linux/net/openvswitch/conntrack.c

2301 lines
60 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
/*
* Copyright (c) 2015 Nicira, Inc.
*/
#include <linux/module.h>
#include <linux/openvswitch.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/sctp.h>
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#include <linux/static_key.h>
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#include <net/ip.h>
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#include <net/genetlink.h>
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#include <net/netfilter/nf_conntrack_core.h>
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#include <net/netfilter/nf_conntrack_count.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_labels.h>
#include <net/netfilter/nf_conntrack_seqadj.h>
#include <net/netfilter/nf_conntrack_timeout.h>
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
#include <net/ipv6_frag.h>
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#if IS_ENABLED(CONFIG_NF_NAT)
#include <net/netfilter/nf_nat.h>
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#include "datapath.h"
#include "conntrack.h"
#include "flow.h"
#include "flow_netlink.h"
struct ovs_ct_len_tbl {
int maxlen;
int minlen;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
};
/* Metadata mark for masked write to conntrack mark */
struct md_mark {
u32 value;
u32 mask;
};
/* Metadata label for masked write to conntrack label. */
struct md_labels {
struct ovs_key_ct_labels value;
struct ovs_key_ct_labels mask;
};
enum ovs_ct_nat {
OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
};
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
/* Conntrack action context for execution. */
struct ovs_conntrack_info {
struct nf_conntrack_helper *helper;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
struct nf_conntrack_zone zone;
struct nf_conn *ct;
u8 commit : 1;
u8 nat : 3; /* enum ovs_ct_nat */
u8 force : 1;
u8 have_eventmask : 1;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
u16 family;
u32 eventmask; /* Mask of 1 << IPCT_*. */
struct md_mark mark;
struct md_labels labels;
char timeout[CTNL_TIMEOUT_NAME_MAX];
struct nf_ct_timeout *nf_ct_timeout;
#if IS_ENABLED(CONFIG_NF_NAT)
netfilter: add NAT support for shifted portmap ranges This is a patch proposal to support shifted ranges in portmaps. (i.e. tcp/udp incoming port 5000-5100 on WAN redirected to LAN 192.168.1.5:2000-2100) Currently DNAT only works for single port or identical port ranges. (i.e. ports 5000-5100 on WAN interface redirected to a LAN host while original destination port is not altered) When different port ranges are configured, either 'random' mode should be used, or else all incoming connections are mapped onto the first port in the redirect range. (in described example WAN:5000-5100 will all be mapped to 192.168.1.5:2000) This patch introduces a new mode indicated by flag NF_NAT_RANGE_PROTO_OFFSET which uses a base port value to calculate an offset with the destination port present in the incoming stream. That offset is then applied as index within the redirect port range (index modulo rangewidth to handle range overflow). In described example the base port would be 5000. An incoming stream with destination port 5004 would result in an offset value 4 which means that the NAT'ed stream will be using destination port 2004. Other possibilities include deterministic mapping of larger or multiple ranges to a smaller range : WAN:5000-5999 -> LAN:5000-5099 (maps WAN port 5*xx to port 51xx) This patch does not change any current behavior. It just adds new NAT proto range functionality which must be selected via the specific flag when intended to use. A patch for iptables (libipt_DNAT.c + libip6t_DNAT.c) will also be proposed which makes this functionality immediately available. Signed-off-by: Thierry Du Tre <thierry@dtsystems.be> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-04-04 15:38:22 +02:00
struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
};
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
#define OVS_CT_LIMIT_UNLIMITED 0
#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
#define CT_LIMIT_HASH_BUCKETS 512
static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
struct ovs_ct_limit {
/* Elements in ovs_ct_limit_info->limits hash table */
struct hlist_node hlist_node;
struct rcu_head rcu;
u16 zone;
u32 limit;
};
struct ovs_ct_limit_info {
u32 default_limit;
struct hlist_head *limits;
struct nf_conncount_data *data;
};
static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
[OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
};
#endif
static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
static u16 key_to_nfproto(const struct sw_flow_key *key)
{
switch (ntohs(key->eth.type)) {
case ETH_P_IP:
return NFPROTO_IPV4;
case ETH_P_IPV6:
return NFPROTO_IPV6;
default:
return NFPROTO_UNSPEC;
}
}
/* Map SKB connection state into the values used by flow definition. */
static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
{
u8 ct_state = OVS_CS_F_TRACKED;
switch (ctinfo) {
case IP_CT_ESTABLISHED_REPLY:
case IP_CT_RELATED_REPLY:
ct_state |= OVS_CS_F_REPLY_DIR;
break;
default:
break;
}
switch (ctinfo) {
case IP_CT_ESTABLISHED:
case IP_CT_ESTABLISHED_REPLY:
ct_state |= OVS_CS_F_ESTABLISHED;
break;
case IP_CT_RELATED:
case IP_CT_RELATED_REPLY:
ct_state |= OVS_CS_F_RELATED;
break;
case IP_CT_NEW:
ct_state |= OVS_CS_F_NEW;
break;
default:
break;
}
return ct_state;
}
static u32 ovs_ct_get_mark(const struct nf_conn *ct)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
return ct ? ct->mark : 0;
#else
return 0;
#endif
}
/* Guard against conntrack labels max size shrinking below 128 bits. */
#if NF_CT_LABELS_MAX_SIZE < 16
#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
#endif
static void ovs_ct_get_labels(const struct nf_conn *ct,
struct ovs_key_ct_labels *labels)
{
struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
if (cl)
memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
else
memset(labels, 0, OVS_CT_LABELS_LEN);
}
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
const struct nf_conntrack_tuple *orig,
u8 icmp_proto)
{
key->ct_orig_proto = orig->dst.protonum;
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
if (orig->dst.protonum == icmp_proto) {
key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
} else {
key->ct.orig_tp.src = orig->src.u.all;
key->ct.orig_tp.dst = orig->dst.u.all;
}
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
const struct nf_conntrack_zone *zone,
const struct nf_conn *ct)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
key->ct_state = state;
key->ct_zone = zone->id;
key->ct.mark = ovs_ct_get_mark(ct);
ovs_ct_get_labels(ct, &key->ct.labels);
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
if (ct) {
const struct nf_conntrack_tuple *orig;
/* Use the master if we have one. */
if (ct->master)
ct = ct->master;
orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
/* IP version must match with the master connection. */
if (key->eth.type == htons(ETH_P_IP) &&
nf_ct_l3num(ct) == NFPROTO_IPV4) {
key->ipv4.ct_orig.src = orig->src.u3.ip;
key->ipv4.ct_orig.dst = orig->dst.u3.ip;
__ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
return;
} else if (key->eth.type == htons(ETH_P_IPV6) &&
!sw_flow_key_is_nd(key) &&
nf_ct_l3num(ct) == NFPROTO_IPV6) {
key->ipv6.ct_orig.src = orig->src.u3.in6;
key->ipv6.ct_orig.dst = orig->dst.u3.in6;
__ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
return;
}
}
/* Clear 'ct_orig_proto' to mark the non-existence of conntrack
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
* original direction key fields.
*/
key->ct_orig_proto = 0;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
* previously sent the packet to conntrack via the ct action. If
* 'keep_nat_flags' is true, the existing NAT flags retained, else they are
* initialized from the connection status.
