021-04-19 17:52:38 +02:00
2021-08-14 10:57:16 +09:00
continue ;
} else if ( fmt [ i ] = = ' c ' ) {
if ( ! tmp_buf )
goto nocopy_fmt ;
if ( tmp_buf_end = = tmp_buf ) {
err = - ENOSPC ;
goto out ;
}
* tmp_buf = raw_args [ num_spec ] ;
tmp_buf + + ;
num_spec + + ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
continue ;
2021-04-19 17:52:38 +02:00
}
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
sizeof_cur_arg = sizeof ( int ) ;
2021-04-19 17:52:38 +02:00
if ( fmt [ i ] = = ' l ' ) {
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
sizeof_cur_arg = sizeof ( long ) ;
2021-04-19 17:52:38 +02:00
i + + ;
}
if ( fmt [ i ] = = ' l ' ) {
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
sizeof_cur_arg = sizeof ( long long ) ;
2021-04-19 17:52:38 +02:00
i + + ;
}
if ( fmt [ i ] ! = ' i ' & & fmt [ i ] ! = ' d ' & & fmt [ i ] ! = ' u ' & &
fmt [ i ] ! = ' x ' & & fmt [ i ] ! = ' X ' ) {
err = - EINVAL ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
goto out ;
2021-04-19 17:52:38 +02:00
}
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( tmp_buf )
2021-04-19 17:52:38 +02:00
cur_arg = raw_args [ num_spec ] ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
nocopy_fmt :
if ( tmp_buf ) {
tmp_buf = PTR_ALIGN ( tmp_buf , sizeof ( u32 ) ) ;
if ( tmp_buf_end - tmp_buf < sizeof_cur_arg ) {
err = - ENOSPC ;
goto out ;
}
if ( sizeof_cur_arg = = 8 ) {
* ( u32 * ) tmp_buf = * ( u32 * ) & cur_arg ;
* ( u32 * ) ( tmp_buf + 4 ) = * ( ( u32 * ) & cur_arg + 1 ) ;
} else {
* ( u32 * ) tmp_buf = ( u32 ) ( long ) cur_arg ;
}
tmp_buf + = sizeof_cur_arg ;
2021-04-19 17:52:38 +02:00
}
num_spec + + ;
}
err = 0 ;
out :
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
if ( err )
bpf_bprintf_cleanup ( ) ;
2021-04-19 17:52:38 +02:00
return err ;
}
2021-04-19 17:52:40 +02:00
BPF_CALL_5 ( bpf_snprintf , char * , str , u32 , str_size , char * , fmt ,
const void * , data , u32 , data_len )
{
int err , num_args ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
u32 * bin_args ;
2021-04-19 17:52:40 +02:00
2021-09-17 11:29:03 -07:00
if ( data_len % 8 | | data_len > MAX_BPRINTF_VARARGS * 8 | |
2021-04-19 17:52:40 +02:00
( data_len & & ! data ) )
return - EINVAL ;
num_args = data_len / 8 ;
/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
* can safely give an unbounded size .
*/
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
err = bpf_bprintf_prepare ( fmt , UINT_MAX , data , & bin_args , num_args ) ;
2021-04-19 17:52:40 +02:00
if ( err < 0 )
return err ;
bpf: Implement formatted output helpers with bstr_printf
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().
"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.
In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.
Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.
This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.
Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.
To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().
Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27 19:43:13 +02:00
err = bstr_printf ( str , str_size , fmt , bin_args ) ;
bpf_bprintf_cleanup ( ) ;
2021-04-19 17:52:40 +02:00
return err + 1 ;
}
const struct bpf_func_proto bpf_snprintf_proto = {
. func = bpf_snprintf ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_MEM_OR_NULL ,
. arg2_type = ARG_CONST_SIZE_OR_ZERO ,
. arg3_type = ARG_PTR_TO_CONST_STR ,
2021-12-16 16:31:51 -08:00
. arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY ,
2021-04-19 17:52:40 +02:00
. arg5_type = ARG_CONST_SIZE_OR_ZERO ,
} ;
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
/* BPF map elements can contain 'struct bpf_timer'.
* Such map owns all of its BPF timers .
* ' struct bpf_timer ' is allocated as part of map element allocation
* and it ' s zero initialized .
* That space is used to keep ' struct bpf_timer_kern ' .
* bpf_timer_init ( ) allocates ' struct bpf_hrtimer ' , inits hrtimer , and
* remembers ' struct bpf_map * ' pointer it ' s part of .
* bpf_timer_set_callback ( ) increments prog refcnt and assign bpf callback_fn .
* bpf_timer_start ( ) arms the timer .
* If user space reference to a map goes to zero at this point
* ops - > map_release_uref callback is responsible for cancelling the timers ,
* freeing their memory , and decrementing prog ' s refcnts .
