335 lines
6.9 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* s390 diagnose functions
*
* Copyright IBM Corp. 2007
* Author(s): Michael Holzheu <holzheu@de.ibm.com>
*/
#ifndef _ASM_S390_DIAG_H
#define _ASM_S390_DIAG_H
#include <linux/if_ether.h>
#include <linux/percpu.h>
#include <asm/asm-extable.h>
enum diag_stat_enum {
DIAG_STAT_X008,
DIAG_STAT_X00C,
DIAG_STAT_X010,
DIAG_STAT_X014,
DIAG_STAT_X044,
DIAG_STAT_X064,
DIAG_STAT_X09C,
DIAG_STAT_X0DC,
DIAG_STAT_X204,
DIAG_STAT_X210,
DIAG_STAT_X224,
DIAG_STAT_X250,
DIAG_STAT_X258,
DIAG_STAT_X26C,
DIAG_STAT_X288,
DIAG_STAT_X2C4,
DIAG_STAT_X2FC,
DIAG_STAT_X304,
DIAG_STAT_X308,
DIAG_STAT_X318,
DIAG_STAT_X500,
NR_DIAG_STAT
};
void diag_stat_inc(enum diag_stat_enum nr);
void diag_stat_inc_norecursion(enum diag_stat_enum nr);
/*
* Diagnose 10: Release page range
*/
static inline void diag10_range(unsigned long start_pfn, unsigned long num_pfn)
{
unsigned long start_addr, end_addr;
start_addr = pfn_to_phys(start_pfn);
end_addr = pfn_to_phys(start_pfn + num_pfn - 1);
diag_stat_inc(DIAG_STAT_X010);
asm volatile(
"0: diag %0,%1,0x10\n"
"1: nopr %%r7\n"
EX_TABLE(0b, 1b)
EX_TABLE(1b, 1b)
: : "a" (start_addr), "a" (end_addr));
}
/*
* Diagnose 14: Input spool file manipulation
*/
extern int diag14(unsigned long rx, unsigned long ry1, unsigned long subcode);
/*
* Diagnose 210: Get information about a virtual device
*/
struct diag210 {
u16 vrdcdvno; /* device number (input) */
u16 vrdclen; /* data block length (input) */
u8 vrdcvcla; /* virtual device class (output) */
u8 vrdcvtyp; /* virtual device type (output) */
u8 vrdcvsta; /* virtual device status (output) */
u8 vrdcvfla; /* virtual device flags (output) */
u8 vrdcrccl; /* real device class (output) */
u8 vrdccrty; /* real device type (output) */
u8 vrdccrmd; /* real device model (output) */
u8 vrdccrft; /* real device feature (output) */
} __attribute__((packed, aligned(4)));
extern int diag210(struct diag210 *addr);
/* bit is set in flags, when physical cpu info is included in diag 204 data */
#define DIAG204_LPAR_PHYS_FLG 0x80
#define DIAG204_LPAR_NAME_LEN 8 /* lpar name len in diag 204 data */
#define DIAG204_CPU_NAME_LEN 16 /* type name len of cpus in diag224 name table */
/* diag 204 subcodes */
enum diag204_sc {
DIAG204_SUBC_STIB4 = 4,
DIAG204_SUBC_RSI = 5,
DIAG204_SUBC_STIB6 = 6,
DIAG204_SUBC_STIB7 = 7
};
/* The two available diag 204 data formats */
enum diag204_format {
DIAG204_INFO_SIMPLE = 0,
DIAG204_INFO_EXT = 0x00010000
};
enum diag204_cpu_flags {
DIAG204_CPU_ONLINE = 0x20,
DIAG204_CPU_CAPPED = 0x40,
};
struct diag204_info_blk_hdr {
__u8 npar;
__u8 flags;
__u16 tslice;
__u16 phys_cpus;
__u16 this_part;
__u64 curtod;
} __packed;
struct diag204_x_info_blk_hdr {
__u8 npar;
__u8 flags;
__u16 tslice;
__u16 phys_cpus;
__u16 this_part;
__u64 curtod1;
__u64 curtod2;
char reserved[40];
} __packed;
struct diag204_part_hdr {
__u8 pn;
__u8 cpus;
char reserved[6];
char part_name[DIAG204_LPAR_NAME_LEN];
} __packed;
struct diag204_x_part_hdr {
__u8 pn;
__u8 cpus;
__u8 rcpus;
__u8 pflag;
__u32 mlu;
char part_name[DIAG204_LPAR_NAME_LEN];