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
*/
static void ovs_ct_update_key(const struct sk_buff *skb,
const struct ovs_conntrack_info *info,
struct sw_flow_key *key, bool post_ct,
bool keep_nat_flags)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
u8 state = 0;
ct = nf_ct_get(skb, &ctinfo);
if (ct) {
state = ovs_ct_get_state(ctinfo);
/* All unconfirmed entries are NEW connections. */
if (!nf_ct_is_confirmed(ct))
state |= OVS_CS_F_NEW;
/* OVS persists the related flag for the duration of the
* connection.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (ct->master)
state |= OVS_CS_F_RELATED;
if (keep_nat_flags) {
state |= key->ct_state & OVS_CS_F_NAT_MASK;
} else {
if (ct->status & IPS_SRC_NAT)
state |= OVS_CS_F_SRC_NAT;
if (ct->status & IPS_DST_NAT)
state |= OVS_CS_F_DST_NAT;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
zone = nf_ct_zone(ct);
} else if (post_ct) {
state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
if (info)
zone = &info->zone;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
__ovs_ct_update_key(key, state, zone, ct);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
/* This is called to initialize CT key fields possibly coming in from the local
* stack.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
{
ovs_ct_update_key(skb, NULL, key, false, false);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
#define IN6_ADDR_INITIALIZER(ADDR) \
{ (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
(ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
int ovs_ct_put_key(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, struct sk_buff *skb)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
&output->ct.labels))
return -EMSGSIZE;
if (swkey->ct_orig_proto) {
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ct_tuple_ipv4 orig = {
output->ipv4.ct_orig.src,
output->ipv4.ct_orig.dst,
output->ct.orig_tp.src,
output->ct.orig_tp.dst,
output->ct_orig_proto,
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
};
if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
sizeof(orig), &orig))
return -EMSGSIZE;
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
struct ovs_key_ct_tuple_ipv6 orig = {
IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
output->ct.orig_tp.src,
output->ct.orig_tp.dst,
output->ct_orig_proto,
openvswitch: Add original direction conntrack tuple to sw_flow_key. Add the fields of the conntrack original direction 5-tuple to struct sw_flow_key. The new fields are initially marked as non-existent, and are populated whenever a conntrack action is executed and either finds or generates a conntrack entry. This means that these fields exist for all packets that were not rejected by conntrack as untrackable. The original tuple fields in the sw_flow_key are filled from the original direction tuple of the conntrack entry relating to the current packet, or from the original direction tuple of the master conntrack entry, if the current conntrack entry has a master. Generally, expected connections of connections having an assigned helper (e.g., FTP), have a master conntrack entry. The main purpose of the new conntrack original tuple fields is to allow matching on them for policy decision purposes, with the premise that the admissibility of tracked connections reply packets (as well as original direction packets), and both direction packets of any related connections may be based on ACL rules applying to the master connection's original direction 5-tuple. This also makes it easier to make policy decisions when the actual packet headers might have been transformed by NAT, as the original direction 5-tuple represents the packet headers before any such transformation. When using the original direction 5-tuple the admissibility of return and/or related packets need not be based on the mere existence of a conntrack entry, allowing separation of admission policy from the established conntrack state. While existence of a conntrack entry is required for admission of the return or related packets, policy changes can render connections that were initially admitted to be rejected or dropped afterwards. If the admission of the return and related packets was based on mere conntrack state (e.g., connection being in an established state), a policy change that would make the connection rejected or dropped would need to find and delete all conntrack entries affected by such a change. When using the original direction 5-tuple matching the affected conntrack entries can be allowed to time out instead, as the established state of the connection would not need to be the basis for packet admission any more. It should be noted that the directionality of related connections may be the same or different than that of the master connection, and neither the original direction 5-tuple nor the conntrack state bits carry this information. If needed, the directionality of the master connection can be stored in master's conntrack mark or labels, which are automatically inherited by the expected related connections. The fact that neither ARP nor ND packets are trackable by conntrack allows mutual exclusion between ARP/ND and the new conntrack original tuple fields. Hence, the IP addresses are overlaid in union with ARP and ND fields. This allows the sw_flow_key to not grow much due to this patch, but it also means that we must be careful to never use the new key fields with ARP or ND packets. ARP is easy to distinguish and keep mutually exclusive based on the ethernet type, but ND being an ICMPv6 protocol requires a bit more attention. Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-09 11:21:59 -08:00
};
if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
sizeof(orig), &orig))
return -EMSGSIZE;
}
}
return 0;
}
static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
u32 ct_mark, u32 mask)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
u32 new_mark;
new_mark = ct_mark | (ct->mark & ~(mask));
if (ct->mark != new_mark) {
ct->mark = new_mark;
if (nf_ct_is_confirmed(ct))
nf_conntrack_event_cache(IPCT_MARK, ct);
key->ct.mark = new_mark;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return 0;
#else
return -ENOTSUPP;
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
{
struct nf_conn_labels *cl;
cl = nf_ct_labels_find(ct);
if (!cl) {
nf_ct_labels_ext_add(ct);
cl = nf_ct_labels_find(ct);
}
return cl;
}
/* Initialize labels for a new, yet to be committed conntrack entry. Note that
* since the new connection is not yet confirmed, and thus no-one else has
* access to it's labels, we simply write them over.
*/
static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
const struct ovs_key_ct_labels *labels,
const struct ovs_key_ct_labels *mask)
{
struct nf_conn_labels *cl, *master_cl;
bool have_mask = labels_nonzero(mask);
/* Inherit master's labels to the related connection? */
master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
if (!master_cl && !have_mask)
return 0; /* Nothing to do. */
cl = ovs_ct_get_conn_labels(ct);
if (!cl)
return -ENOSPC;
/* Inherit the master's labels, if any. */
if (master_cl)
*cl = *master_cl;
if (have_mask) {
u32 *dst = (u32 *)cl->bits;
int i;
for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
(labels->ct_labels_32[i]
& mask->ct_labels_32[i]);
}
/* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
* IPCT_LABEL bit is set in the event cache.
*/
nf_conntrack_event_cache(IPCT_LABEL, ct);
memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
return 0;
}
static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
const struct ovs_key_ct_labels *labels,
const struct ovs_key_ct_labels *mask)
{
struct nf_conn_labels *cl;
int err;
cl = ovs_ct_get_conn_labels(ct);
if (!cl)
return -ENOSPC;
err = nf_connlabels_replace(ct, labels->ct_labels_32,
mask->ct_labels_32,
OVS_CT_LABELS_LEN_32);
if (err)
return err;
memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
return 0;
}
/* 'skb' should already be pulled to nh_ofs. */
static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
{
const struct nf_conntrack_helper *helper;
const struct nf_conn_help *help;
enum ip_conntrack_info ctinfo;
unsigned int protoff;
struct nf_conn *ct;
int err;
ct = nf_ct_get(skb, &ctinfo);
if (!ct || ctinfo == IP_CT_RELATED_REPLY)
return NF_ACCEPT;
help = nfct_help(ct);
if (!help)
return NF_ACCEPT;
helper = rcu_dereference(help->helper);
if (!helper)
return NF_ACCEPT;
switch (proto) {
case NFPROTO_IPV4:
protoff = ip_hdrlen(skb);
break;
case NFPROTO_IPV6: {
u8 nexthdr = ipv6_hdr(skb)->nexthdr;
__be16 frag_off;
int ofs;
ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
&frag_off);
if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
pr_debug("proto header not found\n");
return NF_ACCEPT;
}
protoff = ofs;
break;
}
default:
WARN_ONCE(1, "helper invoked on non-IP family!");
return NF_DROP;
}
err = helper->help(skb, protoff, ct, ctinfo);
if (err != NF_ACCEPT)
return err;
/* Adjust seqs after helper. This is needed due to some helpers (e.g.,
* FTP with NAT) adusting the TCP payload size when mangling IP
* addresses and/or port numbers in the text-based control connection.
*/
if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
!nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
return NF_DROP;
return NF_ACCEPT;
}
/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
* value if 'skb' is freed.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
static int handle_fragments(struct net *net, struct sw_flow_key *key,
u16 zone, struct sk_buff *skb)
{
struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
int err;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (key->eth.type == htons(ETH_P_IP)) {
enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
err = ip_defrag(net, skb, user);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (err)
return err;
ovs_cb.mru = IPCB(skb)->frag_max_size;
#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
} else if (key->eth.type == htons(ETH_P_IPV6)) {
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
err = nf_ct_frag6_gather(net, skb, user);
if (err) {
if (err != -EINPROGRESS)
kfree_skb(skb);
return err;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
key->ip.proto = ipv6_hdr(skb)->nexthdr;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
ovs_cb.mru = IP6CB(skb)->frag_max_size;
#endif
} else {
kfree_skb(skb);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return -EPFNOSUPPORT;
}
/* The key extracted from the fragment that completed this datagram
* likely didn't have an L4 header, so regenerate it.