* bpf_timer_cancel ( ) cancels the timer and decrements prog ' s refcnt .
* Inner maps can contain bpf timers as well . ops - > map_release_uref is
* freeing the timers when inner map is replaced or deleted by user space .
*/
struct bpf_hrtimer {
struct hrtimer timer ;
struct bpf_map * map ;
struct bpf_prog * prog ;
void __rcu * callback_fn ;
void * value ;
} ;
/* the actual struct hidden inside uapi struct bpf_timer */
struct bpf_timer_kern {
struct bpf_hrtimer * timer ;
/* bpf_spin_lock is used here instead of spinlock_t to make
2022-02-20 10:40:55 -08:00
* sure that it always fits into space reserved by struct bpf_timer
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
* regardless of LOCKDEP and spinlock debug flags .
*/
struct bpf_spin_lock lock ;
} __attribute__ ( ( aligned ( 8 ) ) ) ;
static DEFINE_PER_CPU ( struct bpf_hrtimer * , hrtimer_running ) ;
static enum hrtimer_restart bpf_timer_cb ( struct hrtimer * hrtimer )
{
struct bpf_hrtimer * t = container_of ( hrtimer , struct bpf_hrtimer , timer ) ;
struct bpf_map * map = t - > map ;
void * value = t - > value ;
2021-09-28 16:09:46 -07:00
bpf_callback_t callback_fn ;
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
void * key ;
u32 idx ;
2022-02-11 11:49:48 -08:00
BTF_TYPE_EMIT ( struct bpf_timer ) ;
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
callback_fn = rcu_dereference_check ( t - > callback_fn , rcu_read_lock_bh_held ( ) ) ;
if ( ! callback_fn )
goto out ;
/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
* cannot be preempted by another bpf_timer_cb ( ) on the same cpu .
* Remember the timer this callback is servicing to prevent
* deadlock if callback_fn ( ) calls bpf_timer_cancel ( ) or
* bpf_map_delete_elem ( ) on the same timer .
*/
this_cpu_write ( hrtimer_running , t ) ;
if ( map - > map_type = = BPF_MAP_TYPE_ARRAY ) {
struct bpf_array * array = container_of ( map , struct bpf_array , map ) ;
/* compute the key */
idx = ( ( char * ) value - array - > value ) / array - > elem_size ;
key = & idx ;
} else { /* hash or lru */
key = value - round_up ( map - > key_size , 8 ) ;
}
2021-09-28 16:09:46 -07:00
callback_fn ( ( u64 ) ( long ) map , ( u64 ) ( long ) key , ( u64 ) ( long ) value , 0 , 0 ) ;
2021-07-14 17:54:14 -07:00
/* The verifier checked that return value is zero. */
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
this_cpu_write ( hrtimer_running , NULL ) ;
out :
return HRTIMER_NORESTART ;
}
BPF_CALL_3 ( bpf_timer_init , struct bpf_timer_kern * , timer , struct bpf_map * , map ,
u64 , flags )
{
clockid_t clockid = flags & ( MAX_CLOCKS - 1 ) ;
struct bpf_hrtimer * t ;
int ret = 0 ;
BUILD_BUG_ON ( MAX_CLOCKS ! = 16 ) ;
BUILD_BUG_ON ( sizeof ( struct bpf_timer_kern ) > sizeof ( struct bpf_timer ) ) ;
BUILD_BUG_ON ( __alignof__ ( struct bpf_timer_kern ) ! = __alignof__ ( struct bpf_timer ) ) ;
if ( in_nmi ( ) )
return - EOPNOTSUPP ;
if ( flags > = MAX_CLOCKS | |
/* similar to timerfd except _ALARM variants are not supported */
( clockid ! = CLOCK_MONOTONIC & &
clockid ! = CLOCK_REALTIME & &
clockid ! = CLOCK_BOOTTIME ) )
return - EINVAL ;
__bpf_spin_lock_irqsave ( & timer - > lock ) ;
t = timer - > timer ;
if ( t ) {
ret = - EBUSY ;
goto out ;
}
if ( ! atomic64_read ( & map - > usercnt ) ) {
/* maps with timers must be either held by user space
* or pinned in bpffs .
