linux/drivers/infiniband/hw/ocrdma/ocrdma_verbs.c

2979 lines
79 KiB
C
Raw Normal View History

/* This file is part of the Emulex RoCE Device Driver for
* RoCE (RDMA over Converged Ethernet) adapters.
* Copyright (C) 2012-2015 Emulex. All rights reserved.
* EMULEX and SLI are trademarks of Emulex.
* www.emulex.com
*
* This software is available to you under a choice of one of two licenses.
* You may choose to be licensed under the terms of the GNU General Public
* License (GPL) Version 2, available from the file COPYING in the main
* directory of this source tree, or the BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Contact Information:
* linux-drivers@emulex.com
*
* Emulex
* 3333 Susan Street
* Costa Mesa, CA 92626
*/
#include <linux/dma-mapping.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/iw_cm.h>
#include <rdma/ib_umem.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_cache.h>
#include <rdma/uverbs_ioctl.h>
#include "ocrdma.h"
#include "ocrdma_hw.h"
#include "ocrdma_verbs.h"
#include <rdma/ocrdma-abi.h>
int ocrdma_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey)
{
if (index > 0)
return -EINVAL;
*pkey = 0xffff;
return 0;
}
int ocrdma_query_device(struct ib_device *ibdev, struct ib_device_attr *attr,
struct ib_udata *uhw)
{
struct ocrdma_dev *dev = get_ocrdma_dev(ibdev);
if (uhw->inlen || uhw->outlen)
return -EINVAL;
memset(attr, 0, sizeof *attr);
memcpy(&attr->fw_ver, &dev->attr.fw_ver[0],
min(sizeof(dev->attr.fw_ver), sizeof(attr->fw_ver)));
ocrdma_get_guid(dev, (u8 *)&attr->sys_image_guid);
attr->max_mr_size = dev->attr.max_mr_size;
attr->page_size_cap = 0xffff000;
attr->vendor_id = dev->nic_info.pdev->vendor;
attr->vendor_part_id = dev->nic_info.pdev->device;
attr->hw_ver = dev->asic_id;
attr->max_qp = dev->attr.max_qp;
attr->max_ah = OCRDMA_MAX_AH;
attr->max_qp_wr = dev->attr.max_wqe;
attr->device_cap_flags = IB_DEVICE_CURR_QP_STATE_MOD |
IB_DEVICE_RC_RNR_NAK_GEN |
IB_DEVICE_SHUTDOWN_PORT |
IB_DEVICE_SYS_IMAGE_GUID |
IB_DEVICE_LOCAL_DMA_LKEY |
IB_DEVICE_MEM_MGT_EXTENSIONS;
attr->max_send_sge = dev->attr.max_send_sge;
attr->max_recv_sge = dev->attr.max_recv_sge;
attr->max_sge_rd = dev->attr.max_rdma_sge;
attr->max_cq = dev->attr.max_cq;
attr->max_cqe = dev->attr.max_cqe;
attr->max_mr = dev->attr.max_mr;
attr->max_mw = dev->attr.max_mw;
attr->max_pd = dev->attr.max_pd;
attr->atomic_cap = 0;
attr->max_fmr = 0;
attr->max_map_per_fmr = 0;
attr->max_qp_rd_atom =
min(dev->attr.max_ord_per_qp, dev->attr.max_ird_per_qp);
attr->max_qp_init_rd_atom = dev->attr.max_ord_per_qp;
attr->max_srq = dev->attr.max_srq;
attr->max_srq_sge = dev->attr.max_srq_sge;
attr->max_srq_wr = dev->attr.max_rqe;
attr->local_ca_ack_delay = dev->attr.local_ca_ack_delay;
attr->max_fast_reg_page_list_len = dev->attr.max_pages_per_frmr;
attr->max_pkeys = 1;
return 0;
}
static inline void get_link_speed_and_width(struct ocrdma_dev *dev,
u8 *ib_speed, u8 *ib_width)
{
int status;
u8 speed;
RDMA/ocrdma: Depend on async link events from CNA Recently Dough Ledford reported a deadlock happening between ocrdma-load sequence and NetworkManager service issuing "open" on be2net interface. The deadlock happens when any be2net hook (e.g. open/close) is called in parallel to insmod ocrdma.ko. A. be2net is sending administrative open/close event to ocrdma holding device_list_mutex. It does this from ndo_open/ndo_stop hooks of be2net. So sequence of locks is rtnl_lock---> device_list lock B. When new ocrdma roce device gets registered, infiniband stack now takes rtnl_lock in ib_register_device() in GID initialization routines. So sequence of locks in this path is device_list lock ---> rtnl_lock. This improper locking sequence causes deadlock. With this patch we stop using administrative open and close events injected by be2net driver. These events were used to dispatch PORT_ACTIVE and PORT_ERROR events to the IB-stack. This patch implements a logic to receive async-link-events generated from CNA whenever link-state-change is detected. Now on, these async-events will be used to dispatch PORT_ACTIVE and PORT_ERROR events to IB-stack. Depending on async-events from CNA removes the need to hold device-list-mutex and thus breaks the busy-wait scenario. Reported-by: Doug Ledford <dledford@redhat.com> CC: Sathya Perla <sathya.perla@avagotech.com> Signed-off-by: Padmanabh Ratnakar <padmanabh.ratnakar@avagotech.com> Signed-off-by: Selvin Xavier <selvin.xavier@avagotech.com> Signed-off-by: Devesh Sharma <devesh.sharma@avagotech.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
2015-12-24 21:14:07 +03:00
status = ocrdma_mbx_get_link_speed(dev, &speed, NULL);
if (status)
speed = OCRDMA_PHYS_LINK_SPEED_ZERO;
switch (speed) {
case OCRDMA_PHYS_LINK_SPEED_1GBPS:
*ib_speed = IB_SPEED_SDR;
*ib_width = IB_WIDTH_1X;
break;
case OCRDMA_PHYS_LINK_SPEED_10GBPS:
*ib_speed = IB_SPEED_QDR;
*ib_width = IB_WIDTH_1X;
break;
case OCRDMA_PHYS_LINK_SPEED_20GBPS:
*ib_speed = IB_SPEED_DDR;
*ib_width = IB_WIDTH_4X;
break;
case OCRDMA_PHYS_LINK_SPEED_40GBPS:
*ib_speed = IB_SPEED_QDR;
*ib_width = IB_WIDTH_4X;
break;
default:
/* Unsupported */
*ib_speed = IB_SPEED_SDR;
*ib_width = IB_WIDTH_1X;
}
}
int ocrdma_query_port(struct ib_device *ibdev,
u8 port, struct ib_port_attr *props)
{
enum ib_port_state port_state;
struct ocrdma_dev *dev;
struct net_device *netdev;
/* props being zeroed by the caller, avoid zeroing it here */
dev = get_ocrdma_dev(ibdev);
netdev = dev->nic_info.netdev;
if (netif_running(netdev) && netif_oper_up(netdev)) {
port_state = IB_PORT_ACTIVE;
props->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
} else {
port_state = IB_PORT_DOWN;
props->phys_state = IB_PORT_PHYS_STATE_DISABLED;
}
props->max_mtu = IB_MTU_4096;
props->active_mtu = iboe_get_mtu(netdev->mtu);
props->lid = 0;
props->lmc = 0;
props->sm_lid = 0;
props->sm_sl = 0;
props->state = port_state;
props->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_REINIT_SUP |
IB_PORT_DEVICE_MGMT_SUP |
IB_PORT_VENDOR_CLASS_SUP;
props->ip_gids = true;
props->gid_tbl_len = OCRDMA_MAX_SGID;
props->pkey_tbl_len = 1;
props->bad_pkey_cntr = 0;
props->qkey_viol_cntr = 0;
get_link_speed_and_width(dev, &props->active_speed,
&props->active_width);
props->max_msg_sz = 0x80000000;
props->max_vl_num = 4;
return 0;
}
static int ocrdma_add_mmap(struct ocrdma_ucontext *uctx, u64 phy_addr,
unsigned long len)
{
struct ocrdma_mm *mm;
mm = kzalloc(sizeof(*mm), GFP_KERNEL);
if (mm == NULL)
return -ENOMEM;
mm->key.phy_addr = phy_addr;
mm->key.len = len;
INIT_LIST_HEAD(&mm->entry);
mutex_lock(&uctx->mm_list_lock);
list_add_tail(&mm->entry, &uctx->mm_head);
mutex_unlock(&uctx->mm_list_lock);
return 0;
}
static void ocrdma_del_mmap(struct ocrdma_ucontext *uctx, u64 phy_addr,
unsigned long len)
{
struct ocrdma_mm *mm, *tmp;
mutex_lock(&uctx->mm_list_lock);
list_for_each_entry_safe(mm, tmp, &uctx->mm_head, entry) {
if (len != mm->key.len && phy_addr != mm->key.phy_addr)
continue;
list_del(&mm->entry);
kfree(mm);
break;
}
mutex_unlock(&uctx->mm_list_lock);
}
static bool ocrdma_search_mmap(struct ocrdma_ucontext *uctx, u64 phy_addr,
unsigned long len)
{
bool found = false;
struct ocrdma_mm *mm;
mutex_lock(&uctx->mm_list_lock);
list_for_each_entry(mm, &uctx->mm_head, entry) {
if (len != mm->key.len && phy_addr != mm->key.phy_addr)
continue;
found = true;
break;
}
mutex_unlock(&uctx->mm_list_lock);
return found;
}
static u16 _ocrdma_pd_mgr_get_bitmap(struct ocrdma_dev *dev, bool dpp_pool)
{
u16 pd_bitmap_idx = 0;
const unsigned long *pd_bitmap;
if (dpp_pool) {
pd_bitmap = dev->pd_mgr->pd_dpp_bitmap;
pd_bitmap_idx = find_first_zero_bit(pd_bitmap,
dev->pd_mgr->max_dpp_pd);
__set_bit(pd_bitmap_idx, dev->pd_mgr->pd_dpp_bitmap);
dev->pd_mgr->pd_dpp_count++;
if (dev->pd_mgr->pd_dpp_count > dev->pd_mgr->pd_dpp_thrsh)
dev->pd_mgr->pd_dpp_thrsh = dev->pd_mgr->pd_dpp_count;
} else {
pd_bitmap = dev->pd_mgr->pd_norm_bitmap;
pd_bitmap_idx = find_first_zero_bit(pd_bitmap,
dev->pd_mgr->max_normal_pd);
__set_bit(pd_bitmap_idx, dev->pd_mgr->pd_norm_bitmap);
dev->pd_mgr->pd_norm_count++;
if (dev->pd_mgr->pd_norm_count > dev->pd_mgr->pd_norm_thrsh)
dev->pd_mgr->pd_norm_thrsh = dev->pd_mgr->pd_norm_count;
}
return pd_bitmap_idx;
}
static int _ocrdma_pd_mgr_put_bitmap(struct ocrdma_dev *dev, u16 pd_id,
bool dpp_pool)
{
u16 pd_count;
u16 pd_bit_index;
pd_count = dpp_pool ? dev->pd_mgr->pd_dpp_count :
dev->pd_mgr->pd_norm_count;
if (pd_count == 0)
return -EINVAL;
if (dpp_pool) {
pd_bit_index = pd_id - dev->pd_mgr->pd_dpp_start;
if (pd_bit_index >= dev->pd_mgr->max_dpp_pd) {
return -EINVAL;
} else {
__clear_bit(pd_bit_index, dev->pd_mgr->pd_dpp_bitmap);
dev->pd_mgr->pd_dpp_count--;
}
} else {
pd_bit_index = pd_id - dev->pd_mgr->pd_norm_start;
if (pd_bit_index >= dev->pd_mgr->max_normal_pd) {
return -EINVAL;
} else {
__clear_bit(pd_bit_index, dev->pd_mgr->pd_norm_bitmap);
dev->pd_mgr->pd_norm_count--;
}
}
return 0;
}
static int ocrdma_put_pd_num(struct ocrdma_dev *dev, u16 pd_id,
bool dpp_pool)
{
int status;
mutex_lock(&dev->dev_lock);
status = _ocrdma_pd_mgr_put_bitmap(dev, pd_id, dpp_pool);
mutex_unlock(&dev->dev_lock);
return status;
}
static int ocrdma_get_pd_num(struct ocrdma_dev *dev, struct ocrdma_pd *pd)
{
u16 pd_idx = 0;
int status = 0;
mutex_lock(&dev->dev_lock);
if (pd->dpp_enabled) {
/* try allocating DPP PD, if not available then normal PD */
if (dev->pd_mgr->pd_dpp_count < dev->pd_mgr->max_dpp_pd) {
pd_idx = _ocrdma_pd_mgr_get_bitmap(dev, true);
pd->id = dev->pd_mgr->pd_dpp_start + pd_idx;
pd->dpp_page = dev->pd_mgr->dpp_page_index + pd_idx;
} else if (dev->pd_mgr->pd_norm_count <
dev->pd_mgr->max_normal_pd) {
pd_idx = _ocrdma_pd_mgr_get_bitmap(dev, false);
pd->id = dev->pd_mgr->pd_norm_start + pd_idx;
pd->dpp_enabled = false;
} else {
status = -EINVAL;
}
} else {
if (dev->pd_mgr->pd_norm_count < dev->pd_mgr->max_normal_pd) {
pd_idx = _ocrdma_pd_mgr_get_bitmap(dev, false);
pd->id = dev->pd_mgr->pd_norm_start + pd_idx;
} else {
status = -EINVAL;
}
}
mutex_unlock(&dev->dev_lock);
return status;
}
/*
* NOTE:
*
* ocrdma_ucontext must be used here because this function is also
* called from ocrdma_alloc_ucontext where ib_udata does not have
* valid ib_ucontext pointer. ib_uverbs_get_context does not call
* uobj_{alloc|get_xxx} helpers which are used to store the
* ib_ucontext in uverbs_attr_bundle wrapping the ib_udata. so
* ib_udata does NOT imply valid ib_ucontext here!