*/
ovs_flow_key_update_l3l4(skb, key);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
key->ip.frag = OVS_FRAG_TYPE_NONE;
skb_clear_hash(skb);
skb->ignore_df = 1;
*OVS_CB(skb) = ovs_cb;
return 0;
}
static struct nf_conntrack_expect *
ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
u16 proto, const struct sk_buff *skb)
{
struct nf_conntrack_tuple tuple;
openvswitch: Delete conntrack entry clashing with an expectation. Conntrack helpers do not check for a potentially clashing conntrack entry when creating a new expectation. Also, nf_conntrack_in() will check expectations (via init_conntrack()) only if a conntrack entry can not be found. The expectation for a packet which also matches an existing conntrack entry will not be removed by conntrack, and is currently handled inconsistently by OVS, as OVS expects the expectation to be removed when the connection tracking entry matching that expectation is confirmed. It should be noted that normally an IP stack would not allow reuse of a 5-tuple of an old (possibly lingering) connection for a new data connection, so this is somewhat unlikely corner case. However, it is possible that a misbehaving source could cause conntrack entries be created that could then interfere with new related connections. Fix this in the OVS module by deleting the clashing conntrack entry after an expectation has been matched. This causes the following nf_conntrack_in() call also find the expectation and remove it when creating the new conntrack entry, as well as the forthcoming reply direction packets to match the new related connection instead of the old clashing conntrack entry. Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Reported-by: Yang Song <yangsong@vmware.com> Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2017-04-14 14:26:38 -07:00
struct nf_conntrack_expect *exp;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return NULL;
openvswitch: Delete conntrack entry clashing with an expectation. Conntrack helpers do not check for a potentially clashing conntrack entry when creating a new expectation. Also, nf_conntrack_in() will check expectations (via init_conntrack()) only if a conntrack entry can not be found. The expectation for a packet which also matches an existing conntrack entry will not be removed by conntrack, and is currently handled inconsistently by OVS, as OVS expects the expectation to be removed when the connection tracking entry matching that expectation is confirmed. It should be noted that normally an IP stack would not allow reuse of a 5-tuple of an old (possibly lingering) connection for a new data connection, so this is somewhat unlikely corner case. However, it is possible that a misbehaving source could cause conntrack entries be created that could then interfere with new related connections. Fix this in the OVS module by deleting the clashing conntrack entry after an expectation has been matched. This causes the following nf_conntrack_in() call also find the expectation and remove it when creating the new conntrack entry, as well as the forthcoming reply direction packets to match the new related connection instead of the old clashing conntrack entry. Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Reported-by: Yang Song <yangsong@vmware.com> Signed-off-by: Jarno Rajahalme <jarno@ovn.org> Acked-by: Joe Stringer <joe@ovn.org> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2017-04-14 14:26:38 -07:00
exp = __nf_ct_expect_find(net, zone, &tuple);
if (exp) {
struct nf_conntrack_tuple_hash *h;
/* Delete existing conntrack entry, if it clashes with the
* expectation. This can happen since conntrack ALGs do not
* check for clashes between (new) expectations and existing
* conntrack entries. nf_conntrack_in() will check the
* expectations only if a conntrack entry can not be found,
* which can lead to OVS finding the expectation (here) in the
* init direction, but which will not be removed by the
* nf_conntrack_in() call, if a matching conntrack entry is
* found instead. In this case all init direction packets
* would be reported as new related packets, while reply
* direction packets would be reported as un-related
* established packets.
*/
h = nf_conntrack_find_get(net, zone, &tuple);
if (h) {
struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
nf_ct_delete(ct, 0, 0);
nf_conntrack_put(&ct->ct_general);
}
}
return exp;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
/* This replicates logic from nf_conntrack_core.c that is not exported. */
static enum ip_conntrack_info
ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
{
const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
return IP_CT_ESTABLISHED_REPLY;
/* Once we've had two way comms, always ESTABLISHED. */
if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
return IP_CT_ESTABLISHED;
if (test_bit(IPS_EXPECTED_BIT, &ct->status))
return IP_CT_RELATED;
return IP_CT_NEW;
}
/* Find an existing connection which this packet belongs to without
* re-attributing statistics or modifying the connection state. This allows an
* skb->_nfct lost due to an upcall to be recovered during actions execution.
*
* Must be called with rcu_read_lock.
*
* On success, populates skb->_nfct and returns the connection. Returns NULL
* if there is no existing entry.
*/
static struct nf_conn *
ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
u8 l3num, struct sk_buff *skb, bool natted)
{
struct nf_conntrack_tuple tuple;
struct nf_conntrack_tuple_hash *h;
struct nf_conn *ct;
if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
net, &tuple)) {
pr_debug("ovs_ct_find_existing: Can't get tuple\n");
return NULL;
}
/* Must invert the tuple if skb has been transformed by NAT. */
if (natted) {
struct nf_conntrack_tuple inverse;
if (!nf_ct_invert_tuple(&inverse, &tuple)) {
pr_debug("ovs_ct_find_existing: Inversion failed!\n");
return NULL;
}
tuple = inverse;
}
/* look for tuple match */
h = nf_conntrack_find_get(net, zone, &tuple);
if (!h)
return NULL; /* Not found. */
ct = nf_ct_tuplehash_to_ctrack(h);
/* Inverted packet tuple matches the reverse direction conntrack tuple,
* select the other tuplehash to get the right 'ctinfo' bits for this
* packet.
*/
if (natted)
h = &ct->tuplehash[!h->tuple.dst.dir];
nf_ct_set(skb, ct, ovs_ct_get_info(h));
return ct;
}
static
struct nf_conn *ovs_ct_executed(struct net *net,
const struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb,
bool *ct_executed)
{
struct nf_conn *ct = NULL;
/* If no ct, check if we have evidence that an existing conntrack entry
* might be found for this skb. This happens when we lose a skb->_nfct
* due to an upcall, or if the direction is being forced. If the
* connection was not confirmed, it is not cached and needs to be run
* through conntrack again.
*/
*ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
!(key->ct_state & OVS_CS_F_INVALID) &&
(key->ct_zone == info->zone.id);
if (*ct_executed || (!key->ct_state && info->force)) {
ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
!!(key->ct_state &
OVS_CS_F_NAT_MASK));
}
return ct;
}
/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
static bool skb_nfct_cached(struct net *net,
const struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
bool ct_executed = true;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
ct = nf_ct_get(skb, &ctinfo);
if (!ct)
ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
if (ct)
nf_ct_get(skb, &ctinfo);
else
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return false;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (!net_eq(net, read_pnet(&ct->ct_net)))
return false;
if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
return false;
if (info->helper) {
struct nf_conn_help *help;
help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
if (help && rcu_access_pointer(help->helper) != info->helper)
return false;
}
if (info->nf_ct_timeout) {
struct nf_conn_timeout *timeout_ext;
timeout_ext = nf_ct_timeout_find(ct);
if (!timeout_ext || info->nf_ct_timeout !=
rcu_dereference(timeout_ext->timeout))
return false;
}
/* Force conntrack entry direction to the current packet? */
if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
/* Delete the conntrack entry if confirmed, else just release
* the reference.
*/
if (nf_ct_is_confirmed(ct))
nf_ct_delete(ct, 0, 0);
nf_conntrack_put(&ct->ct_general);
nf_ct_set(skb, NULL, 0);
return false;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return ct_executed;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
#if IS_ENABLED(CONFIG_NF_NAT)
/* Modelled after nf_nat_ipv[46]_fn().
* range is only used for new, uninitialized NAT state.
* Returns either NF_ACCEPT or NF_DROP.