char lpc_name[8];
char os_name[8];
__u64 online_cs;
__u64 online_es;
__u8 upid;
__u8 reserved:3;
__u8 mtid:5;
char reserved1[2];
__u32 group_mlu;
char group_name[8];
char hardware_group_name[8];
char reserved2[24];
} __packed;
struct diag204_cpu_info {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
__u8 cflag;
__u16 weight;
__u64 acc_time;
__u64 lp_time;
} __packed;
struct diag204_x_cpu_info {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
__u8 cflag;
__u16 weight;
__u64 acc_time;
__u64 lp_time;
__u16 min_weight;
__u16 cur_weight;
__u16 max_weight;
char reseved2[2];
__u64 online_time;
__u64 wait_time;
__u32 pma_weight;
__u32 polar_weight;
__u32 cpu_type_cap;
__u32 group_cpu_type_cap;
char reserved3[32];
} __packed;
struct diag204_phys_hdr {
char reserved1[1];
__u8 cpus;
char reserved2[6];
char mgm_name[8];
} __packed;
struct diag204_x_phys_hdr {
char reserved1[1];
__u8 cpus;
char reserved2[6];
char mgm_name[8];
char reserved3[80];
} __packed;
struct diag204_phys_cpu {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
char reserved2[3];
__u64 mgm_time;
char reserved3[8];
} __packed;
struct diag204_x_phys_cpu {
__u16 cpu_addr;
char reserved1[2];
__u8 ctidx;
char reserved2[1];
__u16 weight;
__u64 mgm_time;
char reserved3[80];
} __packed;
struct diag204_x_part_block {
struct diag204_x_part_hdr hdr;
struct diag204_x_cpu_info cpus[];
} __packed;
struct diag204_x_phys_block {
struct diag204_x_phys_hdr hdr;
struct diag204_x_phys_cpu cpus[];
} __packed;
enum diag26c_sc {
DIAG26C_PORT_VNIC = 0x00000024,
DIAG26C_MAC_SERVICES = 0x00000030
};
enum diag26c_version {
DIAG26C_VERSION2 = 0x00000002, /* z/VM 5.4.0 */
DIAG26C_VERSION6_VM65918 = 0x00020006 /* z/VM 6.4.0 + VM65918 */
};
#define DIAG26C_VNIC_INFO 0x0002
struct diag26c_vnic_req {
u32 resp_buf_len;
u32 resp_version;
u16 req_format;
u16 vlan_id;
u64 sys_name;
u8 res[2];
u16 devno;
} __packed __aligned(8);
#define VNIC_INFO_PROT_L3 1
#define VNIC_INFO_PROT_L2 2
/* Note: this is the bare minimum, use it for uninitialized VNICs only. */
struct diag26c_vnic_resp {
u32 version;
u32 entry_cnt;
/* VNIC info: */
u32 next_entry;
u64 owner;
u16 devno;
u8 status;
u8 type;
u64 lan_owner;
u64 lan_name;
u64 port_name;
u8 port_type;
u8 ext_status:6;
u8 protocol:2;
u16 base_devno;
u32 port_num;
u32 ifindex;
u32 maxinfo;
u32 dev_count;
/* 3x device info: */
u8 dev_info1[28];
u8 dev_info2[28];
u8 dev_info3[28];
} __packed __aligned(8);
#define DIAG26C_GET_MAC 0x0000
struct diag26c_mac_req {
u32 resp_buf_len;
u32 resp_version;
u16 op_code;
u16 devno;
u8 res[4];
};
struct diag26c_mac_resp {
u32 version;
u8 mac[ETH_ALEN];
u8 res[2];
} __aligned(8);
#define CPNC_LINUX 0x4
union diag318_info {
unsigned long val;
struct {
unsigned long cpnc : 8;
unsigned long cpvc : 56;
};
};
int diag204(unsigned long subcode, unsigned long size, void *addr);
int diag224(void *ptr);
int diag26c(void *req, void *resp, enum diag26c_sc subcode);
struct hypfs_diag0c_entry;
/*
* This structure must contain only pointers/references into
* the AMODE31 text section.