*/
ret = - EPERM ;
goto out ;
}
/* allocate hrtimer via map_kmalloc to use memcg accounting */
t = bpf_map_kmalloc_node ( map , sizeof ( * t ) , GFP_ATOMIC , map - > numa_node ) ;
if ( ! t ) {
ret = - ENOMEM ;
goto out ;
}
t - > value = ( void * ) timer - map - > timer_off ;
t - > map = map ;
t - > prog = NULL ;
rcu_assign_pointer ( t - > callback_fn , NULL ) ;
hrtimer_init ( & t - > timer , clockid , HRTIMER_MODE_REL_SOFT ) ;
t - > timer . function = bpf_timer_cb ;
timer - > timer = t ;
out :
__bpf_spin_unlock_irqrestore ( & timer - > lock ) ;
return ret ;
}
static const struct bpf_func_proto bpf_timer_init_proto = {
. func = bpf_timer_init ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_TIMER ,
. arg2_type = ARG_CONST_MAP_PTR ,
. arg3_type = ARG_ANYTHING ,
} ;
BPF_CALL_3 ( bpf_timer_set_callback , struct bpf_timer_kern * , timer , void * , callback_fn ,
struct bpf_prog_aux * , aux )
{
struct bpf_prog * prev , * prog = aux - > prog ;
struct bpf_hrtimer * t ;
int ret = 0 ;
if ( in_nmi ( ) )
return - EOPNOTSUPP ;
__bpf_spin_lock_irqsave ( & timer - > lock ) ;
t = timer - > timer ;
if ( ! t ) {
ret = - EINVAL ;
goto out ;
}
if ( ! atomic64_read ( & t - > map - > usercnt ) ) {
/* maps with timers must be either held by user space
* or pinned in bpffs . Otherwise timer might still be
* running even when bpf prog is detached and user space
* is gone , since map_release_uref won ' t ever be called .
*/
ret = - EPERM ;
goto out ;
}
prev = t - > prog ;
if ( prev ! = prog ) {
/* Bump prog refcnt once. Every bpf_timer_set_callback()
* can pick different callback_fn - s within the same prog .
*/
prog = bpf_prog_inc_not_zero ( prog ) ;
if ( IS_ERR ( prog ) ) {
ret = PTR_ERR ( prog ) ;
goto out ;
}
if ( prev )
/* Drop prev prog refcnt when swapping with new prog */
bpf_prog_put ( prev ) ;
t - > prog = prog ;
}
rcu_assign_pointer ( t - > callback_fn , callback_fn ) ;
out :
__bpf_spin_unlock_irqrestore ( & timer - > lock ) ;
return ret ;
}
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
. func = bpf_timer_set_callback ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_TIMER ,
. arg2_type = ARG_PTR_TO_FUNC ,
} ;
BPF_CALL_3 ( bpf_timer_start , struct bpf_timer_kern * , timer , u64 , nsecs , u64 , flags )
{
struct bpf_hrtimer * t ;
int ret = 0 ;
if ( in_nmi ( ) )
return - EOPNOTSUPP ;
if ( flags )
return - EINVAL ;
__bpf_spin_lock_irqsave ( & timer - > lock ) ;
t = timer - > timer ;
if ( ! t | | ! t - > prog ) {
ret = - EINVAL ;
goto out ;
}
hrtimer_start ( & t - > timer , ns_to_ktime ( nsecs ) , HRTIMER_MODE_REL_SOFT ) ;
out :
__bpf_spin_unlock_irqrestore ( & timer - > lock ) ;
return ret ;
}
static const struct bpf_func_proto bpf_timer_start_proto = {
. func = bpf_timer_start ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_TIMER ,
. arg2_type = ARG_ANYTHING ,
. arg3_type = ARG_ANYTHING ,
} ;
static void drop_prog_refcnt ( struct bpf_hrtimer * t )
{
struct bpf_prog * prog = t - > prog ;
if ( prog ) {
bpf_prog_put ( prog ) ;
t - > prog = NULL ;
rcu_assign_pointer ( t - > callback_fn , NULL ) ;
}
}
BPF_CALL_1 ( bpf_timer_cancel , struct bpf_timer_kern * , timer )
{
struct bpf_hrtimer * t ;
int ret = 0 ;
if ( in_nmi ( ) )
return - EOPNOTSUPP ;
__bpf_spin_lock_irqsave ( & timer - > lock ) ;
t = timer - > timer ;
if ( ! t ) {
ret = - EINVAL ;
goto out ;
}
if ( this_cpu_read ( hrtimer_running ) = = t ) {
/* If bpf callback_fn is trying to bpf_timer_cancel()
* its own timer the hrtimer_cancel ( ) will deadlock
* since it waits for callback_fn to finish
*/
ret = - EDEADLK ;
goto out ;
}
drop_prog_refcnt ( t ) ;
out :
__bpf_spin_unlock_irqrestore ( & timer - > lock ) ;
/* Cancel the timer and wait for associated callback to finish
* if it was running .
*/
ret = ret ? : hrtimer_cancel ( & t - > timer ) ;
return ret ;
}
static const struct bpf_func_proto bpf_timer_cancel_proto = {
. func = bpf_timer_cancel ,
. gpl_only = true ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_TIMER ,
} ;
/* This function is called by map_delete/update_elem for individual element and
* by ops - > map_release_uref when the user space reference to a map reaches zero .