*/
static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
netfilter: add NAT support for shifted portmap ranges This is a patch proposal to support shifted ranges in portmaps. (i.e. tcp/udp incoming port 5000-5100 on WAN redirected to LAN 192.168.1.5:2000-2100) Currently DNAT only works for single port or identical port ranges. (i.e. ports 5000-5100 on WAN interface redirected to a LAN host while original destination port is not altered) When different port ranges are configured, either 'random' mode should be used, or else all incoming connections are mapped onto the first port in the redirect range. (in described example WAN:5000-5100 will all be mapped to 192.168.1.5:2000) This patch introduces a new mode indicated by flag NF_NAT_RANGE_PROTO_OFFSET which uses a base port value to calculate an offset with the destination port present in the incoming stream. That offset is then applied as index within the redirect port range (index modulo rangewidth to handle range overflow). In described example the base port would be 5000. An incoming stream with destination port 5004 would result in an offset value 4 which means that the NAT'ed stream will be using destination port 2004. Other possibilities include deterministic mapping of larger or multiple ranges to a smaller range : WAN:5000-5999 -> LAN:5000-5099 (maps WAN port 5*xx to port 51xx) This patch does not change any current behavior. It just adds new NAT proto range functionality which must be selected via the specific flag when intended to use. A patch for iptables (libipt_DNAT.c + libip6t_DNAT.c) will also be proposed which makes this functionality immediately available. Signed-off-by: Thierry Du Tre <thierry@dtsystems.be> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-04-04 15:38:22 +02:00
const struct nf_nat_range2 *range,
enum nf_nat_manip_type maniptype)
{
int hooknum, nh_off, err = NF_ACCEPT;
nh_off = skb_network_offset(skb);
openvswitch: maintain correct checksum state in conntrack actions When executing conntrack actions on skbuffs with checksum mode CHECKSUM_COMPLETE, the checksum must be updated to account for header pushes and pulls. Otherwise we get "hw csum failure" logs similar to this (ICMP packet received on geneve tunnel via ixgbe NIC): [ 405.740065] genev_sys_6081: hw csum failure [ 405.740106] CPU: 3 PID: 0 Comm: swapper/3 Tainted: G I 4.10.0-rc3+ #1 [ 405.740108] Call Trace: [ 405.740110] <IRQ> [ 405.740113] dump_stack+0x63/0x87 [ 405.740116] netdev_rx_csum_fault+0x3a/0x40 [ 405.740118] __skb_checksum_complete+0xcf/0xe0 [ 405.740120] nf_ip_checksum+0xc8/0xf0 [ 405.740124] icmp_error+0x1de/0x351 [nf_conntrack_ipv4] [ 405.740132] nf_conntrack_in+0xe1/0x550 [nf_conntrack] [ 405.740137] ? find_bucket.isra.2+0x62/0x70 [openvswitch] [ 405.740143] __ovs_ct_lookup+0x95/0x980 [openvswitch] [ 405.740145] ? netif_rx_internal+0x44/0x110 [ 405.740149] ovs_ct_execute+0x147/0x4b0 [openvswitch] [ 405.740153] do_execute_actions+0x22e/0xa70 [openvswitch] [ 405.740157] ovs_execute_actions+0x40/0x120 [openvswitch] [ 405.740161] ovs_dp_process_packet+0x84/0x120 [openvswitch] [ 405.740166] ovs_vport_receive+0x73/0xd0 [openvswitch] [ 405.740168] ? udp_rcv+0x1a/0x20 [ 405.740170] ? ip_local_deliver_finish+0x93/0x1e0 [ 405.740172] ? ip_local_deliver+0x6f/0xe0 [ 405.740174] ? ip_rcv_finish+0x3a0/0x3a0 [ 405.740176] ? ip_rcv_finish+0xdb/0x3a0 [ 405.740177] ? ip_rcv+0x2a7/0x400 [ 405.740180] ? __netif_receive_skb_core+0x970/0xa00 [ 405.740185] netdev_frame_hook+0xd3/0x160 [openvswitch] [ 405.740187] __netif_receive_skb_core+0x1dc/0xa00 [ 405.740194] ? ixgbe_clean_rx_irq+0x46d/0xa20 [ixgbe] [ 405.740197] __netif_receive_skb+0x18/0x60 [ 405.740199] netif_receive_skb_internal+0x40/0xb0 [ 405.740201] napi_gro_receive+0xcd/0x120 [ 405.740204] gro_cell_poll+0x57/0x80 [geneve] [ 405.740206] net_rx_action+0x260/0x3c0 [ 405.740209] __do_softirq+0xc9/0x28c [ 405.740211] irq_exit+0xd9/0xf0 [ 405.740213] do_IRQ+0x51/0xd0 [ 405.740215] common_interrupt+0x93/0x93 Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Signed-off-by: Lance Richardson <lrichard@redhat.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12 19:33:18 -05:00
skb_pull_rcsum(skb, nh_off);
/* See HOOK2MANIP(). */
if (maniptype == NF_NAT_MANIP_SRC)
hooknum = NF_INET_LOCAL_IN; /* Source NAT */
else
hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
switch (ctinfo) {
case IP_CT_RELATED:
case IP_CT_RELATED_REPLY:
netfilter: nat: merge nf_nat_ipv4,6 into nat core before: text data bss dec hex filename 16566 1576 4136 22278 5706 nf_nat.ko 3598 844 0 4442 115a nf_nat_ipv6.ko 3187 844 0 4031 fbf nf_nat_ipv4.ko after: text data bss dec hex filename 22948 1612 4136 28696 7018 nf_nat.ko ... with ipv4/v6 nat now provided directly via nf_nat.ko. Also changes: ret = nf_nat_ipv4_fn(priv, skb, state); if (ret != NF_DROP && ret != NF_STOLEN && into if (ret != NF_ACCEPT) return ret; everywhere. The nat hooks never should return anything other than ACCEPT or DROP (and the latter only in rare error cases). The original code uses multi-line ANDing including assignment-in-if: if (ret != NF_DROP && ret != NF_STOLEN && !(IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) && (ct = nf_ct_get(skb, &ctinfo)) != NULL) { I removed this while moving, breaking those in separate conditionals and moving the assignments into extra lines. checkpatch still generates some warnings: 1. Overly long lines (of moved code). Breaking them is even more ugly. so I kept this as-is. 2. use of extern function declarations in a .c file. This is necessary evil, we must call nf_nat_l3proto_register() from the nat core now. All l3proto related functions are removed later in this series, those prototypes are then removed as well. v2: keep empty nf_nat_ipv6_csum_update stub for CONFIG_IPV6=n case. v3: remove IS_ENABLED(NF_NAT_IPV4/6) tests, NF_NAT_IPVx toggles are removed here. v4: also get rid of the assignments in conditionals. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-02-19 17:38:21 +01:00
if (IS_ENABLED(CONFIG_NF_NAT) &&
2016-03-18 14:33:45 +01:00
skb->protocol == htons(ETH_P_IP) &&
ip_hdr(skb)->protocol == IPPROTO_ICMP) {
if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
hooknum))
err = NF_DROP;
goto push;
netfilter: nat: merge nf_nat_ipv4,6 into nat core before: text data bss dec hex filename 16566 1576 4136 22278 5706 nf_nat.ko 3598 844 0 4442 115a nf_nat_ipv6.ko 3187 844 0 4031 fbf nf_nat_ipv4.ko after: text data bss dec hex filename 22948 1612 4136 28696 7018 nf_nat.ko ... with ipv4/v6 nat now provided directly via nf_nat.ko. Also changes: ret = nf_nat_ipv4_fn(priv, skb, state); if (ret != NF_DROP && ret != NF_STOLEN && into if (ret != NF_ACCEPT) return ret; everywhere. The nat hooks never should return anything other than ACCEPT or DROP (and the latter only in rare error cases). The original code uses multi-line ANDing including assignment-in-if: if (ret != NF_DROP && ret != NF_STOLEN && !(IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) && (ct = nf_ct_get(skb, &ctinfo)) != NULL) { I removed this while moving, breaking those in separate conditionals and moving the assignments into extra lines. checkpatch still generates some warnings: 1. Overly long lines (of moved code). Breaking them is even more ugly. so I kept this as-is. 2. use of extern function declarations in a .c file. This is necessary evil, we must call nf_nat_l3proto_register() from the nat core now. All l3proto related functions are removed later in this series, those prototypes are then removed as well. v2: keep empty nf_nat_ipv6_csum_update stub for CONFIG_IPV6=n case. v3: remove IS_ENABLED(NF_NAT_IPV4/6) tests, NF_NAT_IPVx toggles are removed here. v4: also get rid of the assignments in conditionals. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-02-19 17:38:21 +01:00
} else if (IS_ENABLED(CONFIG_IPV6) &&
2016-03-18 14:33:45 +01:00
skb->protocol == htons(ETH_P_IPV6)) {
__be16 frag_off;
u8 nexthdr = ipv6_hdr(skb)->nexthdr;
int hdrlen = ipv6_skip_exthdr(skb,
sizeof(struct ipv6hdr),
&nexthdr, &frag_off);
if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
if (!nf_nat_icmpv6_reply_translation(skb, ct,
ctinfo,
hooknum,
hdrlen))
err = NF_DROP;
goto push;
}
}
/* Non-ICMP, fall thru to initialize if needed. */
/* fall through */
case IP_CT_NEW:
/* Seen it before? This can happen for loopback, retrans,
* or local packets.
*/
if (!nf_nat_initialized(ct, maniptype)) {
/* Initialize according to the NAT action. */
err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
/* Action is set up to establish a new
* mapping.