*/
struct diag_ops {
int (*diag210)(struct diag210 *addr);
int (*diag26c)(void *req, void *resp, enum diag26c_sc subcode);
int (*diag14)(unsigned long rx, unsigned long ry1, unsigned long subcode);
void (*diag0c)(struct hypfs_diag0c_entry *entry);
void (*diag308_reset)(void);
};
extern struct diag_ops diag_amode31_ops;
extern struct diag210 *__diag210_tmp_amode31;
s390/boot: move dma sections from decompressor to decompressed kernel This change simplifies the task of making the decompressor relocatable. The decompressor's image contains special DMA sections between _sdma and _edma. This DMA segment is loaded at boot as part of the decompressor and then simply handed over to the decompressed kernel. The decompressor itself never uses it in any way. The primary reason for this is the need to keep the aforementioned DMA segment below 2GB which is required by architecture, and because the decompressor is always loaded at a fixed low physical address, it is guaranteed that the DMA region will not cross the 2GB memory limit. If the DMA region had been placed in the decompressed kernel, then KASLR would make this guarantee impossible to fulfill or it would be restricted to the first 2GB of memory address space. This commit moves all DMA sections between _sdma and _edma from the decompressor's image to the decompressed kernel's image. The complete DMA region is placed in the init section of the decompressed kernel and immediately relocated below 2GB at start-up before it is needed by other parts of the decompressed kernel. The relocation of the DMA region happens even if the decompressed kernel is already located below 2GB in order to keep the first implementation simple. The relocation should not have any noticeable impact on boot time because the DMA segment is only a couple of pages. After relocating the DMA sections, the kernel has to fix all references which point into it. In order to automate this, place all variables pointing into the DMA sections in a special .dma.refs section. All such variables must be defined using the new __dma_ref macro. Only variables containing addresses within the DMA sections must be placed in the new .dma.refs section. Furthermore, move the initialization of control registers from the decompressor to the decompressed kernel because some control registers reference tables that must be placed in the DMA data section to guarantee that their addresses are below 2G. Because the decompressed kernel relocates the DMA sections at startup, the content of control registers CR2, CR5 and CR15 must be updated with new addresses after the relocation. The decompressed kernel initializes all control registers early at boot and then updates the content of CR2, CR5 and CR15 as soon as the DMA relocation has occurred. This practically reverts the commit a80313ff91ab ("s390/kernel: introduce .dma sections"). Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-06-15 19:17:36 +02:00
int _diag210_amode31(struct diag210 *addr);
int _diag26c_amode31(void *req, void *resp, enum diag26c_sc subcode);
int _diag14_amode31(unsigned long rx, unsigned long ry1, unsigned long subcode);
void _diag0c_amode31(struct hypfs_diag0c_entry *entry);
void _diag308_reset_amode31(void);
s390/boot: move dma sections from decompressor to decompressed kernel This change simplifies the task of making the decompressor relocatable. The decompressor's image contains special DMA sections between _sdma and _edma. This DMA segment is loaded at boot as part of the decompressor and then simply handed over to the decompressed kernel. The decompressor itself never uses it in any way. The primary reason for this is the need to keep the aforementioned DMA segment below 2GB which is required by architecture, and because the decompressor is always loaded at a fixed low physical address, it is guaranteed that the DMA region will not cross the 2GB memory limit. If the DMA region had been placed in the decompressed kernel, then KASLR would make this guarantee impossible to fulfill or it would be restricted to the first 2GB of memory address space. This commit moves all DMA sections between _sdma and _edma from the decompressor's image to the decompressed kernel's image. The complete DMA region is placed in the init section of the decompressed kernel and immediately relocated below 2GB at start-up before it is needed by other parts of the decompressed kernel. The relocation of the DMA region happens even if the decompressed kernel is already located below 2GB in order to keep the first implementation simple. The relocation should not have any noticeable impact on boot time because the DMA segment is only a couple of pages. After relocating the DMA sections, the kernel has to fix all references which point into it. In order to automate this, place all variables pointing into the DMA sections in a special .dma.refs section. All such variables must be defined using the new __dma_ref macro. Only variables containing addresses within the DMA sections must be placed in the new .dma.refs section. Furthermore, move the initialization of control registers from the decompressor to the decompressed kernel because some control registers reference tables that must be placed in the DMA data section to guarantee that their addresses are below 2G. Because the decompressed kernel relocates the DMA sections at startup, the content of control registers CR2, CR5 and CR15 must be updated with new addresses after the relocation. The decompressed kernel initializes all control registers early at boot and then updates the content of CR2, CR5 and CR15 as soon as the DMA relocation has occurred. This practically reverts the commit a80313ff91ab ("s390/kernel: introduce .dma sections"). Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
2021-06-15 19:17:36 +02:00
#endif /* _ASM_S390_DIAG_H */