*/
static int _ocrdma_alloc_pd(struct ocrdma_dev *dev, struct ocrdma_pd *pd,
struct ocrdma_ucontext *uctx,
struct ib_udata *udata)
{
int status;
if (udata && uctx && dev->attr.max_dpp_pds) {
pd->dpp_enabled =
ocrdma_get_asic_type(dev) == OCRDMA_ASIC_GEN_SKH_R;
pd->num_dpp_qp =
pd->dpp_enabled ? (dev->nic_info.db_page_size /
dev->attr.wqe_size) : 0;
}
if (dev->pd_mgr->pd_prealloc_valid)
return ocrdma_get_pd_num(dev, pd);
retry:
status = ocrdma_mbx_alloc_pd(dev, pd);
if (status) {
if (pd->dpp_enabled) {
pd->dpp_enabled = false;
pd->num_dpp_qp = 0;
goto retry;
}
return status;
}
return 0;
}
static inline int is_ucontext_pd(struct ocrdma_ucontext *uctx,
struct ocrdma_pd *pd)
{
return (uctx->cntxt_pd == pd);
}
static void _ocrdma_dealloc_pd(struct ocrdma_dev *dev,
struct ocrdma_pd *pd)
{
if (dev->pd_mgr->pd_prealloc_valid)
ocrdma_put_pd_num(dev, pd->id, pd->dpp_enabled);
else
ocrdma_mbx_dealloc_pd(dev, pd);
}
static int ocrdma_alloc_ucontext_pd(struct ocrdma_dev *dev,
struct ocrdma_ucontext *uctx,
struct ib_udata *udata)
{
struct ib_device *ibdev = &dev->ibdev;
struct ib_pd *pd;
int status;
pd = rdma_zalloc_drv_obj(ibdev, ib_pd);
if (!pd)
return -ENOMEM;
pd->device = ibdev;
uctx->cntxt_pd = get_ocrdma_pd(pd);
status = _ocrdma_alloc_pd(dev, uctx->cntxt_pd, uctx, udata);
if (status) {
kfree(uctx->cntxt_pd);
goto err;
}
uctx->cntxt_pd->uctx = uctx;
uctx->cntxt_pd->ibpd.device = &dev->ibdev;
err:
return status;
}
static void ocrdma_dealloc_ucontext_pd(struct ocrdma_ucontext *uctx)
{
struct ocrdma_pd *pd = uctx->cntxt_pd;
struct ocrdma_dev *dev = get_ocrdma_dev(pd->ibpd.device);
if (uctx->pd_in_use) {
pr_err("%s(%d) Freeing in use pdid=0x%x.\n",
__func__, dev->id, pd->id);
}
kfree(uctx->cntxt_pd);
uctx->cntxt_pd = NULL;
_ocrdma_dealloc_pd(dev, pd);
}
static struct ocrdma_pd *ocrdma_get_ucontext_pd(struct ocrdma_ucontext *uctx)
{
struct ocrdma_pd *pd = NULL;
mutex_lock(&uctx->mm_list_lock);
if (!uctx->pd_in_use) {
uctx->pd_in_use = true;
pd = uctx->cntxt_pd;
}
mutex_unlock(&uctx->mm_list_lock);
return pd;
}
static void ocrdma_release_ucontext_pd(struct ocrdma_ucontext *uctx)
{
mutex_lock(&uctx->mm_list_lock);
uctx->pd_in_use = false;
mutex_unlock(&uctx->mm_list_lock);
}
int ocrdma_alloc_ucontext(struct ib_ucontext *uctx, struct ib_udata *udata)
{
struct ib_device *ibdev = uctx->device;
int status;
struct ocrdma_ucontext *ctx = get_ocrdma_ucontext(uctx);
struct ocrdma_alloc_ucontext_resp resp = {};
struct ocrdma_dev *dev = get_ocrdma_dev(ibdev);
struct pci_dev *pdev = dev->nic_info.pdev;
u32 map_len = roundup(sizeof(u32) * 2048, PAGE_SIZE);
if (!udata)
return -EFAULT;
INIT_LIST_HEAD(&ctx->mm_head);
mutex_init(&ctx->mm_list_lock);
ctx->ah_tbl.va = dma_alloc_coherent(&pdev->dev, map_len,
&ctx->ah_tbl.pa, GFP_KERNEL);
if (!ctx->ah_tbl.va)
return -ENOMEM;
ctx->ah_tbl.len = map_len;
resp.ah_tbl_len = ctx->ah_tbl.len;
resp.ah_tbl_page = virt_to_phys(ctx->ah_tbl.va);
status = ocrdma_add_mmap(ctx, resp.ah_tbl_page, resp.ah_tbl_len);
if (status)
goto map_err;
status = ocrdma_alloc_ucontext_pd(dev, ctx, udata);
if (status)
goto pd_err;
resp.dev_id = dev->id;
resp.max_inline_data = dev->attr.max_inline_data;
resp.wqe_size = dev->attr.wqe_size;
resp.rqe_size = dev->attr.rqe_size;
resp.dpp_wqe_size = dev->attr.wqe_size;
memcpy(resp.fw_ver, dev->attr.fw_ver, sizeof(resp.fw_ver));
status = ib_copy_to_udata(udata, &resp, sizeof(resp));
if (status)
goto cpy_err;
return 0;
cpy_err:
ocrdma_dealloc_ucontext_pd(ctx);
pd_err:
ocrdma_del_mmap(ctx, ctx->ah_tbl.pa, ctx->ah_tbl.len);
map_err:
dma_free_coherent(&pdev->dev, ctx->ah_tbl.len, ctx->ah_tbl.va,
ctx->ah_tbl.pa);
return status;
}
void ocrdma_dealloc_ucontext(struct ib_ucontext *ibctx)
{
struct ocrdma_mm *mm, *tmp;
struct ocrdma_ucontext *uctx = get_ocrdma_ucontext(ibctx);
struct ocrdma_dev *dev = get_ocrdma_dev(ibctx->device);
struct pci_dev *pdev = dev->nic_info.pdev;
ocrdma_dealloc_ucontext_pd(uctx);
ocrdma_del_mmap(uctx, uctx->ah_tbl.pa, uctx->ah_tbl.len);
dma_free_coherent(&pdev->dev, uctx->ah_tbl.len, uctx->ah_tbl.va,
uctx->ah_tbl.pa);
list_for_each_entry_safe(mm, tmp, &uctx->mm_head, entry) {
list_del(&mm->entry);
kfree(mm);
}
}
int ocrdma_mmap(struct ib_ucontext *context, struct vm_area_struct *vma)
{
struct ocrdma_ucontext *ucontext = get_ocrdma_ucontext(context);
struct ocrdma_dev *dev = get_ocrdma_dev(context->device);
unsigned long vm_page = vma->vm_pgoff << PAGE_SHIFT;
u64 unmapped_db = (u64) dev->nic_info.unmapped_db;
unsigned long len = (vma->vm_end - vma->vm_start);
int status;
bool found;
if (vma->vm_start & (PAGE_SIZE - 1))
return -EINVAL;
found = ocrdma_search_mmap(ucontext, vma->vm_pgoff << PAGE_SHIFT, len);
if (!found)
return -EINVAL;
if ((vm_page >= unmapped_db) && (vm_page <= (unmapped_db +
dev->nic_info.db_total_size)) &&
(len <= dev->nic_info.db_page_size)) {
if (vma->vm_flags & VM_READ)
return -EPERM;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
status = io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
len, vma->vm_page_prot);
} else if (dev->nic_info.dpp_unmapped_len &&
(vm_page >= (u64) dev->nic_info.dpp_unmapped_addr) &&
(vm_page <= (u64) (dev->nic_info.dpp_unmapped_addr +
dev->nic_info.dpp_unmapped_len)) &&
(len <= dev->nic_info.dpp_unmapped_len)) {
if (vma->vm_flags & VM_READ)
return -EPERM;
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
status = io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
len, vma->vm_page_prot);
} else {
status = remap_pfn_range(vma, vma->vm_start,
vma->vm_pgoff, len, vma->vm_page_prot);
}
return status;
}
static int ocrdma_copy_pd_uresp(struct ocrdma_dev *dev, struct ocrdma_pd *pd,
struct ib_udata *udata)
{
int status;
u64 db_page_addr;
u64 dpp_page_addr = 0;
u32 db_page_size;
struct ocrdma_alloc_pd_uresp rsp;
struct ocrdma_ucontext *uctx = rdma_udata_to_drv_context(
udata, struct ocrdma_ucontext, ibucontext);
memset(&rsp, 0, sizeof(rsp));
rsp.id = pd->id;
rsp.dpp_enabled = pd->dpp_enabled;
db_page_addr = ocrdma_get_db_addr(dev, pd->id);
db_page_size = dev->nic_info.db_page_size;
status = ocrdma_add_mmap(uctx, db_page_addr, db_page_size);
if (status)
return status;
if (pd->dpp_enabled) {
dpp_page_addr = dev->nic_info.dpp_unmapped_addr +
(pd->id * PAGE_SIZE);
status = ocrdma_add_mmap(uctx, dpp_page_addr,
PAGE_SIZE);
if (status)
goto dpp_map_err;
rsp.dpp_page_addr_hi = upper_32_bits(dpp_page_addr);
rsp.dpp_page_addr_lo = dpp_page_addr;
}
status = ib_copy_to_udata(udata, &rsp, sizeof(rsp));
if (status)
goto ucopy_err;
pd->uctx = uctx;
return 0;
ucopy_err:
if (pd->dpp_enabled)
ocrdma_del_mmap(pd->uctx, dpp_page_addr, PAGE_SIZE);
dpp_map_err:
ocrdma_del_mmap(pd->uctx, db_page_addr, db_page_size);
return status;
}
int ocrdma_alloc_pd(struct ib_pd *ibpd, struct ib_udata *udata)
{
struct ib_device *ibdev = ibpd->device;
struct ocrdma_dev *dev = get_ocrdma_dev(ibdev);
struct ocrdma_pd *pd;
int status;
u8 is_uctx_pd = false;
struct ocrdma_ucontext *uctx = rdma_udata_to_drv_context(
udata, struct ocrdma_ucontext, ibucontext);
if (udata) {
pd = ocrdma_get_ucontext_pd(uctx);
if (pd) {
is_uctx_pd = true;
goto pd_mapping;
}
}
pd = get_ocrdma_pd(ibpd);
status = _ocrdma_alloc_pd(dev, pd, uctx, udata);
if (status)
goto exit;
pd_mapping:
if (udata) {
status = ocrdma_copy_pd_uresp(dev, pd, udata);
if (status)
goto err;
}
return 0;
err:
if (is_uctx_pd)
ocrdma_release_ucontext_pd(uctx);
else
_ocrdma_dealloc_pd(dev, pd);
exit:
return status;
}
void ocrdma_dealloc_pd(struct ib_pd *ibpd, struct ib_udata *udata)
{
struct ocrdma_pd *pd = get_ocrdma_pd(ibpd);
struct ocrdma_dev *dev = get_ocrdma_dev(ibpd->device);
struct ocrdma_ucontext *uctx = NULL;
u64 usr_db;
uctx = pd->uctx;
if (uctx) {
u64 dpp_db = dev->nic_info.dpp_unmapped_addr +
(pd->id * PAGE_SIZE);
if (pd->dpp_enabled)
ocrdma_del_mmap(pd->uctx, dpp_db, PAGE_SIZE);
usr_db = ocrdma_get_db_addr(dev, pd->id);
ocrdma_del_mmap(pd->uctx, usr_db, dev->nic_info.db_page_size);
if (is_ucontext_pd(uctx, pd)) {
ocrdma_release_ucontext_pd(uctx);
return;
}
}
_ocrdma_dealloc_pd(dev, pd);
}
static int ocrdma_alloc_lkey(struct ocrdma_dev *dev, struct ocrdma_mr *mr,
u32 pdid, int acc, u32 num_pbls, u32 addr_check)
{
int status;
mr->hwmr.fr_mr = 0;
mr->hwmr.local_rd = 1;
mr->hwmr.remote_rd = (acc & IB_ACCESS_REMOTE_READ) ? 1 : 0;
mr->hwmr.remote_wr = (acc & IB_ACCESS_REMOTE_WRITE) ? 1 : 0;
mr->hwmr.local_wr = (acc & IB_ACCESS_LOCAL_WRITE) ? 1 : 0;
mr->hwmr.mw_bind = (acc & IB_ACCESS_MW_BIND) ? 1 : 0;
mr->hwmr.remote_atomic = (acc & IB_ACCESS_REMOTE_ATOMIC) ? 1 : 0;
mr->hwmr.num_pbls = num_pbls;
status = ocrdma_mbx_alloc_lkey(dev, &mr->hwmr, pdid, addr_check);
if (status)
return status;
mr->ibmr.lkey = mr->hwmr.lkey;
if (mr->hwmr.remote_wr || mr->hwmr.remote_rd)
mr->ibmr.rkey = mr->hwmr.lkey;
return 0;
}
struct ib_mr *ocrdma_get_dma_mr(struct ib_pd *ibpd, int acc)
{
int status;
struct ocrdma_mr *mr;
struct ocrdma_pd *pd = get_ocrdma_pd(ibpd);
struct ocrdma_dev *dev = get_ocrdma_dev(ibpd->device);
if (acc & IB_ACCESS_REMOTE_WRITE && !(acc & IB_ACCESS_LOCAL_WRITE)) {
pr_err("%s err, invalid access rights\n", __func__);
return ERR_PTR(-EINVAL);
}
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
status = ocrdma_alloc_lkey(dev, mr, pd->id, acc, 0,
OCRDMA_ADDR_CHECK_DISABLE);
if (status) {
kfree(mr);
return ERR_PTR(status);
}
return &mr->ibmr;
}
static void ocrdma_free_mr_pbl_tbl(struct ocrdma_dev *dev,
struct ocrdma_hw_mr *mr)
{
struct pci_dev *pdev = dev->nic_info.pdev;
int i = 0;
if (mr->pbl_table) {
for (i = 0; i < mr->num_pbls; i++) {
if (!mr->pbl_table[i].va)
continue;
dma_free_coherent(&pdev->dev, mr->pbl_size,
mr->pbl_table[i].va,
mr->pbl_table[i].pa);
}
kfree(mr->pbl_table);
mr->pbl_table = NULL;
}
}
static int ocrdma_get_pbl_info(struct ocrdma_dev *dev, struct ocrdma_mr *mr,
u32 num_pbes)
{
u32 num_pbls = 0;
u32 idx = 0;
int status = 0;
u32 pbl_size;
do {
pbl_size = OCRDMA_MIN_HPAGE_SIZE * (1 << idx);
if (pbl_size > MAX_OCRDMA_PBL_SIZE) {
status = -EFAULT;
break;
}
num_pbls = roundup(num_pbes, (pbl_size / sizeof(u64)));
num_pbls = num_pbls / (pbl_size / sizeof(u64));
idx++;
} while (num_pbls >= dev->attr.max_num_mr_pbl);
mr->hwmr.num_pbes = num_pbes;
mr->hwmr.num_pbls = num_pbls;
mr->hwmr.pbl_size = pbl_size;
return status;
}
static int ocrdma_build_pbl_tbl(struct ocrdma_dev *dev, struct ocrdma_hw_mr *mr)
{
int status = 0;
int i;
u32 dma_len = mr->pbl_size;
struct pci_dev *pdev = dev->nic_info.pdev;
void *va;
dma_addr_t pa;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 00:03:40 +03:00
mr->pbl_table = kcalloc(mr->num_pbls, sizeof(struct ocrdma_pbl),
GFP_KERNEL);
if (!mr->pbl_table)
return -ENOMEM;
for (i = 0; i < mr->num_pbls; i++) {
va = dma_alloc_coherent(&pdev->dev, dma_len, &pa, GFP_KERNEL);
if (!va) {
ocrdma_free_mr_pbl_tbl(dev, mr);
status = -ENOMEM;
break;
}
mr->pbl_table[i].va = va;
mr->pbl_table[i].pa = pa;
}
return status;
}
static void build_user_pbes(struct ocrdma_dev *dev, struct ocrdma_mr *mr,
u32 num_pbes)
{
struct ocrdma_pbe *pbe;
struct sg_dma_page_iter sg_iter;
struct ocrdma_pbl *pbl_tbl = mr->hwmr.pbl_table;
struct ib_umem *umem = mr->umem;
int pbe_cnt, total_num_pbes = 0;
u64 pg_addr;
if (!mr->hwmr.num_pbes)
return;
pbe = (struct ocrdma_pbe *)pbl_tbl->va;
pbe_cnt = 0;
for_each_sg_dma_page (umem->sg_head.sgl, &sg_iter, umem->nmap, 0) {
/* store the page address in pbe */
pg_addr = sg_page_iter_dma_address(&sg_iter);
pbe->pa_lo = cpu_to_le32(pg_addr);
pbe->pa_hi = cpu_to_le32(upper_32_bits(pg_addr));
pbe_cnt += 1;
total_num_pbes += 1;
pbe++;
/* if done building pbes, issue the mbx cmd. */
if (total_num_pbes == num_pbes)
return;
/* if the given pbl is full storing the pbes,
* move to next pbl.