*/
void bpf_timer_cancel_and_free ( void * val )
{
struct bpf_timer_kern * timer = val ;
struct bpf_hrtimer * t ;
/* Performance optimization: read timer->timer without lock first. */
if ( ! READ_ONCE ( timer - > timer ) )
return ;
__bpf_spin_lock_irqsave ( & timer - > lock ) ;
/* re-read it under lock */
t = timer - > timer ;
if ( ! t )
goto out ;
drop_prog_refcnt ( t ) ;
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
* this timer , since it won ' t be initialized .
*/
timer - > timer = NULL ;
out :
__bpf_spin_unlock_irqrestore ( & timer - > lock ) ;
if ( ! t )
return ;
/* Cancel the timer and wait for callback to complete if it was running.
* If hrtimer_cancel ( ) can be safely called it ' s safe to call kfree ( t )
* right after for both preallocated and non - preallocated maps .
* The timer - > timer = NULL was already done and no code path can
* see address ' t ' anymore .
*
* Check that bpf_map_delete / update_elem ( ) wasn ' t called from timer
* callback_fn . In such case don ' t call hrtimer_cancel ( ) ( since it will
* deadlock ) and don ' t call hrtimer_try_to_cancel ( ) ( since it will just
* return - 1 ) . Though callback_fn is still running on this cpu it ' s
* safe to do kfree ( t ) because bpf_timer_cb ( ) read everything it needed
* from ' t ' . The bpf subprog callback_fn won ' t be able to access ' t ' ,
* since timer - > timer = NULL was already done . The timer will be
* effectively cancelled because bpf_timer_cb ( ) will return
* HRTIMER_NORESTART .
*/
if ( this_cpu_read ( hrtimer_running ) ! = t )
hrtimer_cancel ( & t - > timer ) ;
kfree ( t ) ;
}
bpf: Allow storing referenced kptr in map
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.
Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.
It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.
BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.
There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.
In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.
Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
2022-04-25 03:18:51 +05:30
BPF_CALL_2 ( bpf_kptr_xchg , void * , map_value , void * , ptr )
{
unsigned long * kptr = map_value ;
return xchg ( kptr , ( unsigned long ) ptr ) ;
}
/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
2022-09-12 08:45:44 -07:00
* helper is determined dynamically by the verifier . Use BPF_PTR_POISON to
* denote type that verifier will determine .
bpf: Allow storing referenced kptr in map
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.
Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.
It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.
BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.
There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.
In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.
Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
2022-04-25 03:18:51 +05:30
*/
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_kptr_xchg_proto = {
bpf: Allow storing referenced kptr in map
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.
Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.
It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.
BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.
There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.
In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.
Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
2022-04-25 03:18:51 +05:30
. func = bpf_kptr_xchg ,
. gpl_only = false ,
. ret_type = RET_PTR_TO_BTF_ID_OR_NULL ,
. ret_btf_id = BPF_PTR_POISON ,
. arg1_type = ARG_PTR_TO_KPTR ,
. arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE ,
. arg2_btf_id = BPF_PTR_POISON ,
} ;
2022-05-23 14:07:08 -07:00
/* Since the upper 8 bits of dynptr->size is reserved, the
* maximum supported size is 2 ^ 24 - 1.