*/
? nf_nat_setup_info(ct, range, maniptype)
: nf_nat_alloc_null_binding(ct, hooknum);
if (err != NF_ACCEPT)
goto push;
}
break;
case IP_CT_ESTABLISHED:
case IP_CT_ESTABLISHED_REPLY:
break;
default:
err = NF_DROP;
goto push;
}
err = nf_nat_packet(ct, ctinfo, hooknum, skb);
push:
skb_push(skb, nh_off);
openvswitch: maintain correct checksum state in conntrack actions When executing conntrack actions on skbuffs with checksum mode CHECKSUM_COMPLETE, the checksum must be updated to account for header pushes and pulls. Otherwise we get "hw csum failure" logs similar to this (ICMP packet received on geneve tunnel via ixgbe NIC): [ 405.740065] genev_sys_6081: hw csum failure [ 405.740106] CPU: 3 PID: 0 Comm: swapper/3 Tainted: G I 4.10.0-rc3+ #1 [ 405.740108] Call Trace: [ 405.740110] <IRQ> [ 405.740113] dump_stack+0x63/0x87 [ 405.740116] netdev_rx_csum_fault+0x3a/0x40 [ 405.740118] __skb_checksum_complete+0xcf/0xe0 [ 405.740120] nf_ip_checksum+0xc8/0xf0 [ 405.740124] icmp_error+0x1de/0x351 [nf_conntrack_ipv4] [ 405.740132] nf_conntrack_in+0xe1/0x550 [nf_conntrack] [ 405.740137] ? find_bucket.isra.2+0x62/0x70 [openvswitch] [ 405.740143] __ovs_ct_lookup+0x95/0x980 [openvswitch] [ 405.740145] ? netif_rx_internal+0x44/0x110 [ 405.740149] ovs_ct_execute+0x147/0x4b0 [openvswitch] [ 405.740153] do_execute_actions+0x22e/0xa70 [openvswitch] [ 405.740157] ovs_execute_actions+0x40/0x120 [openvswitch] [ 405.740161] ovs_dp_process_packet+0x84/0x120 [openvswitch] [ 405.740166] ovs_vport_receive+0x73/0xd0 [openvswitch] [ 405.740168] ? udp_rcv+0x1a/0x20 [ 405.740170] ? ip_local_deliver_finish+0x93/0x1e0 [ 405.740172] ? ip_local_deliver+0x6f/0xe0 [ 405.740174] ? ip_rcv_finish+0x3a0/0x3a0 [ 405.740176] ? ip_rcv_finish+0xdb/0x3a0 [ 405.740177] ? ip_rcv+0x2a7/0x400 [ 405.740180] ? __netif_receive_skb_core+0x970/0xa00 [ 405.740185] netdev_frame_hook+0xd3/0x160 [openvswitch] [ 405.740187] __netif_receive_skb_core+0x1dc/0xa00 [ 405.740194] ? ixgbe_clean_rx_irq+0x46d/0xa20 [ixgbe] [ 405.740197] __netif_receive_skb+0x18/0x60 [ 405.740199] netif_receive_skb_internal+0x40/0xb0 [ 405.740201] napi_gro_receive+0xcd/0x120 [ 405.740204] gro_cell_poll+0x57/0x80 [geneve] [ 405.740206] net_rx_action+0x260/0x3c0 [ 405.740209] __do_softirq+0xc9/0x28c [ 405.740211] irq_exit+0xd9/0xf0 [ 405.740213] do_IRQ+0x51/0xd0 [ 405.740215] common_interrupt+0x93/0x93 Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Signed-off-by: Lance Richardson <lrichard@redhat.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12 19:33:18 -05:00
skb_postpush_rcsum(skb, skb->data, nh_off);
return err;
}
static void ovs_nat_update_key(struct sw_flow_key *key,
const struct sk_buff *skb,
enum nf_nat_manip_type maniptype)
{
if (maniptype == NF_NAT_MANIP_SRC) {
__be16 src;
key->ct_state |= OVS_CS_F_SRC_NAT;
if (key->eth.type == htons(ETH_P_IP))
key->ipv4.addr.src = ip_hdr(skb)->saddr;
else if (key->eth.type == htons(ETH_P_IPV6))
memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
sizeof(key->ipv6.addr.src));
else
return;
if (key->ip.proto == IPPROTO_UDP)
src = udp_hdr(skb)->source;
else if (key->ip.proto == IPPROTO_TCP)
src = tcp_hdr(skb)->source;
else if (key->ip.proto == IPPROTO_SCTP)
src = sctp_hdr(skb)->source;
else
return;
key->tp.src = src;
} else {
__be16 dst;
key->ct_state |= OVS_CS_F_DST_NAT;
if (key->eth.type == htons(ETH_P_IP))
key->ipv4.addr.dst = ip_hdr(skb)->daddr;
else if (key->eth.type == htons(ETH_P_IPV6))
memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
sizeof(key->ipv6.addr.dst));
else
return;
if (key->ip.proto == IPPROTO_UDP)
dst = udp_hdr(skb)->dest;
else if (key->ip.proto == IPPROTO_TCP)
dst = tcp_hdr(skb)->dest;
else if (key->ip.proto == IPPROTO_SCTP)
dst = sctp_hdr(skb)->dest;
else
return;
key->tp.dst = dst;
}
}
/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb, struct nf_conn *ct,
enum ip_conntrack_info ctinfo)
{
enum nf_nat_manip_type maniptype;
int err;
/* Add NAT extension if not confirmed yet. */
if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
return NF_ACCEPT; /* Can't NAT. */
/* Determine NAT type.
* Check if the NAT type can be deduced from the tracked connection.
* Make sure new expected connections (IP_CT_RELATED) are NATted only
* when committing.
*/
if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
ct->status & IPS_NAT_MASK &&
(ctinfo != IP_CT_RELATED || info->commit)) {
/* NAT an established or related connection like before. */
if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
/* This is the REPLY direction for a connection
* for which NAT was applied in the forward
* direction. Do the reverse NAT.
*/
maniptype = ct->status & IPS_SRC_NAT
? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
else
maniptype = ct->status & IPS_SRC_NAT
? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
} else if (info->nat & OVS_CT_SRC_NAT) {
maniptype = NF_NAT_MANIP_SRC;
} else if (info->nat & OVS_CT_DST_NAT) {
maniptype = NF_NAT_MANIP_DST;
} else {
return NF_ACCEPT; /* Connection is not NATed. */
}
err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
if (err == NF_ACCEPT &&
ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
if (maniptype == NF_NAT_MANIP_SRC)
maniptype = NF_NAT_MANIP_DST;
else
maniptype = NF_NAT_MANIP_SRC;
err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
maniptype);
}
/* Mark NAT done if successful and update the flow key. */
if (err == NF_ACCEPT)
ovs_nat_update_key(key, skb, maniptype);
return err;
}
#else /* !CONFIG_NF_NAT */
static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb, struct nf_conn *ct,
enum ip_conntrack_info ctinfo)
{
return NF_ACCEPT;
}
#endif
/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
* not done already. Update key with new CT state after passing the packet
* through conntrack.
* Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
* set to NULL and 0 will be returned.
*/
static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
const struct ovs_conntrack_info *info,
struct sk_buff *skb)
{
/* If we are recirculating packets to match on conntrack fields and
* committing with a separate conntrack action, then we don't need to
* actually run the packet through conntrack twice unless it's for a
* different zone.
*/
bool cached = skb_nfct_cached(net, key, info, skb);
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
if (!cached) {
struct nf_hook_state state = {
.hook = NF_INET_PRE_ROUTING,
.pf = info->family,
.net = net,
};
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
struct nf_conn *tmpl = info->ct;
int err;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
/* Associate skb with specified zone. */
if (tmpl) {
if (skb_nfct(skb))
nf_conntrack_put(skb_nfct(skb));
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
nf_conntrack_get(&tmpl->ct_general);
nf_ct_set(skb, tmpl, IP_CT_NEW);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
err = nf_conntrack_in(skb, &state);
if (err != NF_ACCEPT)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return -ENOENT;
/* Clear CT state NAT flags to mark that we have not yet done
* NAT after the nf_conntrack_in() call. We can actually clear
* the whole state, as it will be re-initialized below.
*/
key->ct_state = 0;
/* Update the key, but keep the NAT flags. */
ovs_ct_update_key(skb, info, key, true, true);
}
ct = nf_ct_get(skb, &ctinfo);
if (ct) {
bool add_helper = false;
/* Packets starting a new connection must be NATted before the
* helper, so that the helper knows about the NAT. We enforce
* this by delaying both NAT and helper calls for unconfirmed
* connections until the committing CT action. For later
* packets NAT and Helper may be called in either order.
*
* NAT will be done only if the CT action has NAT, and only
* once per packet (per zone), as guarded by the NAT bits in
* the key->ct_state.
*/
if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
(nf_ct_is_confirmed(ct) || info->commit) &&
ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
return -EINVAL;
}
/* Userspace may decide to perform a ct lookup without a helper
* specified followed by a (recirculate and) commit with one,
* or attach a helper in a later commit. Therefore, for
* connections which we will commit, we may need to attach
* the helper here.
*/
if (info->commit && info->helper && !nfct_help(ct)) {
int err = __nf_ct_try_assign_helper(ct, info->ct,
GFP_ATOMIC);
if (err)
return err;
add_helper = true;
/* helper installed, add seqadj if NAT is required */
if (info->nat && !nfct_seqadj(ct)) {
if (!nfct_seqadj_ext_add(ct))
return -EINVAL;
}
}
/* Call the helper only if:
* - nf_conntrack_in() was executed above ("!cached") or a
* helper was just attached ("add_helper") for a confirmed
* connection, or
* - When committing an unconfirmed connection.