*/
if (pbe_cnt == (mr->hwmr.pbl_size / sizeof(u64))) {
pbl_tbl++;
pbe = (struct ocrdma_pbe *)pbl_tbl->va;
pbe_cnt = 0;
}
}
}
struct ib_mr *ocrdma_reg_user_mr(struct ib_pd *ibpd, u64 start, u64 len,
u64 usr_addr, int acc, struct ib_udata *udata)
{
int status = -ENOMEM;
struct ocrdma_dev *dev = get_ocrdma_dev(ibpd->device);
struct ocrdma_mr *mr;
struct ocrdma_pd *pd;
u32 num_pbes;
pd = get_ocrdma_pd(ibpd);
if (acc & IB_ACCESS_REMOTE_WRITE && !(acc & IB_ACCESS_LOCAL_WRITE))
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(status);
mr->umem = ib_umem_get(ibpd->device, start, len, acc);
if (IS_ERR(mr->umem)) {
status = -EFAULT;
goto umem_err;
}
num_pbes = ib_umem_page_count(mr->umem);
status = ocrdma_get_pbl_info(dev, mr, num_pbes);
if (status)
goto umem_err;
mr->hwmr.pbe_size = PAGE_SIZE;
mr->hwmr.fbo = ib_umem_offset(mr->umem);
mr->hwmr.va = usr_addr;
mr->hwmr.len = len;
mr->hwmr.remote_wr = (acc & IB_ACCESS_REMOTE_WRITE) ? 1 : 0;
mr->hwmr.remote_rd = (acc & IB_ACCESS_REMOTE_READ) ? 1 : 0;
mr->hwmr.local_wr = (acc & IB_ACCESS_LOCAL_WRITE) ? 1 : 0;
mr->hwmr.local_rd = 1;
mr->hwmr.remote_atomic = (acc & IB_ACCESS_REMOTE_ATOMIC) ? 1 : 0;
status = ocrdma_build_pbl_tbl(dev, &mr->hwmr);
if (status)
goto umem_err;
build_user_pbes(dev, mr, num_pbes);
status = ocrdma_reg_mr(dev, &mr->hwmr, pd->id, acc);
if (status)
goto mbx_err;
mr->ibmr.lkey = mr->hwmr.lkey;
if (mr->hwmr.remote_wr || mr->hwmr.remote_rd)
mr->ibmr.rkey = mr->hwmr.lkey;
return &mr->ibmr;
mbx_err:
ocrdma_free_mr_pbl_tbl(dev, &mr->hwmr);
umem_err:
kfree(mr);
return ERR_PTR(status);
}
int ocrdma_dereg_mr(struct ib_mr *ib_mr, struct ib_udata *udata)
{
struct ocrdma_mr *mr = get_ocrdma_mr(ib_mr);
struct ocrdma_dev *dev = get_ocrdma_dev(ib_mr->device);
(void) ocrdma_mbx_dealloc_lkey(dev, mr->hwmr.fr_mr, mr->hwmr.lkey);
kfree(mr->pages);
ocrdma_free_mr_pbl_tbl(dev, &mr->hwmr);
/* it could be user registered memory. */
ib_umem_release(mr->umem);
kfree(mr);
/* Don't stop cleanup, in case FW is unresponsive */
if (dev->mqe_ctx.fw_error_state) {
pr_err("%s(%d) fw not responding.\n",
__func__, dev->id);
}
return 0;
}
static int ocrdma_copy_cq_uresp(struct ocrdma_dev *dev, struct ocrdma_cq *cq,
struct ib_udata *udata)
{
int status;
struct ocrdma_ucontext *uctx = rdma_udata_to_drv_context(
udata, struct ocrdma_ucontext, ibucontext);
struct ocrdma_create_cq_uresp uresp;
/* this must be user flow! */
if (!udata)
return -EINVAL;
memset(&uresp, 0, sizeof(uresp));
uresp.cq_id = cq->id;
uresp.page_size = PAGE_ALIGN(cq->len);
uresp.num_pages = 1;
uresp.max_hw_cqe = cq->max_hw_cqe;
uresp.page_addr[0] = virt_to_phys(cq->va);
uresp.db_page_addr = ocrdma_get_db_addr(dev, uctx->cntxt_pd->id);
uresp.db_page_size = dev->nic_info.db_page_size;
uresp.phase_change = cq->phase_change ? 1 : 0;
status = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
if (status) {
pr_err("%s(%d) copy error cqid=0x%x.\n",
__func__, dev->id, cq->id);
goto err;
}
status = ocrdma_add_mmap(uctx, uresp.db_page_addr, uresp.db_page_size);
if (status)
goto err;
status = ocrdma_add_mmap(uctx, uresp.page_addr[0], uresp.page_size);
if (status) {
ocrdma_del_mmap(uctx, uresp.db_page_addr, uresp.db_page_size);
goto err;
}
cq->ucontext = uctx;
err:
return status;
}
int ocrdma_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr,
struct ib_udata *udata)
{
struct ib_device *ibdev = ibcq->device;
int entries = attr->cqe;
struct ocrdma_cq *cq = get_ocrdma_cq(ibcq);
struct ocrdma_dev *dev = get_ocrdma_dev(ibdev);
struct ocrdma_ucontext *uctx = rdma_udata_to_drv_context(
udata, struct ocrdma_ucontext, ibucontext);
u16 pd_id = 0;
int status;
struct ocrdma_create_cq_ureq ureq;
if (attr->flags)
return -EINVAL;
if (udata) {
if (ib_copy_from_udata(&ureq, udata, sizeof(ureq)))
return -EFAULT;
} else
ureq.dpp_cq = 0;
spin_lock_init(&cq->cq_lock);
spin_lock_init(&cq->comp_handler_lock);
INIT_LIST_HEAD(&cq->sq_head);
INIT_LIST_HEAD(&cq->rq_head);
if (udata)
pd_id = uctx->cntxt_pd->id;
status = ocrdma_mbx_create_cq(dev, cq, entries, ureq.dpp_cq, pd_id);
if (status)
return status;
if (udata) {
status = ocrdma_copy_cq_uresp(dev, cq, udata);
if (status)
goto ctx_err;
}
cq->phase = OCRDMA_CQE_VALID;
dev->cq_tbl[cq->id] = cq;
return 0;
ctx_err:
ocrdma_mbx_destroy_cq(dev, cq);
return status;
}
int ocrdma_resize_cq(struct ib_cq *ibcq, int new_cnt,
struct ib_udata *udata)
{
int status = 0;
struct ocrdma_cq *cq = get_ocrdma_cq(ibcq);
if (new_cnt < 1 || new_cnt > cq->max_hw_cqe) {
status = -EINVAL;
return status;
}
ibcq->cqe = new_cnt;
return status;
}
static void ocrdma_flush_cq(struct ocrdma_cq *cq)
{
int cqe_cnt;
int valid_count = 0;
unsigned long flags;
struct ocrdma_dev *dev = get_ocrdma_dev(cq->ibcq.device);
struct ocrdma_cqe *cqe = NULL;
cqe = cq->va;
cqe_cnt = cq->cqe_cnt;
/* Last irq might have scheduled a polling thread
* sync-up with it before hard flushing.