*/
# define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
# define DYNPTR_TYPE_SHIFT 28
2022-05-23 14:07:10 -07:00
# define DYNPTR_SIZE_MASK 0xFFFFFF
# define DYNPTR_RDONLY_BIT BIT(31)
static bool bpf_dynptr_is_rdonly ( struct bpf_dynptr_kern * ptr )
{
return ptr - > size & DYNPTR_RDONLY_BIT ;
}
2022-05-23 14:07:08 -07:00
static void bpf_dynptr_set_type ( struct bpf_dynptr_kern * ptr , enum bpf_dynptr_type type )
{
ptr - > size | = type < < DYNPTR_TYPE_SHIFT ;
}
2022-09-20 09:59:43 +02:00
u32 bpf_dynptr_get_size ( struct bpf_dynptr_kern * ptr )
2022-05-23 14:07:10 -07:00
{
return ptr - > size & DYNPTR_SIZE_MASK ;
}
2022-05-23 14:07:09 -07:00
int bpf_dynptr_check_size ( u32 size )
2022-05-23 14:07:08 -07:00
{
return size > DYNPTR_MAX_SIZE ? - E2BIG : 0 ;
}
2022-05-23 14:07:09 -07:00
void bpf_dynptr_init ( struct bpf_dynptr_kern * ptr , void * data ,
enum bpf_dynptr_type type , u32 offset , u32 size )
2022-05-23 14:07:08 -07:00
{
ptr - > data = data ;
ptr - > offset = offset ;
ptr - > size = size ;
bpf_dynptr_set_type ( ptr , type ) ;
}
2022-05-23 14:07:09 -07:00
void bpf_dynptr_set_null ( struct bpf_dynptr_kern * ptr )
2022-05-23 14:07:08 -07:00
{
memset ( ptr , 0 , sizeof ( * ptr ) ) ;
}
2022-05-23 14:07:10 -07:00
static int bpf_dynptr_check_off_len ( struct bpf_dynptr_kern * ptr , u32 offset , u32 len )
{
u32 size = bpf_dynptr_get_size ( ptr ) ;
if ( len > size | | offset > size - len )
return - E2BIG ;
return 0 ;
}
2022-05-23 14:07:08 -07:00
BPF_CALL_4 ( bpf_dynptr_from_mem , void * , data , u32 , size , u64 , flags , struct bpf_dynptr_kern * , ptr )
{
int err ;
2022-09-20 09:59:40 +02:00
BTF_TYPE_EMIT ( struct bpf_dynptr ) ;
2022-05-23 14:07:08 -07:00
err = bpf_dynptr_check_size ( size ) ;
if ( err )
goto error ;
/* flags is currently unsupported */
if ( flags ) {
err = - EINVAL ;
goto error ;
}
bpf_dynptr_init ( ptr , data , BPF_DYNPTR_TYPE_LOCAL , 0 , size ) ;
return 0 ;
error :
bpf_dynptr_set_null ( ptr ) ;
return err ;
}
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
2022-05-23 14:07:08 -07:00
. func = bpf_dynptr_from_mem ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_UNINIT_MEM ,
. arg2_type = ARG_CONST_SIZE_OR_ZERO ,
. arg3_type = ARG_ANYTHING ,
. arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT ,
} ;
2022-07-06 16:25:47 -07:00
BPF_CALL_5 ( bpf_dynptr_read , void * , dst , u32 , len , struct bpf_dynptr_kern * , src ,
u32 , offset , u64 , flags )
2022-05-23 14:07:10 -07:00
{
int err ;
2022-07-06 16:25:47 -07:00
if ( ! src - > data | | flags )
2022-05-23 14:07:10 -07:00
return - EINVAL ;
err = bpf_dynptr_check_off_len ( src , offset , len ) ;
if ( err )
return err ;
memcpy ( dst , src - > data + src - > offset + offset , len ) ;
return 0 ;
}
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_dynptr_read_proto = {
2022-05-23 14:07:10 -07:00
. func = bpf_dynptr_read ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_UNINIT_MEM ,
. arg2_type = ARG_CONST_SIZE_OR_ZERO ,
. arg3_type = ARG_PTR_TO_DYNPTR ,
. arg4_type = ARG_ANYTHING ,
2022-07-06 16:25:47 -07:00
. arg5_type = ARG_ANYTHING ,
2022-05-23 14:07:10 -07:00
} ;
2022-07-06 16:25:47 -07:00
BPF_CALL_5 ( bpf_dynptr_write , struct bpf_dynptr_kern * , dst , u32 , offset , void * , src ,
u32 , len , u64 , flags )
2022-05-23 14:07:10 -07:00
{
int err ;
2022-07-06 16:25:47 -07:00
if ( ! dst - > data | | flags | | bpf_dynptr_is_rdonly ( dst ) )
2022-05-23 14:07:10 -07:00
return - EINVAL ;
err = bpf_dynptr_check_off_len ( dst , offset , len ) ;
if ( err )
return err ;
memcpy ( dst - > data + dst - > offset + offset , src , len ) ;
return 0 ;
}
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_dynptr_write_proto = {
2022-05-23 14:07:10 -07:00
. func = bpf_dynptr_write ,
. gpl_only = false ,
. ret_type = RET_INTEGER ,
. arg1_type = ARG_PTR_TO_DYNPTR ,
. arg2_type = ARG_ANYTHING ,
. arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY ,