*/
if ((nf_ct_is_confirmed(ct) ? !cached || add_helper :
info->commit) &&
ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
return -EINVAL;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
return 0;
}
/* Lookup connection and read fields into key. */
static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb)
{
struct nf_conntrack_expect *exp;
/* If we pass an expected packet through nf_conntrack_in() the
* expectation is typically removed, but the packet could still be
* lost in upcall processing. To prevent this from happening we
* perform an explicit expectation lookup. Expected connections are
* always new, and will be passed through conntrack only when they are
* committed, as it is OK to remove the expectation at that time.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
if (exp) {
u8 state;
/* NOTE: New connections are NATted and Helped only when
* committed, so we are not calling into NAT here.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
__ovs_ct_update_key(key, state, &info->zone, exp->master);
} else {
struct nf_conn *ct;
int err;
err = __ovs_ct_lookup(net, key, info, skb);
if (err)
return err;
ct = (struct nf_conn *)skb_nfct(skb);
if (ct)
nf_ct_deliver_cached_events(ct);
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return 0;
}
static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
{
size_t i;
for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
if (labels->ct_labels_32[i])
return true;
return false;
}
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
static struct hlist_head *ct_limit_hash_bucket(
const struct ovs_ct_limit_info *info, u16 zone)
{
return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
}
/* Call with ovs_mutex */
static void ct_limit_set(const struct ovs_ct_limit_info *info,
struct ovs_ct_limit *new_ct_limit)
{
struct ovs_ct_limit *ct_limit;
struct hlist_head *head;
head = ct_limit_hash_bucket(info, new_ct_limit->zone);
hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
if (ct_limit->zone == new_ct_limit->zone) {
hlist_replace_rcu(&ct_limit->hlist_node,
&new_ct_limit->hlist_node);
kfree_rcu(ct_limit, rcu);
return;
}
}
hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
}
/* Call with ovs_mutex */
static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
{
struct ovs_ct_limit *ct_limit;
struct hlist_head *head;
struct hlist_node *n;
head = ct_limit_hash_bucket(info, zone);
hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
if (ct_limit->zone == zone) {
hlist_del_rcu(&ct_limit->hlist_node);
kfree_rcu(ct_limit, rcu);
return;
}
}
}
/* Call with RCU read lock */
static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
{
struct ovs_ct_limit *ct_limit;
struct hlist_head *head;
head = ct_limit_hash_bucket(info, zone);
hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
if (ct_limit->zone == zone)
return ct_limit->limit;
}
return info->default_limit;
}
static int ovs_ct_check_limit(struct net *net,
const struct ovs_conntrack_info *info,
const struct nf_conntrack_tuple *tuple)
{
struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
u32 per_zone_limit, connections;
u32 conncount_key;
conncount_key = info->zone.id;
per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
return 0;
connections = nf_conncount_count(net, ct_limit_info->data,
&conncount_key, tuple, &info->zone);
if (connections > per_zone_limit)
return -ENOMEM;
return 0;
}
#endif
/* Lookup connection and confirm if unconfirmed. */
static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
const struct ovs_conntrack_info *info,
struct sk_buff *skb)
{
enum ip_conntrack_info ctinfo;
struct nf_conn *ct;
int err;
err = __ovs_ct_lookup(net, key, info, skb);
if (err)
return err;
/* The connection could be invalid, in which case this is a no-op.*/
ct = nf_ct_get(skb, &ctinfo);
if (!ct)
return 0;
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
if (!nf_ct_is_confirmed(ct)) {
err = ovs_ct_check_limit(net, info,
&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
if (err) {
net_warn_ratelimited("openvswitch: zone: %u "
"exceeds conntrack limit\n",
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
info->zone.id);
return err;
}
}
}
#endif
/* Set the conntrack event mask if given. NEW and DELETE events have
* their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
* typically would receive many kinds of updates. Setting the event
* mask allows those events to be filtered. The set event mask will
* remain in effect for the lifetime of the connection unless changed
* by a further CT action with both the commit flag and the eventmask
* option. */
if (info->have_eventmask) {
struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
if (cache)
cache->ctmask = info->eventmask;
}
/* Apply changes before confirming the connection so that the initial
* conntrack NEW netlink event carries the values given in the CT
* action.
*/
if (info->mark.mask) {
err = ovs_ct_set_mark(ct, key, info->mark.value,
info->mark.mask);
if (err)
return err;
}
if (!nf_ct_is_confirmed(ct)) {
err = ovs_ct_init_labels(ct, key, &info->labels.value,
&info->labels.mask);
if (err)
return err;
} else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
labels_nonzero(&info->labels.mask)) {
err = ovs_ct_set_labels(ct, key, &info->labels.value,
&info->labels.mask);
if (err)
return err;
}
/* This will take care of sending queued events even if the connection
* is already confirmed.
*/
if (nf_conntrack_confirm(skb) != NF_ACCEPT)
return -EINVAL;
return 0;
}
openvswitch: Remove padding from packet before L3+ conntrack processing IPv4 and IPv6 packets may arrive with lower-layer padding that is not included in the L3 length. For example, a short IPv4 packet may have up to 6 bytes of padding following the IP payload when received on an Ethernet device with a minimum packet length of 64 bytes. Higher-layer processing functions in netfilter (e.g. nf_ip_checksum(), and help() in nf_conntrack_ftp) assume skb->len reflects the length of the L3 header and payload, rather than referring back to ip_hdr->tot_len or ipv6_hdr->payload_len, and get confused by lower-layer padding. In the normal IPv4 receive path, ip_rcv() trims the packet to ip_hdr->tot_len before invoking netfilter hooks. In the IPv6 receive path, ip6_rcv() does the same using ipv6_hdr->payload_len. Similarly in the br_netfilter receive path, br_validate_ipv4() and br_validate_ipv6() trim the packet to the L3 length before invoking netfilter hooks. Currently in the OVS conntrack receive path, ovs_ct_execute() pulls the skb to the L3 header but does not trim it to the L3 length before calling nf_conntrack_in(NF_INET_PRE_ROUTING). When nf_conntrack_proto_tcp encounters a packet with lower-layer padding, nf_ip_checksum() fails causing a "nf_ct_tcp: bad TCP checksum" log message. While extra zero bytes don't affect the checksum, the length in the IP pseudoheader does. That length is based on skb->len, and without trimming, it doesn't match the length the sender used when computing the checksum. In ovs_ct_execute(), trim the skb to the L3 length before higher-layer processing. Signed-off-by: Ed Swierk <eswierk@skyportsystems.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-31 18:48:02 -08:00
/* Trim the skb to the length specified by the IP/IPv6 header,
* removing any trailing lower-layer padding. This prepares the skb
* for higher-layer processing that assumes skb->len excludes padding
* (such as nf_ip_checksum). The caller needs to pull the skb to the
* network header, and ensure ip_hdr/ipv6_hdr points to valid data.
*/
static int ovs_skb_network_trim(struct sk_buff *skb)
{
unsigned int len;
int err;
switch (skb->protocol) {
case htons(ETH_P_IP):
len = ntohs(ip_hdr(skb)->tot_len);
break;
case htons(ETH_P_IPV6):
len = sizeof(struct ipv6hdr)
+ ntohs(ipv6_hdr(skb)->payload_len);
break;
default:
len = skb->len;
}
err = pskb_trim_rcsum(skb, len);
if (err)
kfree_skb(skb);
return err;
}
/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
* value if 'skb' is freed.