*/
spin_lock_irqsave(&cq->cq_lock, flags);
while (cqe_cnt) {
if (is_cqe_valid(cq, cqe))
valid_count++;
cqe++;
cqe_cnt--;
}
ocrdma_ring_cq_db(dev, cq->id, false, false, valid_count);
spin_unlock_irqrestore(&cq->cq_lock, flags);
}
void ocrdma_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata)
{
struct ocrdma_cq *cq = get_ocrdma_cq(ibcq);
struct ocrdma_eq *eq = NULL;
struct ocrdma_dev *dev = get_ocrdma_dev(ibcq->device);
int pdid = 0;
u32 irq, indx;
dev->cq_tbl[cq->id] = NULL;
indx = ocrdma_get_eq_table_index(dev, cq->eqn);
eq = &dev->eq_tbl[indx];
irq = ocrdma_get_irq(dev, eq);
synchronize_irq(irq);
ocrdma_flush_cq(cq);
ocrdma_mbx_destroy_cq(dev, cq);
if (cq->ucontext) {
pdid = cq->ucontext->cntxt_pd->id;
ocrdma_del_mmap(cq->ucontext, (u64) cq->pa,
PAGE_ALIGN(cq->len));
ocrdma_del_mmap(cq->ucontext,
ocrdma_get_db_addr(dev, pdid),
dev->nic_info.db_page_size);
}
}
static int ocrdma_add_qpn_map(struct ocrdma_dev *dev, struct ocrdma_qp *qp)
{
int status = -EINVAL;
if (qp->id < OCRDMA_MAX_QP && dev->qp_tbl[qp->id] == NULL) {
dev->qp_tbl[qp->id] = qp;
status = 0;
}
return status;
}
static void ocrdma_del_qpn_map(struct ocrdma_dev *dev, struct ocrdma_qp *qp)
{
dev->qp_tbl[qp->id] = NULL;
}
static int ocrdma_check_qp_params(struct ib_pd *ibpd, struct ocrdma_dev *dev,
struct ib_qp_init_attr *attrs,
struct ib_udata *udata)
{
if ((attrs->qp_type != IB_QPT_GSI) &&
(attrs->qp_type != IB_QPT_RC) &&
(attrs->qp_type != IB_QPT_UC) &&
(attrs->qp_type != IB_QPT_UD)) {
pr_err("%s(%d) unsupported qp type=0x%x requested\n",
__func__, dev->id, attrs->qp_type);
return -EOPNOTSUPP;
}
/* Skip the check for QP1 to support CM size of 128 */
if ((attrs->qp_type != IB_QPT_GSI) &&
(attrs->cap.max_send_wr > dev->attr.max_wqe)) {
pr_err("%s(%d) unsupported send_wr=0x%x requested\n",
__func__, dev->id, attrs->cap.max_send_wr);
pr_err("%s(%d) supported send_wr=0x%x\n",
__func__, dev->id, dev->attr.max_wqe);
return -EINVAL;
}
if (!attrs->srq && (attrs->cap.max_recv_wr > dev->attr.max_rqe)) {
pr_err("%s(%d) unsupported recv_wr=0x%x requested\n",
__func__, dev->id, attrs->cap.max_recv_wr);
pr_err("%s(%d) supported recv_wr=0x%x\n",
__func__, dev->id, dev->attr.max_rqe);
return -EINVAL;
}
if (attrs->cap.max_inline_data > dev->attr.max_inline_data) {
pr_err("%s(%d) unsupported inline data size=0x%x requested\n",
__func__, dev->id, attrs->cap.max_inline_data);
pr_err("%s(%d) supported inline data size=0x%x\n",
__func__, dev->id, dev->attr.max_inline_data);
return -EINVAL;
}
if (attrs->cap.max_send_sge > dev->attr.max_send_sge) {
pr_err("%s(%d) unsupported send_sge=0x%x requested\n",
__func__, dev->id, attrs->cap.max_send_sge);
pr_err("%s(%d) supported send_sge=0x%x\n",
__func__, dev->id, dev->attr.max_send_sge);
return -EINVAL;
}
if (attrs->cap.max_recv_sge > dev->attr.max_recv_sge) {
pr_err("%s(%d) unsupported recv_sge=0x%x requested\n",
__func__, dev->id, attrs->cap.max_recv_sge);
pr_err("%s(%d) supported recv_sge=0x%x\n",
__func__, dev->id, dev->attr.max_recv_sge);
return -EINVAL;
}
/* unprivileged user space cannot create special QP */
if (udata && attrs->qp_type == IB_QPT_GSI) {
pr_err
("%s(%d) Userspace can't create special QPs of type=0x%x\n",
__func__, dev->id, attrs->qp_type);
return -EINVAL;
}
/* allow creating only one GSI type of QP */
if (attrs->qp_type == IB_QPT_GSI && dev->gsi_qp_created) {
pr_err("%s(%d) GSI special QPs already created.\n",
__func__, dev->id);
return -EINVAL;
}
/* verify consumer QPs are not trying to use GSI QP's CQ */
if ((attrs->qp_type != IB_QPT_GSI) && (dev->gsi_qp_created)) {
if ((dev->gsi_sqcq == get_ocrdma_cq(attrs->send_cq)) ||
(dev->gsi_rqcq == get_ocrdma_cq(attrs->recv_cq))) {
pr_err("%s(%d) Consumer QP cannot use GSI CQs.\n",
__func__, dev->id);
return -EINVAL;
}
}
return 0;
}
static int ocrdma_copy_qp_uresp(struct ocrdma_qp *qp,
struct ib_udata *udata, int dpp_offset,
int dpp_credit_lmt, int srq)
{
int status;
u64 usr_db;
struct ocrdma_create_qp_uresp uresp;
struct ocrdma_pd *pd = qp->pd;
struct ocrdma_dev *dev = get_ocrdma_dev(pd->ibpd.device);
memset(&uresp, 0, sizeof(uresp));
usr_db = dev->nic_info.unmapped_db +
(pd->id * dev->nic_info.db_page_size);
uresp.qp_id = qp->id;
uresp.sq_dbid = qp->sq.dbid;
uresp.num_sq_pages = 1;
uresp.sq_page_size = PAGE_ALIGN(qp->sq.len);
uresp.sq_page_addr[0] = virt_to_phys(qp->sq.va);
uresp.num_wqe_allocated = qp->sq.max_cnt;
if (!srq) {
uresp.rq_dbid = qp->rq.dbid;
uresp.num_rq_pages = 1;
uresp.rq_page_size = PAGE_ALIGN(qp->rq.len);
uresp.rq_page_addr[0] = virt_to_phys(qp->rq.va);
uresp.num_rqe_allocated = qp->rq.max_cnt;
}
uresp.db_page_addr = usr_db;
uresp.db_page_size = dev->nic_info.db_page_size;
uresp.db_sq_offset = OCRDMA_DB_GEN2_SQ_OFFSET;
uresp.db_rq_offset = OCRDMA_DB_GEN2_RQ_OFFSET;
uresp.db_shift = OCRDMA_DB_RQ_SHIFT;
if (qp->dpp_enabled) {
uresp.dpp_credit = dpp_credit_lmt;
uresp.dpp_offset = dpp_offset;
}
status = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
if (status) {
pr_err("%s(%d) user copy error.\n", __func__, dev->id);
goto err;
}
status = ocrdma_add_mmap(pd->uctx, uresp.sq_page_addr[0],
uresp.sq_page_size);
if (status)
goto err;
if (!srq) {
status = ocrdma_add_mmap(pd->uctx, uresp.rq_page_addr[0],
uresp.rq_page_size);
if (status)
goto rq_map_err;
}
return status;
rq_map_err:
ocrdma_del_mmap(pd->uctx, uresp.sq_page_addr[0], uresp.sq_page_size);
err:
return status;
}
static void ocrdma_set_qp_db(struct ocrdma_dev *dev, struct ocrdma_qp *qp,
struct ocrdma_pd *pd)
{
if (ocrdma_get_asic_type(dev) == OCRDMA_ASIC_GEN_SKH_R) {
qp->sq_db = dev->nic_info.db +
(pd->id * dev->nic_info.db_page_size) +
OCRDMA_DB_GEN2_SQ_OFFSET;
qp->rq_db = dev->nic_info.db +
(pd->id * dev->nic_info.db_page_size) +
OCRDMA_DB_GEN2_RQ_OFFSET;
} else {
qp->sq_db = dev->nic_info.db +
(pd->id * dev->nic_info.db_page_size) +
OCRDMA_DB_SQ_OFFSET;
qp->rq_db = dev->nic_info.db +
(pd->id * dev->nic_info.db_page_size) +
OCRDMA_DB_RQ_OFFSET;
}
}
static int ocrdma_alloc_wr_id_tbl(struct ocrdma_qp *qp)
{
qp->wqe_wr_id_tbl =
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 00:03:40 +03:00
kcalloc(qp->sq.max_cnt, sizeof(*(qp->wqe_wr_id_tbl)),
GFP_KERNEL);
if (qp->wqe_wr_id_tbl == NULL)
return -ENOMEM;
qp->rqe_wr_id_tbl =
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 00:03:40 +03:00
kcalloc(qp->rq.max_cnt, sizeof(u64), GFP_KERNEL);
if (qp->rqe_wr_id_tbl == NULL)
return -ENOMEM;
return 0;
}
static void ocrdma_set_qp_init_params(struct ocrdma_qp *qp,
struct ocrdma_pd *pd,
struct ib_qp_init_attr *attrs)
{
qp->pd = pd;
spin_lock_init(&qp->q_lock);
INIT_LIST_HEAD(&qp->sq_entry);
INIT_LIST_HEAD(&qp->rq_entry);
qp->qp_type = attrs->qp_type;
qp->cap_flags = OCRDMA_QP_INB_RD | OCRDMA_QP_INB_WR;
qp->max_inline_data = attrs->cap.max_inline_data;
qp->sq.max_sges = attrs->cap.max_send_sge;
qp->rq.max_sges = attrs->cap.max_recv_sge;
qp->state = OCRDMA_QPS_RST;
qp->signaled = (attrs->sq_sig_type == IB_SIGNAL_ALL_WR) ? true : false;
}
static void ocrdma_store_gsi_qp_cq(struct ocrdma_dev *dev,
struct ib_qp_init_attr *attrs)
{
if (attrs->qp_type == IB_QPT_GSI) {
dev->gsi_qp_created = 1;
dev->gsi_sqcq = get_ocrdma_cq(attrs->send_cq);
dev->gsi_rqcq = get_ocrdma_cq(attrs->recv_cq);
}
}
struct ib_qp *ocrdma_create_qp(struct ib_pd *ibpd,
struct ib_qp_init_attr *attrs,
struct ib_udata *udata)
{
int status;
struct ocrdma_pd *pd = get_ocrdma_pd(ibpd);
struct ocrdma_qp *qp;
struct ocrdma_dev *dev = get_ocrdma_dev(ibpd->device);
struct ocrdma_create_qp_ureq ureq;
u16 dpp_credit_lmt, dpp_offset;
status = ocrdma_check_qp_params(ibpd, dev, attrs, udata);
if (status)
goto gen_err;
memset(&ureq, 0, sizeof(ureq));
if (udata) {
if (ib_copy_from_udata(&ureq, udata, sizeof(ureq)))
return ERR_PTR(-EFAULT);
}
qp = kzalloc(sizeof(*qp), GFP_KERNEL);
if (!qp) {
status = -ENOMEM;
goto gen_err;
}
ocrdma_set_qp_init_params(qp, pd, attrs);
if (udata == NULL)
qp->cap_flags |= (OCRDMA_QP_MW_BIND | OCRDMA_QP_LKEY0 |
OCRDMA_QP_FAST_REG);
mutex_lock(&dev->dev_lock);
status = ocrdma_mbx_create_qp(qp, attrs, ureq.enable_dpp_cq,
ureq.dpp_cq_id,
&dpp_offset, &dpp_credit_lmt);
if (status)
goto mbx_err;
/* user space QP's wr_id table are managed in library */
if (udata == NULL) {
status = ocrdma_alloc_wr_id_tbl(qp);
if (status)
goto map_err;
}
status = ocrdma_add_qpn_map(dev, qp);
if (status)
goto map_err;
ocrdma_set_qp_db(dev, qp, pd);
if (udata) {
status = ocrdma_copy_qp_uresp(qp, udata, dpp_offset,
dpp_credit_lmt,
(attrs->srq != NULL));
if (status)
goto cpy_err;
}
ocrdma_store_gsi_qp_cq(dev, attrs);
qp->ibqp.qp_num = qp->id;
mutex_unlock(&dev->dev_lock);
return &qp->ibqp;
cpy_err:
ocrdma_del_qpn_map(dev, qp);
map_err:
ocrdma_mbx_destroy_qp(dev, qp);
mbx_err:
mutex_unlock(&dev->dev_lock);
kfree(qp->wqe_wr_id_tbl);
kfree(qp->rqe_wr_id_tbl);
kfree(qp);
pr_err("%s(%d) error=%d\n", __func__, dev->id, status);
gen_err:
return ERR_PTR(status);
}
int _ocrdma_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask)
{
int status = 0;
struct ocrdma_qp *qp;
struct ocrdma_dev *dev;
enum ib_qp_state old_qps;
qp = get_ocrdma_qp(ibqp);
dev = get_ocrdma_dev(ibqp->device);
if (attr_mask & IB_QP_STATE)
status = ocrdma_qp_state_change(qp, attr->qp_state, &old_qps);
/* if new and previous states are same hw doesn't need to
* know about it.
*/
if (status < 0)
return status;
return ocrdma_mbx_modify_qp(dev, qp, attr, attr_mask);
}
int ocrdma_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
unsigned long flags;
int status = -EINVAL;
struct ocrdma_qp *qp;
struct ocrdma_dev *dev;
enum ib_qp_state old_qps, new_qps;
qp = get_ocrdma_qp(ibqp);
dev = get_ocrdma_dev(ibqp->device);
/* syncronize with multiple context trying to change, retrive qps */
mutex_lock(&dev->dev_lock);
/* syncronize with wqe, rqe posting and cqe processing contexts */
spin_lock_irqsave(&qp->q_lock, flags);
old_qps = get_ibqp_state(qp->state);
if (attr_mask & IB_QP_STATE)
new_qps = attr->qp_state;
else
new_qps = old_qps;
spin_unlock_irqrestore(&qp->q_lock, flags);
if (!ib_modify_qp_is_ok(old_qps, new_qps, ibqp->qp_type, attr_mask)) {
pr_err("%s(%d) invalid attribute mask=0x%x specified for\n"
"qpn=0x%x of type=0x%x old_qps=0x%x, new_qps=0x%x\n",
__func__, dev->id, attr_mask, qp->id, ibqp->qp_type,
old_qps, new_qps);
goto param_err;
}
status = _ocrdma_modify_qp(ibqp, attr, attr_mask);
if (status > 0)
status = 0;
param_err:
mutex_unlock(&dev->dev_lock);
return status;
}
static enum ib_mtu ocrdma_mtu_int_to_enum(u16 mtu)
{
switch (mtu) {
case 256:
return IB_MTU_256;
case 512:
return IB_MTU_512;
case 1024:
return IB_MTU_1024;
case 2048:
return IB_MTU_2048;
case 4096:
return IB_MTU_4096;
default:
return IB_MTU_1024;
}
}
static int ocrdma_to_ib_qp_acc_flags(int qp_cap_flags)
{
int ib_qp_acc_flags = 0;
if (qp_cap_flags & OCRDMA_QP_INB_WR)
ib_qp_acc_flags |= IB_ACCESS_REMOTE_WRITE;
if (qp_cap_flags & OCRDMA_QP_INB_RD)
