linux/kernel/bounds.c

36 lines
950 B
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
/*
* Generate definitions needed by the preprocessor.
* This code generates raw asm output which is post-processed
* to extract and format the required data.
*/
#define __GENERATING_BOUNDS_H
/* Include headers that define the enum constants of interest */
#include <linux/page-flags.h>
#include <linux/mmzone.h>
Add kbuild.h that contains common definitions for kbuild users The same definitions are used for the bounds logic and the asm-offsets.h generation by kbuild. Put them into include/linux/kbuild.h file. Also add a new feature COMMENT("text") which can be used to insert lines of ocmments into asm-offsets.h and bounds.h. Cc: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jay Estabrook <jay.estabrook@hp.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Chris Zankel <chris@zankel.net> Cc: David S. Miller <davem@davemloft.net> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mike Frysinger <vapier.adi@gmail.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Miles Bader <miles@gnu.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-29 12:03:49 +04:00
#include <linux/kbuild.h>
#include <linux/log2.h>
#include <linux/spinlock_types.h>
int main(void)
{
/* The enum constants to put into include/generated/bounds.h */
DEFINE(NR_PAGEFLAGS, __NR_PAGEFLAGS);
DEFINE(MAX_NR_ZONES, __MAX_NR_ZONES);
#ifdef CONFIG_SMP
DEFINE(NR_CPUS_BITS, order_base_2(CONFIG_NR_CPUS));
#endif
DEFINE(SPINLOCK_SIZE, sizeof(spinlock_t));
mm: multi-gen LRU: groundwork Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-18 11:00:02 +03:00
#ifdef CONFIG_LRU_GEN
DEFINE(LRU_GEN_WIDTH, order_base_2(MAX_NR_GENS + 1));
mm: multi-gen LRU: minimal implementation To avoid confusion, the terms "promotion" and "demotion" will be applied to the multi-gen LRU, as a new convention; the terms "activation" and "deactivation" will be applied to the active/inactive LRU, as usual. The aging produces young generations. Given an lruvec, it increments max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS. The aging promotes hot pages to the youngest generation when it finds them accessed through page tables; the demotion of cold pages happens consequently when it increments max_seq. Promotion in the aging path does not involve any LRU list operations, only the updates of the gen counter and lrugen->nr_pages[]; demotion, unless as the result of the increment of max_seq, requires LRU list operations, e.g., lru_deactivate_fn(). The aging has the complexity O(nr_hot_pages), since it is only interested in hot pages. The eviction consumes old generations. Given an lruvec, it increments min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty. A feedback loop modeled after the PID controller monitors refaults over anon and file types and decides which type to evict when both types are available from the same generation. The protection of pages accessed multiple times through file descriptors takes place in the eviction path. Each generation is divided into multiple tiers. A page accessed N times through file descriptors is in tier order_base_2(N). Tiers do not have dedicated lrugen->lists[], only bits in folio->flags. The aforementioned feedback loop also monitors refaults over all tiers and decides when to protect pages in which tiers (N>1), using the first tier (N=0,1) as a baseline. The first tier contains single-use unmapped clean pages, which are most likely the best choices. In contrast to promotion in the aging path, the protection of a page in the eviction path is achieved by moving this page to the next generation, i.e., min_seq+1, if the feedback loop decides so. This approach has the following advantages: 1. It removes the cost of activation in the buffered access path by inferring whether pages accessed multiple times through file descriptors are statistically hot and thus worth protecting in the eviction path. 2. It takes pages accessed through page tables into account and avoids overprotecting pages accessed multiple times through file descriptors. (Pages accessed through page tables are in the first tier, since N=0.) 3. More tiers provide better protection for pages accessed more than twice through file descriptors, when under heavy buffered I/O workloads. Server benchmark results: Single workload: fio (buffered I/O): +[30, 32]% IOPS BW 5.19-rc1: 2673k 10.2GiB/s patch1-6: 3491k 13.3GiB/s Single workload: memcached (anon): -[4, 6]% Ops/sec KB/sec 5.19-rc1: 1161501.04 45177.25 patch1-6: 1106168.46 43025.04 Configurations: CPU: two Xeon 6154 Mem: total 256G Node 1 was only used as a ram disk to reduce the variance in the results. patch drivers/block/brd.c <<EOF 99,100c99,100 < gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; < page = alloc_page(gfp_flags); --- > gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE; > page = alloc_pages_node(1, gfp_flags, 0); EOF cat >>/etc/systemd/system.conf <<EOF CPUAffinity=numa NUMAPolicy=bind NUMAMask=0 EOF cat >>/etc/memcached.conf <<EOF -m 184320 -s /var/run/memcached/memcached.sock -a 0766 -t 36 -B binary EOF cat fio.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkfs.ext4 /dev/ram0 mount -t ext4 /dev/ram0 /mnt mkdir /sys/fs/cgroup/user.slice/test echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=5m --group_reporting cat memcached.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed Client benchmark results: kswapd profiles: 5.19-rc1 40.33% page_vma_mapped_walk (overhead) 21.80% lzo1x_1_do_compress (real work) 7.53% do_raw_spin_lock 3.95% _raw_spin_unlock_irq 2.52% vma_interval_tree_iter_next 2.37% folio_referenced_one 2.28% vma_interval_tree_subtree_search 1.97% anon_vma_interval_tree_iter_first 1.60% ptep_clear_flush 1.06% __zram_bvec_write patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next Configurations: CPU: single Snapdragon 7c Mem: total 4G ChromeOS MemoryPressure [1] [1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/ Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-18 11:00:03 +03:00