*/
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
int ovs_ct_execute(struct net *net, struct sk_buff *skb,
struct sw_flow_key *key,
const struct ovs_conntrack_info *info)
{
int nh_ofs;
int err;
/* The conntrack module expects to be working at L3. */
nh_ofs = skb_network_offset(skb);
openvswitch: maintain correct checksum state in conntrack actions When executing conntrack actions on skbuffs with checksum mode CHECKSUM_COMPLETE, the checksum must be updated to account for header pushes and pulls. Otherwise we get "hw csum failure" logs similar to this (ICMP packet received on geneve tunnel via ixgbe NIC): [ 405.740065] genev_sys_6081: hw csum failure [ 405.740106] CPU: 3 PID: 0 Comm: swapper/3 Tainted: G I 4.10.0-rc3+ #1 [ 405.740108] Call Trace: [ 405.740110] <IRQ> [ 405.740113] dump_stack+0x63/0x87 [ 405.740116] netdev_rx_csum_fault+0x3a/0x40 [ 405.740118] __skb_checksum_complete+0xcf/0xe0 [ 405.740120] nf_ip_checksum+0xc8/0xf0 [ 405.740124] icmp_error+0x1de/0x351 [nf_conntrack_ipv4] [ 405.740132] nf_conntrack_in+0xe1/0x550 [nf_conntrack] [ 405.740137] ? find_bucket.isra.2+0x62/0x70 [openvswitch] [ 405.740143] __ovs_ct_lookup+0x95/0x980 [openvswitch] [ 405.740145] ? netif_rx_internal+0x44/0x110 [ 405.740149] ovs_ct_execute+0x147/0x4b0 [openvswitch] [ 405.740153] do_execute_actions+0x22e/0xa70 [openvswitch] [ 405.740157] ovs_execute_actions+0x40/0x120 [openvswitch] [ 405.740161] ovs_dp_process_packet+0x84/0x120 [openvswitch] [ 405.740166] ovs_vport_receive+0x73/0xd0 [openvswitch] [ 405.740168] ? udp_rcv+0x1a/0x20 [ 405.740170] ? ip_local_deliver_finish+0x93/0x1e0 [ 405.740172] ? ip_local_deliver+0x6f/0xe0 [ 405.740174] ? ip_rcv_finish+0x3a0/0x3a0 [ 405.740176] ? ip_rcv_finish+0xdb/0x3a0 [ 405.740177] ? ip_rcv+0x2a7/0x400 [ 405.740180] ? __netif_receive_skb_core+0x970/0xa00 [ 405.740185] netdev_frame_hook+0xd3/0x160 [openvswitch] [ 405.740187] __netif_receive_skb_core+0x1dc/0xa00 [ 405.740194] ? ixgbe_clean_rx_irq+0x46d/0xa20 [ixgbe] [ 405.740197] __netif_receive_skb+0x18/0x60 [ 405.740199] netif_receive_skb_internal+0x40/0xb0 [ 405.740201] napi_gro_receive+0xcd/0x120 [ 405.740204] gro_cell_poll+0x57/0x80 [geneve] [ 405.740206] net_rx_action+0x260/0x3c0 [ 405.740209] __do_softirq+0xc9/0x28c [ 405.740211] irq_exit+0xd9/0xf0 [ 405.740213] do_IRQ+0x51/0xd0 [ 405.740215] common_interrupt+0x93/0x93 Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Signed-off-by: Lance Richardson <lrichard@redhat.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12 19:33:18 -05:00
skb_pull_rcsum(skb, nh_ofs);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
openvswitch: Remove padding from packet before L3+ conntrack processing IPv4 and IPv6 packets may arrive with lower-layer padding that is not included in the L3 length. For example, a short IPv4 packet may have up to 6 bytes of padding following the IP payload when received on an Ethernet device with a minimum packet length of 64 bytes. Higher-layer processing functions in netfilter (e.g. nf_ip_checksum(), and help() in nf_conntrack_ftp) assume skb->len reflects the length of the L3 header and payload, rather than referring back to ip_hdr->tot_len or ipv6_hdr->payload_len, and get confused by lower-layer padding. In the normal IPv4 receive path, ip_rcv() trims the packet to ip_hdr->tot_len before invoking netfilter hooks. In the IPv6 receive path, ip6_rcv() does the same using ipv6_hdr->payload_len. Similarly in the br_netfilter receive path, br_validate_ipv4() and br_validate_ipv6() trim the packet to the L3 length before invoking netfilter hooks. Currently in the OVS conntrack receive path, ovs_ct_execute() pulls the skb to the L3 header but does not trim it to the L3 length before calling nf_conntrack_in(NF_INET_PRE_ROUTING). When nf_conntrack_proto_tcp encounters a packet with lower-layer padding, nf_ip_checksum() fails causing a "nf_ct_tcp: bad TCP checksum" log message. While extra zero bytes don't affect the checksum, the length in the IP pseudoheader does. That length is based on skb->len, and without trimming, it doesn't match the length the sender used when computing the checksum. In ovs_ct_execute(), trim the skb to the L3 length before higher-layer processing. Signed-off-by: Ed Swierk <eswierk@skyportsystems.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-31 18:48:02 -08:00
err = ovs_skb_network_trim(skb);
if (err)
return err;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
err = handle_fragments(net, key, info->zone.id, skb);
if (err)
return err;
}
if (info->commit)
err = ovs_ct_commit(net, key, info, skb);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
else
err = ovs_ct_lookup(net, key, info, skb);
skb_push(skb, nh_ofs);
openvswitch: maintain correct checksum state in conntrack actions When executing conntrack actions on skbuffs with checksum mode CHECKSUM_COMPLETE, the checksum must be updated to account for header pushes and pulls. Otherwise we get "hw csum failure" logs similar to this (ICMP packet received on geneve tunnel via ixgbe NIC): [ 405.740065] genev_sys_6081: hw csum failure [ 405.740106] CPU: 3 PID: 0 Comm: swapper/3 Tainted: G I 4.10.0-rc3+ #1 [ 405.740108] Call Trace: [ 405.740110] <IRQ> [ 405.740113] dump_stack+0x63/0x87 [ 405.740116] netdev_rx_csum_fault+0x3a/0x40 [ 405.740118] __skb_checksum_complete+0xcf/0xe0 [ 405.740120] nf_ip_checksum+0xc8/0xf0 [ 405.740124] icmp_error+0x1de/0x351 [nf_conntrack_ipv4] [ 405.740132] nf_conntrack_in+0xe1/0x550 [nf_conntrack] [ 405.740137] ? find_bucket.isra.2+0x62/0x70 [openvswitch] [ 405.740143] __ovs_ct_lookup+0x95/0x980 [openvswitch] [ 405.740145] ? netif_rx_internal+0x44/0x110 [ 405.740149] ovs_ct_execute+0x147/0x4b0 [openvswitch] [ 405.740153] do_execute_actions+0x22e/0xa70 [openvswitch] [ 405.740157] ovs_execute_actions+0x40/0x120 [openvswitch] [ 405.740161] ovs_dp_process_packet+0x84/0x120 [openvswitch] [ 405.740166] ovs_vport_receive+0x73/0xd0 [openvswitch] [ 405.740168] ? udp_rcv+0x1a/0x20 [ 405.740170] ? ip_local_deliver_finish+0x93/0x1e0 [ 405.740172] ? ip_local_deliver+0x6f/0xe0 [ 405.740174] ? ip_rcv_finish+0x3a0/0x3a0 [ 405.740176] ? ip_rcv_finish+0xdb/0x3a0 [ 405.740177] ? ip_rcv+0x2a7/0x400 [ 405.740180] ? __netif_receive_skb_core+0x970/0xa00 [ 405.740185] netdev_frame_hook+0xd3/0x160 [openvswitch] [ 405.740187] __netif_receive_skb_core+0x1dc/0xa00 [ 405.740194] ? ixgbe_clean_rx_irq+0x46d/0xa20 [ixgbe] [ 405.740197] __netif_receive_skb+0x18/0x60 [ 405.740199] netif_receive_skb_internal+0x40/0xb0 [ 405.740201] napi_gro_receive+0xcd/0x120 [ 405.740204] gro_cell_poll+0x57/0x80 [geneve] [ 405.740206] net_rx_action+0x260/0x3c0 [ 405.740209] __do_softirq+0xc9/0x28c [ 405.740211] irq_exit+0xd9/0xf0 [ 405.740213] do_IRQ+0x51/0xd0 [ 405.740215] common_interrupt+0x93/0x93 Fixes: 7f8a436eaa2c ("openvswitch: Add conntrack action") Signed-off-by: Lance Richardson <lrichard@redhat.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-12 19:33:18 -05:00
skb_postpush_rcsum(skb, skb->data, nh_ofs);
if (err)
kfree_skb(skb);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return err;
}
int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
{
if (skb_nfct(skb)) {
nf_conntrack_put(skb_nfct(skb));
nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
ovs_ct_fill_key(skb, key);
}
return 0;
}
static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
const struct sw_flow_key *key, bool log)
{
struct nf_conntrack_helper *helper;
struct nf_conn_help *help;
int ret = 0;
helper = nf_conntrack_helper_try_module_get(name, info->family,
key->ip.proto);
if (!helper) {
OVS_NLERR(log, "Unknown helper \"%s\"", name);
return -EINVAL;
}
help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
if (!help) {
nf_conntrack_helper_put(helper);
return -ENOMEM;
}
#if IS_ENABLED(CONFIG_NF_NAT)
if (info->nat) {
ret = nf_nat_helper_try_module_get(name, info->family,
key->ip.proto);
if (ret) {
nf_conntrack_helper_put(helper);
OVS_NLERR(log, "Failed to load \"%s\" NAT helper, error: %d",
name, ret);
return ret;
}
}
#endif
rcu_assign_pointer(help->helper, helper);
info->helper = helper;
return ret;
}
#if IS_ENABLED(CONFIG_NF_NAT)
static int parse_nat(const struct nlattr *attr,
struct ovs_conntrack_info *info, bool log)
{
struct nlattr *a;
int rem;
bool have_ip_max = false;
bool have_proto_max = false;
bool ip_vers = (info->family == NFPROTO_IPV6);
nla_for_each_nested(a, attr, rem) {
static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
[OVS_NAT_ATTR_SRC] = {0, 0},
[OVS_NAT_ATTR_DST] = {0, 0},
[OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
sizeof(struct in6_addr)},
[OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
sizeof(struct in6_addr)},
[OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
[OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
[OVS_NAT_ATTR_PERSISTENT] = {0, 0},
[OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
[OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
};
int type = nla_type(a);
if (type > OVS_NAT_ATTR_MAX) {
OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
type, OVS_NAT_ATTR_MAX);
return -EINVAL;
}
if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
type, nla_len(a),
ovs_nat_attr_lens[type][ip_vers]);
return -EINVAL;
}
switch (type) {
case OVS_NAT_ATTR_SRC:
case OVS_NAT_ATTR_DST:
if (info->nat) {
OVS_NLERR(log, "Only one type of NAT may be specified");
return -ERANGE;
}
info->nat |= OVS_CT_NAT;
info->nat |= ((type == OVS_NAT_ATTR_SRC)
? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
break;
case OVS_NAT_ATTR_IP_MIN:
nla_memcpy(&info->range.min_addr, a,
sizeof(info->range.min_addr));
info->range.flags |= NF_NAT_RANGE_MAP_IPS;
break;
case OVS_NAT_ATTR_IP_MAX:
have_ip_max = true;
nla_memcpy(&info->range.max_addr, a,
sizeof(info->range.max_addr));
info->range.flags |= NF_NAT_RANGE_MAP_IPS;
break;
case OVS_NAT_ATTR_PROTO_MIN:
info->range.min_proto.all = htons(nla_get_u16(a));
info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
break;
case OVS_NAT_ATTR_PROTO_MAX:
have_proto_max = true;
info->range.max_proto.all = htons(nla_get_u16(a));
info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
break;
case OVS_NAT_ATTR_PERSISTENT:
info->range.flags |= NF_NAT_RANGE_PERSISTENT;
break;
case OVS_NAT_ATTR_PROTO_HASH:
info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
break;
case OVS_NAT_ATTR_PROTO_RANDOM:
info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
break;
default:
OVS_NLERR(log, "Unknown nat attribute (%d)", type);
return -EINVAL;
}
}
if (rem > 0) {
OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
return -EINVAL;
}
if (!info->nat) {
/* Do not allow flags if no type is given. */
if (info->range.flags) {
OVS_NLERR(log,
"NAT flags may be given only when NAT range (SRC or DST) is also specified."