ib_qp_acc_flags |= IB_ACCESS_LOCAL_WRITE;
return ib_qp_acc_flags;
}
int ocrdma_query_qp(struct ib_qp *ibqp,
struct ib_qp_attr *qp_attr,
int attr_mask, struct ib_qp_init_attr *qp_init_attr)
{
int status;
u32 qp_state;
struct ocrdma_qp_params params;
struct ocrdma_qp *qp = get_ocrdma_qp(ibqp);
struct ocrdma_dev *dev = get_ocrdma_dev(ibqp->device);
memset(&params, 0, sizeof(params));
mutex_lock(&dev->dev_lock);
status = ocrdma_mbx_query_qp(dev, qp, &params);
mutex_unlock(&dev->dev_lock);
if (status)
goto mbx_err;
if (qp->qp_type == IB_QPT_UD)
qp_attr->qkey = params.qkey;
qp_attr->path_mtu =
ocrdma_mtu_int_to_enum(params.path_mtu_pkey_indx &
OCRDMA_QP_PARAMS_PATH_MTU_MASK) >>
OCRDMA_QP_PARAMS_PATH_MTU_SHIFT;
qp_attr->path_mig_state = IB_MIG_MIGRATED;
qp_attr->rq_psn = params.hop_lmt_rq_psn & OCRDMA_QP_PARAMS_RQ_PSN_MASK;
qp_attr->sq_psn = params.tclass_sq_psn & OCRDMA_QP_PARAMS_SQ_PSN_MASK;
qp_attr->dest_qp_num =
params.ack_to_rnr_rtc_dest_qpn & OCRDMA_QP_PARAMS_DEST_QPN_MASK;
qp_attr->qp_access_flags = ocrdma_to_ib_qp_acc_flags(qp->cap_flags);
qp_attr->cap.max_send_wr = qp->sq.max_cnt - 1;
qp_attr->cap.max_recv_wr = qp->rq.max_cnt - 1;
qp_attr->cap.max_send_sge = qp->sq.max_sges;
qp_attr->cap.max_recv_sge = qp->rq.max_sges;
qp_attr->cap.max_inline_data = qp->max_inline_data;
qp_init_attr->cap = qp_attr->cap;
qp_attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE;
rdma_ah_set_grh(&qp_attr->ah_attr, NULL,
params.rnt_rc_sl_fl &
OCRDMA_QP_PARAMS_FLOW_LABEL_MASK,
qp->sgid_idx,
(params.hop_lmt_rq_psn &
OCRDMA_QP_PARAMS_HOP_LMT_MASK) >>
OCRDMA_QP_PARAMS_HOP_LMT_SHIFT,
(params.tclass_sq_psn &
OCRDMA_QP_PARAMS_TCLASS_MASK) >>
OCRDMA_QP_PARAMS_TCLASS_SHIFT);
rdma_ah_set_dgid_raw(&qp_attr->ah_attr, &params.dgid[0]);
rdma_ah_set_port_num(&qp_attr->ah_attr, 1);
rdma_ah_set_sl(&qp_attr->ah_attr, (params.rnt_rc_sl_fl &
OCRDMA_QP_PARAMS_SL_MASK) >>
OCRDMA_QP_PARAMS_SL_SHIFT);
qp_attr->timeout = (params.ack_to_rnr_rtc_dest_qpn &
OCRDMA_QP_PARAMS_ACK_TIMEOUT_MASK) >>
OCRDMA_QP_PARAMS_ACK_TIMEOUT_SHIFT;
qp_attr->rnr_retry = (params.ack_to_rnr_rtc_dest_qpn &
OCRDMA_QP_PARAMS_RNR_RETRY_CNT_MASK) >>
OCRDMA_QP_PARAMS_RNR_RETRY_CNT_SHIFT;
qp_attr->retry_cnt =
(params.rnt_rc_sl_fl & OCRDMA_QP_PARAMS_RETRY_CNT_MASK) >>
OCRDMA_QP_PARAMS_RETRY_CNT_SHIFT;
qp_attr->min_rnr_timer = 0;
qp_attr->pkey_index = 0;
qp_attr->port_num = 1;
rdma_ah_set_path_bits(&qp_attr->ah_attr, 0);
rdma_ah_set_static_rate(&qp_attr->ah_attr, 0);
qp_attr->alt_pkey_index = 0;
qp_attr->alt_port_num = 0;
qp_attr->alt_timeout = 0;
memset(&qp_attr->alt_ah_attr, 0, sizeof(qp_attr->alt_ah_attr));
qp_state = (params.max_sge_recv_flags & OCRDMA_QP_PARAMS_STATE_MASK) >>
OCRDMA_QP_PARAMS_STATE_SHIFT;
qp_attr->qp_state = get_ibqp_state(qp_state);
qp_attr->cur_qp_state = qp_attr->qp_state;
qp_attr->sq_draining = (qp_state == OCRDMA_QPS_SQ_DRAINING) ? 1 : 0;
qp_attr->max_dest_rd_atomic =
params.max_ord_ird >> OCRDMA_QP_PARAMS_MAX_ORD_SHIFT;
qp_attr->max_rd_atomic =
params.max_ord_ird & OCRDMA_QP_PARAMS_MAX_IRD_MASK;
qp_attr->en_sqd_async_notify = (params.max_sge_recv_flags &
OCRDMA_QP_PARAMS_FLAGS_SQD_ASYNC) ? 1 : 0;
/* Sync driver QP state with FW */
ocrdma_qp_state_change(qp, qp_attr->qp_state, NULL);
mbx_err:
return status;
}
static void ocrdma_srq_toggle_bit(struct ocrdma_srq *srq, unsigned int idx)
{
unsigned int i = idx / 32;
u32 mask = (1U << (idx % 32));
srq->idx_bit_fields[i] ^= mask;
}
static int ocrdma_hwq_free_cnt(struct ocrdma_qp_hwq_info *q)
{
return ((q->max_wqe_idx - q->head) + q->tail) % q->max_cnt;
}
static int is_hw_sq_empty(struct ocrdma_qp *qp)
{
return (qp->sq.tail == qp->sq.head);
}
static int is_hw_rq_empty(struct ocrdma_qp *qp)
{
return (qp->rq.tail == qp->rq.head);
}
static void *ocrdma_hwq_head(struct ocrdma_qp_hwq_info *q)
{
return q->va + (q->head * q->entry_size);
}
static void *ocrdma_hwq_head_from_idx(struct ocrdma_qp_hwq_info *q,
u32 idx)
{
return q->va + (idx * q->entry_size);
}
static void ocrdma_hwq_inc_head(struct ocrdma_qp_hwq_info *q)
{
q->head = (q->head + 1) & q->max_wqe_idx;
}
static void ocrdma_hwq_inc_tail(struct ocrdma_qp_hwq_info *q)
{
q->tail = (q->tail + 1) & q->max_wqe_idx;
}
/* discard the cqe for a given QP */
static void ocrdma_discard_cqes(struct ocrdma_qp *qp, struct ocrdma_cq *cq)
{
unsigned long cq_flags;
unsigned long flags;
int discard_cnt = 0;
u32 cur_getp, stop_getp;
struct ocrdma_cqe *cqe;
u32 qpn = 0, wqe_idx = 0;
spin_lock_irqsave(&cq->cq_lock, cq_flags);
/* traverse through the CQEs in the hw CQ,
* find the matching CQE for a given qp,
* mark the matching one discarded by clearing qpn.
* ring the doorbell in the poll_cq() as
* we don't complete out of order cqe.
*/
cur_getp = cq->getp;
/* find upto when do we reap the cq. */
stop_getp = cur_getp;
do {
if (is_hw_sq_empty(qp) && (!qp->srq && is_hw_rq_empty(qp)))
break;
cqe = cq->va + cur_getp;
/* if (a) done reaping whole hw cq, or
* (b) qp_xq becomes empty.
* then exit
*/
qpn = cqe->cmn.qpn & OCRDMA_CQE_QPN_MASK;
/* if previously discarded cqe found, skip that too. */
/* check for matching qp */
if (qpn == 0 || qpn != qp->id)
goto skip_cqe;
if (is_cqe_for_sq(cqe)) {
ocrdma_hwq_inc_tail(&qp->sq);
} else {
if (qp->srq) {
wqe_idx = (le32_to_cpu(cqe->rq.buftag_qpn) >>
OCRDMA_CQE_BUFTAG_SHIFT) &
qp->srq->rq.max_wqe_idx;
BUG_ON(wqe_idx < 1);
spin_lock_irqsave(&qp->srq->q_lock, flags);
ocrdma_hwq_inc_tail(&qp->srq->rq);
ocrdma_srq_toggle_bit(qp->srq, wqe_idx - 1);
spin_unlock_irqrestore(&qp->srq->q_lock, flags);
} else {
ocrdma_hwq_inc_tail(&qp->rq);
}
}
/* mark cqe discarded so that it is not picked up later
* in the poll_cq().
*/
discard_cnt += 1;
cqe->cmn.qpn = 0;
skip_cqe:
cur_getp = (cur_getp + 1) % cq->max_hw_cqe;
} while (cur_getp != stop_getp);
spin_unlock_irqrestore(&cq->cq_lock, cq_flags);
}
void ocrdma_del_flush_qp(struct ocrdma_qp *qp)
{
int found = false;
unsigned long flags;
struct ocrdma_dev *dev = get_ocrdma_dev(qp->ibqp.device);
/* sync with any active CQ poll */
spin_lock_irqsave(&dev->flush_q_lock, flags);
found = ocrdma_is_qp_in_sq_flushlist(qp->sq_cq, qp);
if (found)
list_del(&qp->sq_entry);
if (!qp->srq) {
found = ocrdma_is_qp_in_rq_flushlist(qp->rq_cq, qp);
if (found)
list_del(&qp->rq_entry);
}
spin_unlock_irqrestore(&dev->flush_q_lock, flags);
}
int ocrdma_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
{
struct ocrdma_pd *pd;
struct ocrdma_qp *qp;
struct ocrdma_dev *dev;
struct ib_qp_attr attrs;
int attr_mask;
unsigned long flags;
qp = get_ocrdma_qp(ibqp);
dev = get_ocrdma_dev(ibqp->device);
pd = qp->pd;
/* change the QP state to ERROR */
if (qp->state != OCRDMA_QPS_RST) {
attrs.qp_state = IB_QPS_ERR;
attr_mask = IB_QP_STATE;
_ocrdma_modify_qp(ibqp, &attrs, attr_mask);
}
/* ensure that CQEs for newly created QP (whose id may be same with
* one which just getting destroyed are same), dont get
* discarded until the old CQEs are discarded.
*/
mutex_lock(&dev->dev_lock);
(void) ocrdma_mbx_destroy_qp(dev, qp);
/*
* acquire CQ lock while destroy is in progress, in order to
* protect against proessing in-flight CQEs for this QP.
*/
spin_lock_irqsave(&qp->sq_cq->cq_lock, flags);
if (qp->rq_cq && (qp->rq_cq != qp->sq_cq)) {
spin_lock(&qp->rq_cq->cq_lock);
ocrdma_del_qpn_map(dev, qp);
spin_unlock(&qp->rq_cq->cq_lock);
} else {
ocrdma_del_qpn_map(dev, qp);
}
spin_unlock_irqrestore(&qp->sq_cq->cq_lock, flags);
if (!pd->uctx) {
ocrdma_discard_cqes(qp, qp->sq_cq);
ocrdma_discard_cqes(qp, qp->rq_cq);
}
mutex_unlock(&dev->dev_lock);
if (pd->uctx) {
ocrdma_del_mmap(pd->uctx, (u64) qp->sq.pa,
PAGE_ALIGN(qp->sq.len));
if (!qp->srq)
ocrdma_del_mmap(pd->uctx, (u64) qp->rq.pa,
PAGE_ALIGN(qp->rq.len));
}
ocrdma_del_flush_qp(qp);
kfree(qp->wqe_wr_id_tbl);
kfree(qp->rqe_wr_id_tbl);
kfree(qp);
return 0;
}
static int ocrdma_copy_srq_uresp(struct ocrdma_dev *dev, struct ocrdma_srq *srq,
struct ib_udata *udata)
{
int status;
struct ocrdma_create_srq_uresp uresp;
memset(&uresp, 0, sizeof(uresp));
uresp.rq_dbid = srq->rq.dbid;
uresp.num_rq_pages = 1;
uresp.rq_page_addr[0] = virt_to_phys(srq->rq.va);
uresp.rq_page_size = srq->rq.len;
uresp.db_page_addr = dev->nic_info.unmapped_db +
(srq->pd->id * dev->nic_info.db_page_size);
uresp.db_page_size = dev->nic_info.db_page_size;
uresp.num_rqe_allocated = srq->rq.max_cnt;
if (ocrdma_get_asic_type(dev) == OCRDMA_ASIC_GEN_SKH_R) {
uresp.db_rq_offset = OCRDMA_DB_GEN2_RQ_OFFSET;
uresp.db_shift = 24;
} else {
uresp.db_rq_offset = OCRDMA_DB_RQ_OFFSET;
uresp.db_shift = 16;
}
status = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
if (status)
return status;
status = ocrdma_add_mmap(srq->pd->uctx, uresp.rq_page_addr[0],
uresp.rq_page_size);
if (status)
return status;
return status;
}
int ocrdma_create_srq(struct ib_srq *ibsrq, struct ib_srq_init_attr *init_attr,
struct ib_udata *udata)
{
int status;
struct ocrdma_pd *pd = get_ocrdma_pd(ibsrq->pd);
struct ocrdma_dev *dev = get_ocrdma_dev(ibsrq->device);
struct ocrdma_srq *srq = get_ocrdma_srq(ibsrq);
if (init_attr->attr.max_sge > dev->attr.max_recv_sge)
return -EINVAL;
if (init_attr->attr.max_wr > dev->attr.max_rqe)
return -EINVAL;
spin_lock_init(&srq->q_lock);
srq->pd = pd;
srq->db = dev->nic_info.db + (pd->id * dev->nic_info.db_page_size);
status = ocrdma_mbx_create_srq(dev, srq, init_attr, pd);
if (status)
return status;
if (!udata) {
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 00:03:40 +03:00
srq->rqe_wr_id_tbl = kcalloc(srq->rq.max_cnt, sizeof(u64),
GFP_KERNEL);
if (!srq->rqe_wr_id_tbl) {
status = -ENOMEM;
goto arm_err;
}
srq->bit_fields_len = (srq->rq.max_cnt / 32) +
(srq->rq.max_cnt % 32 ? 1 : 0);
srq->idx_bit_fields =
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 23:55:00 +03:00
kmalloc_array(srq->bit_fields_len, sizeof(u32),
GFP_KERNEL);
if (!srq->idx_bit_fields) {
status = -ENOMEM;
goto arm_err;
}
memset(srq->idx_bit_fields, 0xff,
srq->bit_fields_len * sizeof(u32));
}
if (init_attr->attr.srq_limit) {
status = ocrdma_mbx_modify_srq(srq, &init_attr->attr);
if (status)
goto arm_err;
}
if (udata) {
status = ocrdma_copy_srq_uresp(dev, srq, udata);
if (status)
goto arm_err;
}
return 0;
arm_err:
ocrdma_mbx_destroy_srq(dev, srq);
kfree(srq->rqe_wr_id_tbl);
kfree(srq->idx_bit_fields);
return status;
}
int ocrdma_modify_srq(struct ib_srq *ibsrq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata)
{
int status;
struct ocrdma_srq *srq;
srq = get_ocrdma_srq(ibsrq);
if (srq_attr_mask & IB_SRQ_MAX_WR)
status = -EINVAL;
else
status = ocrdma_mbx_modify_srq(srq, srq_attr);
return status;
}
int ocrdma_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *srq_attr)
{
int status;
struct ocrdma_srq *srq;
srq = get_ocrdma_srq(ibsrq);
status = ocrdma_mbx_query_srq(srq, srq_attr);
return status;
}
void ocrdma_destroy_srq(struct ib_srq *ibsrq, struct ib_udata *udata)
{