. arg4_type = ARG_CONST_SIZE_OR_ZERO ,
2022-07-06 16:25:47 -07:00
. arg5_type = ARG_ANYTHING ,
2022-05-23 14:07:10 -07:00
} ;
2022-05-23 14:07:11 -07:00
BPF_CALL_3 ( bpf_dynptr_data , struct bpf_dynptr_kern * , ptr , u32 , offset , u32 , len )
{
int err ;
if ( ! ptr - > data )
return 0 ;
err = bpf_dynptr_check_off_len ( ptr , offset , len ) ;
if ( err )
return 0 ;
if ( bpf_dynptr_is_rdonly ( ptr ) )
return 0 ;
return ( unsigned long ) ( ptr - > data + ptr - > offset + offset ) ;
}
2022-06-16 15:54:07 -07:00
static const struct bpf_func_proto bpf_dynptr_data_proto = {
2022-05-23 14:07:11 -07:00
. func = bpf_dynptr_data ,
. gpl_only = false ,
. ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL ,
. arg1_type = ARG_PTR_TO_DYNPTR ,
. arg2_type = ARG_ANYTHING ,
. arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO ,
} ;
2020-05-24 09:50:55 -07:00
const struct bpf_func_proto bpf_get_current_task_proto __weak ;
2021-08-23 19:43:48 -07:00
const struct bpf_func_proto bpf_get_current_task_btf_proto __weak ;
2020-05-24 09:50:55 -07:00
const struct bpf_func_proto bpf_probe_read_user_proto __weak ;
const struct bpf_func_proto bpf_probe_read_user_str_proto __weak ;
const struct bpf_func_proto bpf_probe_read_kernel_proto __weak ;
const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak ;
2021-08-23 19:43:49 -07:00
const struct bpf_func_proto bpf_task_pt_regs_proto __weak ;
2020-05-24 09:50:55 -07:00
2020-04-24 16:59:41 -07:00
const struct bpf_func_proto *
bpf_base_func_proto ( enum bpf_func_id func_id )
{
switch ( func_id ) {
case BPF_FUNC_map_lookup_elem :
return & bpf_map_lookup_elem_proto ;
case BPF_FUNC_map_update_elem :
return & bpf_map_update_elem_proto ;
case BPF_FUNC_map_delete_elem :
return & bpf_map_delete_elem_proto ;
case BPF_FUNC_map_push_elem :
return & bpf_map_push_elem_proto ;
case BPF_FUNC_map_pop_elem :
return & bpf_map_pop_elem_proto ;
case BPF_FUNC_map_peek_elem :
return & bpf_map_peek_elem_proto ;
2022-05-11 17:38:53 +08:00
case BPF_FUNC_map_lookup_percpu_elem :
return & bpf_map_lookup_percpu_elem_proto ;
2020-04-24 16:59:41 -07:00
case BPF_FUNC_get_prandom_u32 :
return & bpf_get_prandom_u32_proto ;
case BPF_FUNC_get_smp_processor_id :
return & bpf_get_raw_smp_processor_id_proto ;
case BPF_FUNC_get_numa_node_id :
return & bpf_get_numa_node_id_proto ;
case BPF_FUNC_tail_call :
return & bpf_tail_call_proto ;
case BPF_FUNC_ktime_get_ns :
return & bpf_ktime_get_ns_proto ;
2020-04-26 09:15:25 -07:00
case BPF_FUNC_ktime_get_boot_ns :
return & bpf_ktime_get_boot_ns_proto ;
2022-08-09 08:08:02 +02:00
case BPF_FUNC_ktime_get_tai_ns :
return & bpf_ktime_get_tai_ns_proto ;
bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-05-29 00:54:20 -07:00
case BPF_FUNC_ringbuf_output :
return & bpf_ringbuf_output_proto ;
case BPF_FUNC_ringbuf_reserve :
return & bpf_ringbuf_reserve_proto ;
case BPF_FUNC_ringbuf_submit :
return & bpf_ringbuf_submit_proto ;
case BPF_FUNC_ringbuf_discard :
return & bpf_ringbuf_discard_proto ;
case BPF_FUNC_ringbuf_query :
return & bpf_ringbuf_query_proto ;
2021-12-10 22:16:49 +08:00
case BPF_FUNC_strncmp :
return & bpf_strncmp_proto ;
2022-08-23 15:25:53 -07:00
case BPF_FUNC_strtol :
return & bpf_strtol_proto ;
case BPF_FUNC_strtoul :
return & bpf_strtoul_proto ;
2020-04-24 16:59:41 -07:00
default :
break ;
}
2020-05-13 16:03:54 -07:00
if ( ! bpf_capable ( ) )
2020-04-24 16:59:41 -07:00
return NULL ;
switch ( func_id ) {
case BPF_FUNC_spin_lock :
return & bpf_spin_lock_proto ;
case BPF_FUNC_spin_unlock :
return & bpf_spin_unlock_proto ;
case BPF_FUNC_jiffies64 :
return & bpf_jiffies64_proto ;
2020-12-11 22:36:25 +01:00
case BPF_FUNC_per_cpu_ptr :
2020-09-29 16:50:47 -07:00
return & bpf_per_cpu_ptr_proto ;
2020-12-11 22:36:25 +01:00
case BPF_FUNC_this_cpu_ptr :
2020-09-29 16:50:48 -07:00
return & bpf_this_cpu_ptr_proto ;
bpf: Introduce bpf timers.