DEFINE(__LRU_REFS_WIDTH, MAX_NR_TIERS - 2);
mm: multi-gen LRU: groundwork Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-18 11:00:02 +03:00
#else
DEFINE(LRU_GEN_WIDTH, 0);
mm: multi-gen LRU: minimal implementation To avoid confusion, the terms "promotion" and "demotion" will be applied to the multi-gen LRU, as a new convention; the terms "activation" and "deactivation" will be applied to the active/inactive LRU, as usual. The aging produces young generations. Given an lruvec, it increments max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS. The aging promotes hot pages to the youngest generation when it finds them accessed through page tables; the demotion of cold pages happens consequently when it increments max_seq. Promotion in the aging path does not involve any LRU list operations, only the updates of the gen counter and lrugen->nr_pages[]; demotion, unless as the result of the increment of max_seq, requires LRU list operations, e.g., lru_deactivate_fn(). The aging has the complexity O(nr_hot_pages), since it is only interested in hot pages. The eviction consumes old generations. Given an lruvec, it increments min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty. A feedback loop modeled after the PID controller monitors refaults over anon and file types and decides which type to evict when both types are available from the same generation. The protection of pages accessed multiple times through file descriptors takes place in the eviction path. Each generation is divided into multiple tiers. A page accessed N times through file descriptors is in tier order_base_2(N). Tiers do not have dedicated lrugen->lists[], only bits in folio->flags. The aforementioned feedback loop also monitors refaults over all tiers and decides when to protect pages in which tiers (N>1), using the first tier (N=0,1) as a baseline. The first tier contains single-use unmapped clean pages, which are most likely the best choices. In contrast to promotion in the aging path, the protection of a page in the eviction path is achieved by moving this page to the next generation, i.e., min_seq+1, if the feedback loop decides so. This approach has the following advantages: 1. It removes the cost of activation in the buffered access path by inferring whether pages accessed multiple times through file descriptors are statistically hot and thus worth protecting in the eviction path. 2. It takes pages accessed through page tables into account and avoids overprotecting pages accessed multiple times through file descriptors. (Pages accessed through page tables are in the first tier, since N=0.) 3. More tiers provide better protection for pages accessed more than twice through file descriptors, when under heavy buffered I/O workloads. Server benchmark results: Single workload: fio (buffered I/O): +[30, 32]% IOPS BW 5.19-rc1: 2673k 10.2GiB/s patch1-6: 3491k 13.3GiB/s Single workload: memcached (anon): -[4, 6]% Ops/sec KB/sec 5.19-rc1: 1161501.04 45177.25 patch1-6: 1106168.46 43025.04 Configurations: CPU: two Xeon 6154 Mem: total 256G Node 1 was only used as a ram disk to reduce the variance in the results. patch drivers/block/brd.c <<EOF 99,100c99,100 < gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; < page = alloc_page(gfp_flags); --- > gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE; > page = alloc_pages_node(1, gfp_flags, 0); EOF cat >>/etc/systemd/system.conf <<EOF CPUAffinity=numa NUMAPolicy=bind NUMAMask=0 EOF cat >>/etc/memcached.conf <<EOF -m 184320 -s /var/run/memcached/memcached.sock -a 0766 -t 36 -B binary EOF cat fio.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkfs.ext4 /dev/ram0 mount -t ext4 /dev/ram0 /mnt mkdir /sys/fs/cgroup/user.slice/test echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=5m --group_reporting cat memcached.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed Client benchmark results: kswapd profiles: 5.19-rc1 40.33% page_vma_mapped_walk (overhead) 21.80% lzo1x_1_do_compress (real work) 7.53% do_raw_spin_lock 3.95% _raw_spin_unlock_irq 2.52% vma_interval_tree_iter_next 2.37% folio_referenced_one 2.28% vma_interval_tree_subtree_search 1.97% anon_vma_interval_tree_iter_first 1.60% ptep_clear_flush 1.06% __zram_bvec_write patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next Configurations: CPU: single Snapdragon 7c Mem: total 4G ChromeOS MemoryPressure [1] [1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/ Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-18 11:00:03 +03:00
DEFINE(__LRU_REFS_WIDTH, 0);
mm: multi-gen LRU: groundwork Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-18 11:00:02 +03:00
#endif
/* End of constants */
return 0;
}