struct ocrdma_srq *srq;
struct ocrdma_dev *dev = get_ocrdma_dev(ibsrq->device);
srq = get_ocrdma_srq(ibsrq);
ocrdma_mbx_destroy_srq(dev, srq);
if (srq->pd->uctx)
ocrdma_del_mmap(srq->pd->uctx, (u64) srq->rq.pa,
PAGE_ALIGN(srq->rq.len));
kfree(srq->idx_bit_fields);
kfree(srq->rqe_wr_id_tbl);
}
/* unprivileged verbs and their support functions. */
static void ocrdma_build_ud_hdr(struct ocrdma_qp *qp,
struct ocrdma_hdr_wqe *hdr,
const struct ib_send_wr *wr)
{
struct ocrdma_ewqe_ud_hdr *ud_hdr =
(struct ocrdma_ewqe_ud_hdr *)(hdr + 1);
struct ocrdma_ah *ah = get_ocrdma_ah(ud_wr(wr)->ah);
ud_hdr->rsvd_dest_qpn = ud_wr(wr)->remote_qpn;
if (qp->qp_type == IB_QPT_GSI)
ud_hdr->qkey = qp->qkey;
else
ud_hdr->qkey = ud_wr(wr)->remote_qkey;
ud_hdr->rsvd_ahid = ah->id;
ud_hdr->hdr_type = ah->hdr_type;
if (ah->av->valid & OCRDMA_AV_VLAN_VALID)
hdr->cw |= (OCRDMA_FLAG_AH_VLAN_PR << OCRDMA_WQE_FLAGS_SHIFT);
}
static void ocrdma_build_sges(struct ocrdma_hdr_wqe *hdr,
struct ocrdma_sge *sge, int num_sge,
struct ib_sge *sg_list)
{
int i;
for (i = 0; i < num_sge; i++) {
sge[i].lrkey = sg_list[i].lkey;
sge[i].addr_lo = sg_list[i].addr;
sge[i].addr_hi = upper_32_bits(sg_list[i].addr);
sge[i].len = sg_list[i].length;
hdr->total_len += sg_list[i].length;
}
if (num_sge == 0)
memset(sge, 0, sizeof(*sge));
}
static inline uint32_t ocrdma_sglist_len(struct ib_sge *sg_list, int num_sge)
{
uint32_t total_len = 0, i;
for (i = 0; i < num_sge; i++)
total_len += sg_list[i].length;
return total_len;
}
static int ocrdma_build_inline_sges(struct ocrdma_qp *qp,
struct ocrdma_hdr_wqe *hdr,
struct ocrdma_sge *sge,
const struct ib_send_wr *wr, u32 wqe_size)
{
int i;
char *dpp_addr;
if (wr->send_flags & IB_SEND_INLINE && qp->qp_type != IB_QPT_UD) {
hdr->total_len = ocrdma_sglist_len(wr->sg_list, wr->num_sge);
if (unlikely(hdr->total_len > qp->max_inline_data)) {
pr_err("%s() supported_len=0x%x,\n"
" unsupported len req=0x%x\n", __func__,
qp->max_inline_data, hdr->total_len);
return -EINVAL;
}
dpp_addr = (char *)sge;
for (i = 0; i < wr->num_sge; i++) {
memcpy(dpp_addr,
(void *)(unsigned long)wr->sg_list[i].addr,
wr->sg_list[i].length);
dpp_addr += wr->sg_list[i].length;
}
wqe_size += roundup(hdr->total_len, OCRDMA_WQE_ALIGN_BYTES);
if (0 == hdr->total_len)
wqe_size += sizeof(struct ocrdma_sge);
hdr->cw |= (OCRDMA_TYPE_INLINE << OCRDMA_WQE_TYPE_SHIFT);
} else {
ocrdma_build_sges(hdr, sge, wr->num_sge, wr->sg_list);
if (wr->num_sge)
wqe_size += (wr->num_sge * sizeof(struct ocrdma_sge));
else
wqe_size += sizeof(struct ocrdma_sge);
hdr->cw |= (OCRDMA_TYPE_LKEY << OCRDMA_WQE_TYPE_SHIFT);
}
hdr->cw |= ((wqe_size / OCRDMA_WQE_STRIDE) << OCRDMA_WQE_SIZE_SHIFT);
return 0;
}
static int ocrdma_build_send(struct ocrdma_qp *qp, struct ocrdma_hdr_wqe *hdr,
const struct ib_send_wr *wr)
{
int status;
struct ocrdma_sge *sge;
u32 wqe_size = sizeof(*hdr);
if (qp->qp_type == IB_QPT_UD || qp->qp_type == IB_QPT_GSI) {
ocrdma_build_ud_hdr(qp, hdr, wr);
sge = (struct ocrdma_sge *)(hdr + 2);
wqe_size += sizeof(struct ocrdma_ewqe_ud_hdr);
} else {
sge = (struct ocrdma_sge *)(hdr + 1);
}
status = ocrdma_build_inline_sges(qp, hdr, sge, wr, wqe_size);
return status;
}
static int ocrdma_build_write(struct ocrdma_qp *qp, struct ocrdma_hdr_wqe *hdr,
const struct ib_send_wr *wr)
{
int status;
struct ocrdma_sge *ext_rw = (struct ocrdma_sge *)(hdr + 1);
struct ocrdma_sge *sge = ext_rw + 1;
u32 wqe_size = sizeof(*hdr) + sizeof(*ext_rw);
status = ocrdma_build_inline_sges(qp, hdr, sge, wr, wqe_size);
if (status)
return status;
ext_rw->addr_lo = rdma_wr(wr)->remote_addr;
ext_rw->addr_hi = upper_32_bits(rdma_wr(wr)->remote_addr);
ext_rw->lrkey = rdma_wr(wr)->rkey;
ext_rw->len = hdr->total_len;
return 0;
}
static void ocrdma_build_read(struct ocrdma_qp *qp, struct ocrdma_hdr_wqe *hdr,
const struct ib_send_wr *wr)
{
struct ocrdma_sge *ext_rw = (struct ocrdma_sge *)(hdr + 1);
struct ocrdma_sge *sge = ext_rw + 1;
u32 wqe_size = ((wr->num_sge + 1) * sizeof(struct ocrdma_sge)) +
sizeof(struct ocrdma_hdr_wqe);
ocrdma_build_sges(hdr, sge, wr->num_sge, wr->sg_list);
hdr->cw |= ((wqe_size / OCRDMA_WQE_STRIDE) << OCRDMA_WQE_SIZE_SHIFT);
hdr->cw |= (OCRDMA_READ << OCRDMA_WQE_OPCODE_SHIFT);
hdr->cw |= (OCRDMA_TYPE_LKEY << OCRDMA_WQE_TYPE_SHIFT);
ext_rw->addr_lo = rdma_wr(wr)->remote_addr;
ext_rw->addr_hi = upper_32_bits(rdma_wr(wr)->remote_addr);
ext_rw->lrkey = rdma_wr(wr)->rkey;
ext_rw->len = hdr->total_len;
}
static int get_encoded_page_size(int pg_sz)
{
/* Max size is 256M 4096 << 16 */
int i = 0;
for (; i < 17; i++)
if (pg_sz == (4096 << i))
break;
return i;
}
static int ocrdma_build_reg(struct ocrdma_qp *qp,
struct ocrdma_hdr_wqe *hdr,
const struct ib_reg_wr *wr)
{
u64 fbo;
struct ocrdma_ewqe_fr *fast_reg = (struct ocrdma_ewqe_fr *)(hdr + 1);
struct ocrdma_mr *mr = get_ocrdma_mr(wr->mr);
struct ocrdma_pbl *pbl_tbl = mr->hwmr.pbl_table;
struct ocrdma_pbe *pbe;
u32 wqe_size = sizeof(*fast_reg) + sizeof(*hdr);
int num_pbes = 0, i;
wqe_size = roundup(wqe_size, OCRDMA_WQE_ALIGN_BYTES);
hdr->cw |= (OCRDMA_FR_MR << OCRDMA_WQE_OPCODE_SHIFT);
hdr->cw |= ((wqe_size / OCRDMA_WQE_STRIDE) << OCRDMA_WQE_SIZE_SHIFT);
if (wr->access & IB_ACCESS_LOCAL_WRITE)
hdr->rsvd_lkey_flags |= OCRDMA_LKEY_FLAG_LOCAL_WR;
if (wr->access & IB_ACCESS_REMOTE_WRITE)
hdr->rsvd_lkey_flags |= OCRDMA_LKEY_FLAG_REMOTE_WR;
if (wr->access & IB_ACCESS_REMOTE_READ)
hdr->rsvd_lkey_flags |= OCRDMA_LKEY_FLAG_REMOTE_RD;
hdr->lkey = wr->key;
hdr->total_len = mr->ibmr.length;
fbo = mr->ibmr.iova - mr->pages[0];
fast_reg->va_hi = upper_32_bits(mr->ibmr.iova);
fast_reg->va_lo = (u32) (mr->ibmr.iova & 0xffffffff);
fast_reg->fbo_hi = upper_32_bits(fbo);
fast_reg->fbo_lo = (u32) fbo & 0xffffffff;
fast_reg->num_sges = mr->npages;
fast_reg->size_sge = get_encoded_page_size(mr->ibmr.page_size);
pbe = pbl_tbl->va;
for (i = 0; i < mr->npages; i++) {
u64 buf_addr = mr->pages[i];
pbe->pa_lo = cpu_to_le32((u32) (buf_addr & PAGE_MASK));
pbe->pa_hi = cpu_to_le32((u32) upper_32_bits(buf_addr));
num_pbes += 1;
pbe++;
/* if the pbl is full storing the pbes,
* move to next pbl.
*/
if (num_pbes == (mr->hwmr.pbl_size/sizeof(u64))) {
pbl_tbl++;
pbe = (struct ocrdma_pbe *)pbl_tbl->va;
}
}
return 0;
}
static void ocrdma_ring_sq_db(struct ocrdma_qp *qp)
{
u32 val = qp->sq.dbid | (1 << OCRDMA_DB_SQ_SHIFT);
iowrite32(val, qp->sq_db);
}
int ocrdma_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
int status = 0;
struct ocrdma_qp *qp = get_ocrdma_qp(ibqp);
struct ocrdma_hdr_wqe *hdr;
unsigned long flags;
spin_lock_irqsave(&qp->q_lock, flags);
if (qp->state != OCRDMA_QPS_RTS && qp->state != OCRDMA_QPS_SQD) {
spin_unlock_irqrestore(&qp->q_lock, flags);
*bad_wr = wr;
return -EINVAL;
}
while (wr) {
if (qp->qp_type == IB_QPT_UD &&
(wr->opcode != IB_WR_SEND &&
wr->opcode != IB_WR_SEND_WITH_IMM)) {
*bad_wr = wr;
status = -EINVAL;
break;
}
if (ocrdma_hwq_free_cnt(&qp->sq) == 0 ||
wr->num_sge > qp->sq.max_sges) {
*bad_wr = wr;
status = -ENOMEM;
break;
}
hdr = ocrdma_hwq_head(&qp->sq);
hdr->cw = 0;
if (wr->send_flags & IB_SEND_SIGNALED || qp->signaled)
hdr->cw |= (OCRDMA_FLAG_SIG << OCRDMA_WQE_FLAGS_SHIFT);
if (wr->send_flags & IB_SEND_FENCE)
hdr->cw |=
(OCRDMA_FLAG_FENCE_L << OCRDMA_WQE_FLAGS_SHIFT);
if (wr->send_flags & IB_SEND_SOLICITED)
hdr->cw |=
(OCRDMA_FLAG_SOLICIT << OCRDMA_WQE_FLAGS_SHIFT);
hdr->total_len = 0;
switch (wr->opcode) {
case IB_WR_SEND_WITH_IMM:
hdr->cw |= (OCRDMA_FLAG_IMM << OCRDMA_WQE_FLAGS_SHIFT);
hdr->immdt = ntohl(wr->ex.imm_data);
/* fall through */
case IB_WR_SEND:
hdr->cw |= (OCRDMA_SEND << OCRDMA_WQE_OPCODE_SHIFT);
ocrdma_build_send(qp, hdr, wr);
break;
case IB_WR_SEND_WITH_INV:
hdr->cw |= (OCRDMA_FLAG_INV << OCRDMA_WQE_FLAGS_SHIFT);
hdr->cw |= (OCRDMA_SEND << OCRDMA_WQE_OPCODE_SHIFT);
hdr->lkey = wr->ex.invalidate_rkey;
status = ocrdma_build_send(qp, hdr, wr);
break;
case IB_WR_RDMA_WRITE_WITH_IMM:
hdr->cw |= (OCRDMA_FLAG_IMM << OCRDMA_WQE_FLAGS_SHIFT);
hdr->immdt = ntohl(wr->ex.imm_data);
/* fall through */
case IB_WR_RDMA_WRITE:
hdr->cw |= (OCRDMA_WRITE << OCRDMA_WQE_OPCODE_SHIFT);
status = ocrdma_build_write(qp, hdr, wr);
break;
case IB_WR_RDMA_READ:
ocrdma_build_read(qp, hdr, wr);
break;
case IB_WR_LOCAL_INV:
hdr->cw |=
(OCRDMA_LKEY_INV << OCRDMA_WQE_OPCODE_SHIFT);
hdr->cw |= ((sizeof(struct ocrdma_hdr_wqe) +
sizeof(struct ocrdma_sge)) /
OCRDMA_WQE_STRIDE) << OCRDMA_WQE_SIZE_SHIFT;
hdr->lkey = wr->ex.invalidate_rkey;
break;
case IB_WR_REG_MR:
status = ocrdma_build_reg(qp, hdr, reg_wr(wr));
break;
default:
status = -EINVAL;
break;
}
if (status) {
*bad_wr = wr;
break;
}
if (wr->send_flags & IB_SEND_SIGNALED || qp->signaled)
qp->wqe_wr_id_tbl[qp->sq.head].signaled = 1;
else
qp->wqe_wr_id_tbl[qp->sq.head].signaled = 0;
qp->wqe_wr_id_tbl[qp->sq.head].wrid = wr->wr_id;
ocrdma_cpu_to_le32(hdr, ((hdr->cw >> OCRDMA_WQE_SIZE_SHIFT) &
OCRDMA_WQE_SIZE_MASK) * OCRDMA_WQE_STRIDE);
/* make sure wqe is written before adapter can access it */
wmb();
/* inform hw to start processing it */
ocrdma_ring_sq_db(qp);
/* update pointer, counter for next wr */
ocrdma_hwq_inc_head(&qp->sq);
wr = wr->next;
}
spin_unlock_irqrestore(&qp->q_lock, flags);
return status;
}
static void ocrdma_ring_rq_db(struct ocrdma_qp *qp)
{
u32 val = qp->rq.dbid | (1 << OCRDMA_DB_RQ_SHIFT);
iowrite32(val, qp->rq_db);
}
static void ocrdma_build_rqe(struct ocrdma_hdr_wqe *rqe,
const struct ib_recv_wr *wr, u16 tag)
{
u32 wqe_size = 0;
struct ocrdma_sge *sge;
if (wr->num_sge)
wqe_size = (wr->num_sge * sizeof(*sge)) + sizeof(*rqe);
else
wqe_size = sizeof(*sge) + sizeof(*rqe);
rqe->cw = ((wqe_size / OCRDMA_WQE_STRIDE) <<
OCRDMA_WQE_SIZE_SHIFT);
rqe->cw |= (OCRDMA_FLAG_SIG << OCRDMA_WQE_FLAGS_SHIFT);
rqe->cw |= (OCRDMA_TYPE_LKEY << OCRDMA_WQE_TYPE_SHIFT);
rqe->total_len = 0;
rqe->rsvd_tag = tag;
sge = (struct ocrdma_sge *)(rqe + 1);
ocrdma_build_sges(rqe, sge, wr->num_sge, wr->sg_list);
ocrdma_cpu_to_le32(rqe, wqe_size);
}
int ocrdma_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
int status = 0;
unsigned long flags;
struct ocrdma_qp *qp = get_ocrdma_qp(ibqp);
struct ocrdma_hdr_wqe *rqe;
spin_lock_irqsave(&qp->q_lock, flags);
if (qp->state == OCRDMA_QPS_RST || qp->state == OCRDMA_QPS_ERR) {
spin_unlock_irqrestore(&qp->q_lock, flags);
*bad_wr = wr;
return -EINVAL;
}
while (wr) {
if (ocrdma_hwq_free_cnt(&qp->rq) == 0 ||
wr->num_sge > qp->rq.max_sges) {
*bad_wr = wr;
status = -ENOMEM;
break;
}
rqe = ocrdma_hwq_head(&qp->rq);
ocrdma_build_rqe(rqe, wr, 0);
qp->rqe_wr_id_tbl[qp->rq.head] = wr->wr_id;
/* make sure rqe is written before adapter can access it */
wmb();
/* inform hw to start processing it */
ocrdma_ring_rq_db(qp);
/* update pointer, counter for next wr */
ocrdma_hwq_inc_head(&qp->rq);
wr = wr->next;
}
spin_unlock_irqrestore(&qp->q_lock, flags);
return status;
}
/* cqe for srq's rqe can potentially arrive out of order.