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:
// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);
// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);
// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);
Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");
static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */
SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;
val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}
This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.
Only programs with CAP_BPF are allowed to use bpf_timer.
The amount of timers used by the program is constrained by
the memcg recorded at map creation time.
The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.
The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.
bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).
The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.
The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-14 17:54:09 -07:00
case BPF_FUNC_timer_init :
return & bpf_timer_init_proto ;
case BPF_FUNC_timer_set_callback :
return & bpf_timer_set_callback_proto ;
case BPF_FUNC_timer_start :
return & bpf_timer_start_proto ;
case BPF_FUNC_timer_cancel :
return & bpf_timer_cancel_proto ;
bpf: Allow storing referenced kptr in map
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.
Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.
It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.
BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.
There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.
In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.
Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
2022-04-25 03:18:51 +05:30
case BPF_FUNC_kptr_xchg :
return & bpf_kptr_xchg_proto ;
2022-08-23 03:31:17 +02:00
case BPF_FUNC_for_each_map_elem :
return & bpf_for_each_map_elem_proto ;
case BPF_FUNC_loop :
return & bpf_loop_proto ;
bpf: Add bpf_user_ringbuf_drain() helper
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:
bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)
BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:
long callback_fn(struct bpf_dynptr *dynptr, void *context);
Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.
In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.
Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
2022-09-19 19:00:58 -05:00
case BPF_FUNC_user_ringbuf_drain :
return & bpf_user_ringbuf_drain_proto ;
2022-09-21 16:35:50 +02:00
case BPF_FUNC_ringbuf_reserve_dynptr :
return & bpf_ringbuf_reserve_dynptr_proto ;
case BPF_FUNC_ringbuf_submit_dynptr :
return & bpf_ringbuf_submit_dynptr_proto ;
case BPF_FUNC_ringbuf_discard_dynptr :
return & bpf_ringbuf_discard_dynptr_proto ;
case BPF_FUNC_dynptr_from_mem :
return & bpf_dynptr_from_mem_proto ;
case BPF_FUNC_dynptr_read :
return & bpf_dynptr_read_proto ;
case BPF_FUNC_dynptr_write :
return & bpf_dynptr_write_proto ;
case BPF_FUNC_dynptr_data :
return & bpf_dynptr_data_proto ;
2020-05-24 09:50:55 -07:00
default :
break ;
}
if ( ! perfmon_capable ( ) )
return NULL ;
switch ( func_id ) {
2021-01-27 18:46:15 +01:00
case BPF_FUNC_trace_printk :
return bpf_get_trace_printk_proto ( ) ;
2020-05-24 09:50:55 -07:00
case BPF_FUNC_get_current_task :
return & bpf_get_current_task_proto ;
2021-08-23 19:43:48 -07:00
case BPF_FUNC_get_current_task_btf :
return & bpf_get_current_task_btf_proto ;
2020-05-24 09:50:55 -07:00
case BPF_FUNC_probe_read_user :
return & bpf_probe_read_user_proto ;
case BPF_FUNC_probe_read_kernel :
2021-08-09 21:45:32 +02:00
return security_locked_down ( LOCKDOWN_BPF_READ_KERNEL ) < 0 ?
bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b46471a to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b46471a where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:
I starting seeing this with F-34. When I run a container that is traced with
BPF to record the syscalls it is doing, auditd is flooded with messages like:
type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality }
for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
tclass=lockdown permissive=0
This seems to be leading to auditd running out of space in the backlog buffer
and eventually OOMs the machine.
[...]
auditd running at 99% CPU presumably processing all the messages, eventually I get:
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
[...]
[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
Serhei Makarov says:
Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
ppc64le. Example stack trace:
[...]
[ 730.868702] stack backtrace:
[ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
[ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[ 730.873278] Call Trace:
[ 730.873770] dump_stack+0x7f/0xa1
[ 730.874433] check_noncircular+0xdf/0x100
[ 730.875232] __lock_acquire+0x1202/0x1e10
[ 730.876031] ? __lock_acquire+0xfc0/0x1e10
[ 730.876844] lock_acquire+0xc2/0x3a0
[ 730.877551] ? __wake_up_common_lock+0x52/0x90
[ 730.878434] ? lock_acquire+0xc2/0x3a0
[ 730.879186] ? lock_is_held_type+0xa7/0x120
[ 730.880044] ? skb_queue_tail+0x1b/0x50
[ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90
[ 730.881656] ? __wake_up_common_lock+0x52/0x90
[ 730.882532] __wake_up_common_lock+0x52/0x90
[ 730.883375] audit_log_end+0x5b/0x100
[ 730.884104] slow_avc_audit+0x69/0x90
[ 730.884836] avc_has_perm+0x8b/0xb0
[ 730.885532] selinux_lockdown+0xa5/0xd0
[ 730.886297] security_locked_down+0x20/0x40
[ 730.887133] bpf_probe_read_compat+0x66/0xd0
[ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820
[ 730.888917] trace_call_bpf+0xe9/0x240
[ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0
[ 730.890579] perf_trace_sched_switch+0x142/0x180
[ 730.891485] ? __schedule+0x6d8/0xb20
[ 730.892209] __schedule+0x6d8/0xb20
[ 730.892899] schedule+0x5b/0xc0
[ 730.893522] exit_to_user_mode_prepare+0x11d/0x240
[ 730.894457] syscall_exit_to_user_mode+0x27/0x70
[ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
2021-05-28 09:16:31 +00:00
NULL : & bpf_probe_read_kernel_proto ;
2020-05-24 09:50:55 -07:00
case BPF_FUNC_probe_read_user_str :
return & bpf_probe_read_user_str_proto ;
case BPF_FUNC_probe_read_kernel_str :
2021-08-09 21:45:32 +02:00
return security_locked_down ( LOCKDOWN_BPF_READ_KERNEL ) < 0 ?
bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b46471a to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b46471a where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:
I starting seeing this with F-34. When I run a container that is traced with
BPF to record the syscalls it is doing, auditd is flooded with messages like:
type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality }
for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
tclass=lockdown permissive=0
This seems to be leading to auditd running out of space in the backlog buffer
and eventually OOMs the machine.
[...]
auditd running at 99% CPU presumably processing all the messages, eventually I get:
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
[...]
[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
Serhei Makarov says:
Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
ppc64le. Example stack trace:
[...]
[ 730.868702] stack backtrace:
[ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
[ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[ 730.873278] Call Trace:
[ 730.873770] dump_stack+0x7f/0xa1
[ 730.874433] check_noncircular+0xdf/0x100
[ 730.875232] __lock_acquire+0x1202/0x1e10
[ 730.876031] ? __lock_acquire+0xfc0/0x1e10
[ 730.876844] lock_acquire+0xc2/0x3a0
[ 730.877551] ? __wake_up_common_lock+0x52/0x90
[ 730.878434] ? lock_acquire+0xc2/0x3a0
[ 730.879186] ? lock_is_held_type+0xa7/0x120
[ 730.880044] ? skb_queue_tail+0x1b/0x50
[ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90
[ 730.881656] ? __wake_up_common_lock+0x52/0x90
[ 730.882532] __wake_up_common_lock+0x52/0x90
[ 730.883375] audit_log_end+0x5b/0x100
[ 730.884104] slow_avc_audit+0x69/0x90
[ 730.884836] avc_has_perm+0x8b/0xb0
[ 730.885532] selinux_lockdown+0xa5/0xd0
[ 730.886297] security_locked_down+0x20/0x40
[ 730.887133] bpf_probe_read_compat+0x66/0xd0
[ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820
[ 730.888917] trace_call_bpf+0xe9/0x240
[ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0
[ 730.890579] perf_trace_sched_switch+0x142/0x180
[ 730.891485] ? __schedule+0x6d8/0xb20
[ 730.892209] __schedule+0x6d8/0xb20
[ 730.892899] schedule+0x5b/0xc0
[ 730.893522] exit_to_user_mode_prepare+0x11d/0x240
[ 730.894457] syscall_exit_to_user_mode+0x27/0x70
[ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
2021-05-28 09:16:31 +00:00
NULL : & bpf_probe_read_kernel_str_proto ;
2021-01-27 18:46:15 +01:00
case BPF_FUNC_snprintf_btf :
return & bpf_snprintf_btf_proto ;
2021-04-19 17:52:40 +02:00
case BPF_FUNC_snprintf :
return & bpf_snprintf_proto ;
2021-08-23 19:43:49 -07:00
case BPF_FUNC_task_pt_regs :
return & bpf_task_pt_regs_proto ;
2021-09-17 11:29:05 -07:00
case BPF_FUNC_trace_vprintk :
return bpf_get_trace_vprintk_proto ( ) ;
2020-04-24 16:59:41 -07:00
default :
return NULL ;
}
}
2022-08-10 08:59:04 +02:00
BTF_SET8_START ( tracing_btf_ids )
# ifdef CONFIG_KEXEC_CORE
BTF_ID_FLAGS ( func , crash_kexec , KF_DESTRUCTIVE )
# endif
BTF_SET8_END ( tracing_btf_ids )
static const struct btf_kfunc_id_set tracing_kfunc_set = {
. owner = THIS_MODULE ,
. set = & tracing_btf_ids ,
} ;
static int __init kfunc_init ( void )
{
return register_btf_kfunc_id_set ( BPF_PROG_TYPE_TRACING , & tracing_kfunc_set ) ;
}
late_initcall ( kfunc_init ) ;