* index gives the entry in the shadow table where to store
* the wr_id. tag/index is returned in cqe to reference back
* for a given rqe.
*/
static int ocrdma_srq_get_idx(struct ocrdma_srq *srq)
{
int row = 0;
int indx = 0;
for (row = 0; row < srq->bit_fields_len; row++) {
if (srq->idx_bit_fields[row]) {
indx = ffs(srq->idx_bit_fields[row]);
indx = (row * 32) + (indx - 1);
BUG_ON(indx >= srq->rq.max_cnt);
ocrdma_srq_toggle_bit(srq, indx);
break;
}
}
BUG_ON(row == srq->bit_fields_len);
return indx + 1; /* Use from index 1 */
}
static void ocrdma_ring_srq_db(struct ocrdma_srq *srq)
{
u32 val = srq->rq.dbid | (1 << 16);
iowrite32(val, srq->db + OCRDMA_DB_GEN2_SRQ_OFFSET);
}
int ocrdma_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
int status = 0;
unsigned long flags;
struct ocrdma_srq *srq;
struct ocrdma_hdr_wqe *rqe;
u16 tag;
srq = get_ocrdma_srq(ibsrq);
spin_lock_irqsave(&srq->q_lock, flags);
while (wr) {
if (ocrdma_hwq_free_cnt(&srq->rq) == 0 ||
wr->num_sge > srq->rq.max_sges) {
status = -ENOMEM;
*bad_wr = wr;
break;
}
tag = ocrdma_srq_get_idx(srq);
rqe = ocrdma_hwq_head(&srq->rq);
ocrdma_build_rqe(rqe, wr, tag);
srq->rqe_wr_id_tbl[tag] = wr->wr_id;
/* make sure rqe is written before adapter can perform DMA */
wmb();
/* inform hw to start processing it */
ocrdma_ring_srq_db(srq);
/* update pointer, counter for next wr */
ocrdma_hwq_inc_head(&srq->rq);
wr = wr->next;
}
spin_unlock_irqrestore(&srq->q_lock, flags);
return status;
}
static enum ib_wc_status ocrdma_to_ibwc_err(u16 status)
{
enum ib_wc_status ibwc_status;
switch (status) {
case OCRDMA_CQE_GENERAL_ERR:
ibwc_status = IB_WC_GENERAL_ERR;
break;
case OCRDMA_CQE_LOC_LEN_ERR:
ibwc_status = IB_WC_LOC_LEN_ERR;
break;
case OCRDMA_CQE_LOC_QP_OP_ERR:
ibwc_status = IB_WC_LOC_QP_OP_ERR;
break;
case OCRDMA_CQE_LOC_EEC_OP_ERR:
ibwc_status = IB_WC_LOC_EEC_OP_ERR;
break;
case OCRDMA_CQE_LOC_PROT_ERR:
ibwc_status = IB_WC_LOC_PROT_ERR;
break;
case OCRDMA_CQE_WR_FLUSH_ERR:
ibwc_status = IB_WC_WR_FLUSH_ERR;
break;
case OCRDMA_CQE_MW_BIND_ERR:
ibwc_status = IB_WC_MW_BIND_ERR;
break;
case OCRDMA_CQE_BAD_RESP_ERR:
ibwc_status = IB_WC_BAD_RESP_ERR;
break;
case OCRDMA_CQE_LOC_ACCESS_ERR:
ibwc_status = IB_WC_LOC_ACCESS_ERR;
break;
case OCRDMA_CQE_REM_INV_REQ_ERR:
ibwc_status = IB_WC_REM_INV_REQ_ERR;
break;
case OCRDMA_CQE_REM_ACCESS_ERR:
ibwc_status = IB_WC_REM_ACCESS_ERR;
break;
case OCRDMA_CQE_REM_OP_ERR:
ibwc_status = IB_WC_REM_OP_ERR;
break;
case OCRDMA_CQE_RETRY_EXC_ERR:
ibwc_status = IB_WC_RETRY_EXC_ERR;
break;
case OCRDMA_CQE_RNR_RETRY_EXC_ERR:
ibwc_status = IB_WC_RNR_RETRY_EXC_ERR;
break;
case OCRDMA_CQE_LOC_RDD_VIOL_ERR:
ibwc_status = IB_WC_LOC_RDD_VIOL_ERR;
break;
case OCRDMA_CQE_REM_INV_RD_REQ_ERR:
ibwc_status = IB_WC_REM_INV_RD_REQ_ERR;
break;
case OCRDMA_CQE_REM_ABORT_ERR:
ibwc_status = IB_WC_REM_ABORT_ERR;
break;
case OCRDMA_CQE_INV_EECN_ERR:
ibwc_status = IB_WC_INV_EECN_ERR;
break;
case OCRDMA_CQE_INV_EEC_STATE_ERR:
ibwc_status = IB_WC_INV_EEC_STATE_ERR;
break;
case OCRDMA_CQE_FATAL_ERR:
ibwc_status = IB_WC_FATAL_ERR;
break;
case OCRDMA_CQE_RESP_TIMEOUT_ERR:
ibwc_status = IB_WC_RESP_TIMEOUT_ERR;
break;
default:
ibwc_status = IB_WC_GENERAL_ERR;
break;
}
return ibwc_status;
}
static void ocrdma_update_wc(struct ocrdma_qp *qp, struct ib_wc *ibwc,
u32 wqe_idx)
{
struct ocrdma_hdr_wqe *hdr;
struct ocrdma_sge *rw;
int opcode;
hdr = ocrdma_hwq_head_from_idx(&qp->sq, wqe_idx);
ibwc->wr_id = qp->wqe_wr_id_tbl[wqe_idx].wrid;
/* Undo the hdr->cw swap */
opcode = le32_to_cpu(hdr->cw) & OCRDMA_WQE_OPCODE_MASK;
switch (opcode) {
case OCRDMA_WRITE:
ibwc->opcode = IB_WC_RDMA_WRITE;
break;
case OCRDMA_READ:
rw = (struct ocrdma_sge *)(hdr + 1);
ibwc->opcode = IB_WC_RDMA_READ;
ibwc->byte_len = rw->len;
break;
case OCRDMA_SEND:
ibwc->opcode = IB_WC_SEND;
break;
case OCRDMA_FR_MR:
ibwc->opcode = IB_WC_REG_MR;
break;
case OCRDMA_LKEY_INV:
ibwc->opcode = IB_WC_LOCAL_INV;
break;
default:
ibwc->status = IB_WC_GENERAL_ERR;
pr_err("%s() invalid opcode received = 0x%x\n",
__func__, hdr->cw & OCRDMA_WQE_OPCODE_MASK);
break;
}
}
static void ocrdma_set_cqe_status_flushed(struct ocrdma_qp *qp,
struct ocrdma_cqe *cqe)
{
if (is_cqe_for_sq(cqe)) {
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) &
~OCRDMA_CQE_STATUS_MASK);
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) |
(OCRDMA_CQE_WR_FLUSH_ERR <<
OCRDMA_CQE_STATUS_SHIFT));
} else {
if (qp->qp_type == IB_QPT_UD || qp->qp_type == IB_QPT_GSI) {
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) &
~OCRDMA_CQE_UD_STATUS_MASK);
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) |
(OCRDMA_CQE_WR_FLUSH_ERR <<
OCRDMA_CQE_UD_STATUS_SHIFT));
} else {
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) &
~OCRDMA_CQE_STATUS_MASK);
cqe->flags_status_srcqpn = cpu_to_le32(le32_to_cpu(
cqe->flags_status_srcqpn) |
(OCRDMA_CQE_WR_FLUSH_ERR <<
OCRDMA_CQE_STATUS_SHIFT));
}
}
}
static bool ocrdma_update_err_cqe(struct ib_wc *ibwc, struct ocrdma_cqe *cqe,
struct ocrdma_qp *qp, int status)
{
bool expand = false;
ibwc->byte_len = 0;
ibwc->qp = &qp->ibqp;
ibwc->status = ocrdma_to_ibwc_err(status);
ocrdma_flush_qp(qp);
ocrdma_qp_state_change(qp, IB_QPS_ERR, NULL);
/* if wqe/rqe pending for which cqe needs to be returned,
* trigger inflating it.
*/
if (!is_hw_rq_empty(qp) || !is_hw_sq_empty(qp)) {
expand = true;
ocrdma_set_cqe_status_flushed(qp, cqe);
}
return expand;
}
static int ocrdma_update_err_rcqe(struct ib_wc *ibwc, struct ocrdma_cqe *cqe,
struct ocrdma_qp *qp, int status)
{
ibwc->opcode = IB_WC_RECV;
ibwc->wr_id = qp->rqe_wr_id_tbl[qp->rq.tail];
ocrdma_hwq_inc_tail(&qp->rq);
return ocrdma_update_err_cqe(ibwc, cqe, qp, status);
}
static int ocrdma_update_err_scqe(struct ib_wc *ibwc, struct ocrdma_cqe *cqe,
struct ocrdma_qp *qp, int status)
{
ocrdma_update_wc(qp, ibwc, qp->sq.tail);
ocrdma_hwq_inc_tail(&qp->sq);
return ocrdma_update_err_cqe(ibwc, cqe, qp, status);
}
static bool ocrdma_poll_err_scqe(struct ocrdma_qp *qp,
struct ocrdma_cqe *cqe, struct ib_wc *ibwc,
bool *polled, bool *stop)
{
bool expand;
struct ocrdma_dev *dev = get_ocrdma_dev(qp->ibqp.device);
int status = (le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_STATUS_MASK) >> OCRDMA_CQE_STATUS_SHIFT;
if (status < OCRDMA_MAX_CQE_ERR)
atomic_inc(&dev->cqe_err_stats[status]);
/* when hw sq is empty, but rq is not empty, so we continue
* to keep the cqe in order to get the cq event again.
*/
if (is_hw_sq_empty(qp) && !is_hw_rq_empty(qp)) {
/* when cq for rq and sq is same, it is safe to return
* flush cqe for RQEs.
*/
if (!qp->srq && (qp->sq_cq == qp->rq_cq)) {
*polled = true;
status = OCRDMA_CQE_WR_FLUSH_ERR;
expand = ocrdma_update_err_rcqe(ibwc, cqe, qp, status);
} else {
/* stop processing further cqe as this cqe is used for
* triggering cq event on buddy cq of RQ.
* When QP is destroyed, this cqe will be removed
* from the cq's hardware q.
*/
*polled = false;
*stop = true;
expand = false;
}
} else if (is_hw_sq_empty(qp)) {
/* Do nothing */
expand = false;
*polled = false;
*stop = false;
} else {
*polled = true;
expand = ocrdma_update_err_scqe(ibwc, cqe, qp, status);
}
return expand;
}
static bool ocrdma_poll_success_scqe(struct ocrdma_qp *qp,
struct ocrdma_cqe *cqe,
struct ib_wc *ibwc, bool *polled)
{
bool expand = false;
int tail = qp->sq.tail;
u32 wqe_idx;
if (!qp->wqe_wr_id_tbl[tail].signaled) {
*polled = false; /* WC cannot be consumed yet */
} else {
ibwc->status = IB_WC_SUCCESS;
ibwc->wc_flags = 0;
ibwc->qp = &qp->ibqp;
ocrdma_update_wc(qp, ibwc, tail);
*polled = true;
}
wqe_idx = (le32_to_cpu(cqe->wq.wqeidx) &
OCRDMA_CQE_WQEIDX_MASK) & qp->sq.max_wqe_idx;
if (tail != wqe_idx)
expand = true; /* Coalesced CQE can't be consumed yet */
ocrdma_hwq_inc_tail(&qp->sq);
return expand;
}
static bool ocrdma_poll_scqe(struct ocrdma_qp *qp, struct ocrdma_cqe *cqe,
struct ib_wc *ibwc, bool *polled, bool *stop)
{
int status;
bool expand;
status = (le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_STATUS_MASK) >> OCRDMA_CQE_STATUS_SHIFT;
if (status == OCRDMA_CQE_SUCCESS)
expand = ocrdma_poll_success_scqe(qp, cqe, ibwc, polled);
else
expand = ocrdma_poll_err_scqe(qp, cqe, ibwc, polled, stop);
return expand;
}
static int ocrdma_update_ud_rcqe(struct ocrdma_dev *dev, struct ib_wc *ibwc,
struct ocrdma_cqe *cqe)
{
int status;
u16 hdr_type = 0;
status = (le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_UD_STATUS_MASK) >> OCRDMA_CQE_UD_STATUS_SHIFT;
ibwc->src_qp = le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_SRCQP_MASK;
ibwc->pkey_index = 0;
ibwc->wc_flags = IB_WC_GRH;
ibwc->byte_len = (le32_to_cpu(cqe->ud.rxlen_pkey) >>
OCRDMA_CQE_UD_XFER_LEN_SHIFT) &
OCRDMA_CQE_UD_XFER_LEN_MASK;
if (ocrdma_is_udp_encap_supported(dev)) {
hdr_type = (le32_to_cpu(cqe->ud.rxlen_pkey) >>
OCRDMA_CQE_UD_L3TYPE_SHIFT) &
OCRDMA_CQE_UD_L3TYPE_MASK;
ibwc->wc_flags |= IB_WC_WITH_NETWORK_HDR_TYPE;
ibwc->network_hdr_type = hdr_type;
}
return status;
}
static void ocrdma_update_free_srq_cqe(struct ib_wc *ibwc,
struct ocrdma_cqe *cqe,
struct ocrdma_qp *qp)
{
unsigned long flags;
struct ocrdma_srq *srq;
u32 wqe_idx;
srq = get_ocrdma_srq(qp->ibqp.srq);
wqe_idx = (le32_to_cpu(cqe->rq.buftag_qpn) >>
OCRDMA_CQE_BUFTAG_SHIFT) & srq->rq.max_wqe_idx;
BUG_ON(wqe_idx < 1);
ibwc->wr_id = srq->rqe_wr_id_tbl[wqe_idx];
spin_lock_irqsave(&srq->q_lock, flags);
ocrdma_srq_toggle_bit(srq, wqe_idx - 1);
spin_unlock_irqrestore(&srq->q_lock, flags);
ocrdma_hwq_inc_tail(&srq->rq);
}
static bool ocrdma_poll_err_rcqe(struct ocrdma_qp *qp, struct ocrdma_cqe *cqe,
struct ib_wc *ibwc, bool *polled, bool *stop,
int status)
{
bool expand;
struct ocrdma_dev *dev = get_ocrdma_dev(qp->ibqp.device);
if (status < OCRDMA_MAX_CQE_ERR)
atomic_inc(&dev->cqe_err_stats[status]);
/* when hw_rq is empty, but wq is not empty, so continue
* to keep the cqe to get the cq event again.
*/
if (is_hw_rq_empty(qp) && !is_hw_sq_empty(qp)) {
if (!qp->srq && (qp->sq_cq == qp->rq_cq)) {
*polled = true;
status = OCRDMA_CQE_WR_FLUSH_ERR;
expand = ocrdma_update_err_scqe(ibwc, cqe, qp, status);
} else {
*polled = false;
*stop = true;
expand = false;
}
} else if (is_hw_rq_empty(qp)) {
/* Do nothing */
expand = false;
*polled = false;
*stop = false;
} else {
*polled = true;
expand = ocrdma_update_err_rcqe(ibwc, cqe, qp, status);
}
return expand;
}
static void ocrdma_poll_success_rcqe(struct ocrdma_qp *qp,
struct ocrdma_cqe *cqe, struct ib_wc *ibwc)
{
struct ocrdma_dev *dev;
dev = get_ocrdma_dev(qp->ibqp.device);
ibwc->opcode = IB_WC_RECV;
ibwc->qp = &qp->ibqp;
ibwc->status = IB_WC_SUCCESS;
if (qp->qp_type == IB_QPT_UD || qp->qp_type == IB_QPT_GSI)
ocrdma_update_ud_rcqe(dev, ibwc, cqe);
else
ibwc->byte_len = le32_to_cpu(cqe->rq.rxlen);
if (is_cqe_imm(cqe)) {
ibwc->ex.imm_data = htonl(le32_to_cpu(cqe->rq.lkey_immdt));
ibwc->wc_flags |= IB_WC_WITH_IMM;
} else if (is_cqe_wr_imm(cqe)) {
ibwc->opcode = IB_WC_RECV_RDMA_WITH_IMM;
ibwc->ex.imm_data = htonl(le32_to_cpu(cqe->rq.lkey_immdt));
ibwc->wc_flags |= IB_WC_WITH_IMM;
} else if (is_cqe_invalidated(cqe)) {
ibwc->ex.invalidate_rkey = le32_to_cpu(cqe->rq.lkey_immdt);
ibwc->wc_flags |= IB_WC_WITH_INVALIDATE;
}
if (qp->ibqp.srq) {
ocrdma_update_free_srq_cqe(ibwc, cqe, qp);
} else {
ibwc->wr_id = qp->rqe_wr_id_tbl[qp->rq.tail];
ocrdma_hwq_inc_tail(&qp->rq);
}
}
static bool ocrdma_poll_rcqe(struct ocrdma_qp *qp, struct ocrdma_cqe *cqe,
struct ib_wc *ibwc, bool *polled, bool *stop)
{
int status;
bool expand = false;
ibwc->wc_flags = 0;
if (qp->qp_type == IB_QPT_UD || qp->qp_type == IB_QPT_GSI) {
status = (le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_UD_STATUS_MASK) >>
OCRDMA_CQE_UD_STATUS_SHIFT;
} else {
status = (le32_to_cpu(cqe->flags_status_srcqpn) &
OCRDMA_CQE_STATUS_MASK) >> OCRDMA_CQE_STATUS_SHIFT;
}
if (status == OCRDMA_CQE_SUCCESS) {
*polled = true;
ocrdma_poll_success_rcqe(qp, cqe, ibwc);
} else {
expand = ocrdma_poll_err_rcqe(qp, cqe, ibwc, polled, stop,
status);
}
return expand;
}
static void ocrdma_change_cq_phase(struct ocrdma_cq *cq, struct ocrdma_cqe *cqe,
u16 cur_getp)
{
if (cq->phase_change) {
if (cur_getp == 0)
cq->phase = (~cq->phase & OCRDMA_CQE_VALID);
} else {
/* clear valid bit */
cqe->flags_status_srcqpn = 0;
}
}
static int ocrdma_poll_hwcq(struct ocrdma_cq *cq, int num_entries,
struct ib_wc *ibwc)
{
u16 qpn = 0;
int i = 0;
bool expand = false;
int polled_hw_cqes = 0;
struct ocrdma_qp *qp = NULL;
struct ocrdma_dev *dev = get_ocrdma_dev(cq->ibcq.device);
struct ocrdma_cqe *cqe;
u16 cur_getp; bool polled = false; bool stop = false;
cur_getp = cq->getp;
while (num_entries) {
cqe = cq->va + cur_getp;
/* check whether valid cqe or not */
if (!is_cqe_valid(cq, cqe))
break;
qpn = (le32_to_cpu(cqe->cmn.qpn) & OCRDMA_CQE_QPN_MASK);
/* ignore discarded cqe */
if (qpn == 0)
goto skip_cqe;
qp = dev->qp_tbl[qpn];
BUG_ON(qp == NULL);
if (is_cqe_for_sq(cqe)) {
expand = ocrdma_poll_scqe(qp, cqe, ibwc, &polled,
&stop);
} else {
expand = ocrdma_poll_rcqe(qp, cqe, ibwc, &polled,
&stop);
}
if (expand)
goto expand_cqe;
if (stop)
goto stop_cqe;
/* clear qpn to avoid duplicate processing by discard_cqe() */
cqe->cmn.qpn = 0;
skip_cqe:
polled_hw_cqes += 1;
cur_getp = (cur_getp + 1) % cq->max_hw_cqe;
ocrdma_change_cq_phase(cq, cqe, cur_getp);
expand_cqe:
if (polled) {
num_entries -= 1;
i += 1;
ibwc = ibwc + 1;
polled = false;
}
}
stop_cqe:
cq->getp = cur_getp;
if (polled_hw_cqes)
ocrdma_ring_cq_db(dev, cq->id, false, false, polled_hw_cqes);
return i;
}
/* insert error cqe if the QP's SQ or RQ's CQ matches the CQ under poll. */
static int ocrdma_add_err_cqe(struct ocrdma_cq *cq, int num_entries,
struct ocrdma_qp *qp, struct ib_wc *ibwc)
{
int err_cqes = 0;
while (num_entries) {
if (is_hw_sq_empty(qp) && is_hw_rq_empty(qp))
break;
if (!is_hw_sq_empty(qp) && qp->sq_cq == cq) {
ocrdma_update_wc(qp, ibwc, qp->sq.tail);
ocrdma_hwq_inc_tail(&qp->sq);
} else if (!is_hw_rq_empty(qp) && qp->rq_cq == cq) {
ibwc->wr_id = qp->rqe_wr_id_tbl[qp->rq.tail];
ocrdma_hwq_inc_tail(&qp->rq);
} else {
return err_cqes;
}
ibwc->byte_len = 0;
ibwc->status = IB_WC_WR_FLUSH_ERR;
ibwc = ibwc + 1;
err_cqes += 1;
num_entries -= 1;
}
return err_cqes;
}
int ocrdma_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
{
int cqes_to_poll = num_entries;
struct ocrdma_cq *cq = get_ocrdma_cq(ibcq);
struct ocrdma_dev *dev = get_ocrdma_dev(ibcq->device);
int num_os_cqe = 0, err_cqes = 0;
struct ocrdma_qp *qp;
unsigned long flags;
/* poll cqes from adapter CQ */
spin_lock_irqsave(&cq->cq_lock, flags);
num_os_cqe = ocrdma_poll_hwcq(cq, cqes_to_poll, wc);
spin_unlock_irqrestore(&cq->cq_lock, flags);
cqes_to_poll -= num_os_cqe;
if (cqes_to_poll) {
wc = wc + num_os_cqe;
/* adapter returns single error cqe when qp moves to
* error state. So insert error cqes with wc_status as
* FLUSHED for pending WQEs and RQEs of QP's SQ and RQ
* respectively which uses this CQ.
*/
spin_lock_irqsave(&dev->flush_q_lock, flags);
list_for_each_entry(qp, &cq->sq_head, sq_entry) {
if (cqes_to_poll == 0)
break;
err_cqes = ocrdma_add_err_cqe(cq, cqes_to_poll, qp, wc);
cqes_to_poll -= err_cqes;
num_os_cqe += err_cqes;
wc = wc + err_cqes;
}
spin_unlock_irqrestore(&dev->flush_q_lock, flags);
}
return num_os_cqe;
}
int ocrdma_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags cq_flags)
{
struct ocrdma_cq *cq = get_ocrdma_cq(ibcq);
struct ocrdma_dev *dev = get_ocrdma_dev(ibcq->device);
u16 cq_id;
unsigned long flags;
bool arm_needed = false, sol_needed = false;
cq_id = cq->id;
spin_lock_irqsave(&cq->cq_lock, flags);
if (cq_flags & IB_CQ_NEXT_COMP || cq_flags & IB_CQ_SOLICITED)
arm_needed = true;
if (cq_flags & IB_CQ_SOLICITED)
sol_needed = true;
ocrdma_ring_cq_db(dev, cq_id, arm_needed, sol_needed, 0);
spin_unlock_irqrestore(&cq->cq_lock, flags);
return 0;
}
struct ib_mr *ocrdma_alloc_mr(struct ib_pd *ibpd, enum ib_mr_type mr_type,
u32 max_num_sg, struct ib_udata *udata)
{
int status;
struct ocrdma_mr *mr;
struct ocrdma_pd *pd = get_ocrdma_pd(ibpd);
struct ocrdma_dev *dev = get_ocrdma_dev(ibpd->device);
if (mr_type != IB_MR_TYPE_MEM_REG)
return ERR_PTR(-EINVAL);
if (max_num_sg > dev->attr.max_pages_per_frmr)
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->pages = kcalloc(max_num_sg, sizeof(u64), GFP_KERNEL);
if (!mr->pages) {
status = -ENOMEM;
goto pl_err;
}
status = ocrdma_get_pbl_info(dev, mr, max_num_sg);
if (status)
goto pbl_err;
mr->hwmr.fr_mr = 1;
mr->hwmr.remote_rd = 0;
mr->hwmr.remote_wr = 0;
mr->hwmr.local_rd = 0;
mr->hwmr.local_wr = 0;
mr->hwmr.mw_bind = 0;
status = ocrdma_build_pbl_tbl(dev, &mr->hwmr);
if (status)
goto pbl_err;
status = ocrdma_reg_mr(dev, &mr->hwmr, pd->id, 0);
if (status)
goto mbx_err;
mr->ibmr.rkey = mr->hwmr.lkey;
mr->ibmr.lkey = mr->hwmr.lkey;
dev->stag_arr[(mr->hwmr.lkey >> 8) & (OCRDMA_MAX_STAG - 1)] =
(unsigned long) mr;
return &mr->ibmr;
mbx_err:
ocrdma_free_mr_pbl_tbl(dev, &mr->hwmr);
pbl_err:
kfree(mr->pages);
pl_err:
kfree(mr);
return ERR_PTR(-ENOMEM);
}
static int ocrdma_set_page(struct ib_mr *ibmr, u64 addr)
{
struct ocrdma_mr *mr = get_ocrdma_mr(ibmr);
if (unlikely(mr->npages == mr->hwmr.num_pbes))
return -ENOMEM;
mr->pages[mr->npages++] = addr;
return 0;
}
int ocrdma_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct ocrdma_mr *mr = get_ocrdma_mr(ibmr);
mr->npages = 0;
return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, ocrdma_set_page);
}