);
return -EINVAL;
}
info->nat = OVS_CT_NAT; /* NAT existing connections. */
} else if (!info->commit) {
OVS_NLERR(log,
"NAT attributes may be specified only when CT COMMIT flag is also specified."
);
return -EINVAL;
}
/* Allow missing IP_MAX. */
if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
memcpy(&info->range.max_addr, &info->range.min_addr,
sizeof(info->range.max_addr));
}
/* Allow missing PROTO_MAX. */
if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
!have_proto_max) {
info->range.max_proto.all = info->range.min_proto.all;
}
return 0;
}
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
[OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
[OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
[OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
.maxlen = sizeof(u16) },
[OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
.maxlen = sizeof(struct md_mark) },
[OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
.maxlen = sizeof(struct md_labels) },
[OVS_CT_ATTR_HELPER] = { .minlen = 1,
.maxlen = NF_CT_HELPER_NAME_LEN },
#if IS_ENABLED(CONFIG_NF_NAT)
/* NAT length is checked when parsing the nested attributes. */
[OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
#endif
[OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
.maxlen = sizeof(u32) },
[OVS_CT_ATTR_TIMEOUT] = { .minlen = 1,
.maxlen = CTNL_TIMEOUT_NAME_MAX },
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
};
static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
const char **helper, bool log)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
struct nlattr *a;
int rem;
nla_for_each_nested(a, attr, rem) {
int type = nla_type(a);
int maxlen;
int minlen;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (type > OVS_CT_ATTR_MAX) {
OVS_NLERR(log,
"Unknown conntrack attr (type=%d, max=%d)",
type, OVS_CT_ATTR_MAX);
return -EINVAL;
}
maxlen = ovs_ct_attr_lens[type].maxlen;
minlen = ovs_ct_attr_lens[type].minlen;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (nla_len(a) < minlen || nla_len(a) > maxlen) {
OVS_NLERR(log,
"Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
type, nla_len(a), maxlen);
return -EINVAL;
}
switch (type) {
case OVS_CT_ATTR_FORCE_COMMIT:
info->force = true;
/* fall through. */
case OVS_CT_ATTR_COMMIT:
info->commit = true;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
break;
#ifdef CONFIG_NF_CONNTRACK_ZONES
case OVS_CT_ATTR_ZONE:
info->zone.id = nla_get_u16(a);
break;
#endif
#ifdef CONFIG_NF_CONNTRACK_MARK
case OVS_CT_ATTR_MARK: {
struct md_mark *mark = nla_data(a);
if (!mark->mask) {
OVS_NLERR(log, "ct_mark mask cannot be 0");
return -EINVAL;
}
info->mark = *mark;
break;
}
#endif
#ifdef CONFIG_NF_CONNTRACK_LABELS
case OVS_CT_ATTR_LABELS: {
struct md_labels *labels = nla_data(a);
if (!labels_nonzero(&labels->mask)) {
OVS_NLERR(log, "ct_labels mask cannot be 0");
return -EINVAL;
}
info->labels = *labels;
break;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
#endif
case OVS_CT_ATTR_HELPER:
*helper = nla_data(a);
if (!memchr(*helper, '\0', nla_len(a))) {
OVS_NLERR(log, "Invalid conntrack helper");
return -EINVAL;
}
break;
#if IS_ENABLED(CONFIG_NF_NAT)
case OVS_CT_ATTR_NAT: {
int err = parse_nat(a, info, log);
if (err)
return err;
break;
}
#endif
case OVS_CT_ATTR_EVENTMASK:
info->have_eventmask = true;
info->eventmask = nla_get_u32(a);
break;
#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
case OVS_CT_ATTR_TIMEOUT:
memcpy(info->timeout, nla_data(a), nla_len(a));
if (!memchr(info->timeout, '\0', nla_len(a))) {
OVS_NLERR(log, "Invalid conntrack timeout");
return -EINVAL;
}
break;
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
default:
OVS_NLERR(log, "Unknown conntrack attr (%d)",
type);
return -EINVAL;
}
}
#ifdef CONFIG_NF_CONNTRACK_MARK
if (!info->commit && info->mark.mask) {
OVS_NLERR(log,
"Setting conntrack mark requires 'commit' flag.");
return -EINVAL;
}
#endif
#ifdef CONFIG_NF_CONNTRACK_LABELS
if (!info->commit && labels_nonzero(&info->labels.mask)) {
OVS_NLERR(log,
"Setting conntrack labels requires 'commit' flag.");
return -EINVAL;
}
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (rem > 0) {
OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
return -EINVAL;
}
return 0;
}
bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
{
if (attr == OVS_KEY_ATTR_CT_STATE)
return true;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
attr == OVS_KEY_ATTR_CT_ZONE)
return true;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
attr == OVS_KEY_ATTR_CT_MARK)
return true;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
attr == OVS_KEY_ATTR_CT_LABELS) {
struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
return ovs_net->xt_label;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return false;
}
int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
const struct sw_flow_key *key,
struct sw_flow_actions **sfa, bool log)
{
struct ovs_conntrack_info ct_info;
const char *helper = NULL;
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
u16 family;
int err;
family = key_to_nfproto(key);
if (family == NFPROTO_UNSPEC) {
OVS_NLERR(log, "ct family unspecified");
return -EINVAL;
}
memset(&ct_info, 0, sizeof(ct_info));
ct_info.family = family;
nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
NF_CT_DEFAULT_ZONE_DIR, 0);
err = parse_ct(attr, &ct_info, &helper, log);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (err)
return err;
/* Set up template for tracking connections in specific zones. */
ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
if (!ct_info.ct) {
OVS_NLERR(log, "Failed to allocate conntrack template");
return -ENOMEM;
}
if (ct_info.timeout[0]) {
if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto,
ct_info.timeout))
pr_info_ratelimited("Failed to associated timeout "
"policy `%s'\n", ct_info.timeout);
else
ct_info.nf_ct_timeout = rcu_dereference(
nf_ct_timeout_find(ct_info.ct)->timeout);
}
if (helper) {
err = ovs_ct_add_helper(&ct_info, helper, key, log);
if (err)
goto err_free_ct;
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
sizeof(ct_info), log);
if (err)
goto err_free_ct;
__set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
nf_conntrack_get(&ct_info.ct->ct_general);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return 0;
err_free_ct:
__ovs_ct_free_action(&ct_info);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return err;
}
#if IS_ENABLED(CONFIG_NF_NAT)
static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
struct sk_buff *skb)
{
struct nlattr *start;
start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT);
if (!start)
return false;
if (info->nat & OVS_CT_SRC_NAT) {
if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
return false;
} else if (info->nat & OVS_CT_DST_NAT) {
if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
return false;
} else {
goto out;
}
if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
netfilter: nat: merge nf_nat_ipv4,6 into nat core before: text data bss dec hex filename 16566 1576 4136 22278 5706 nf_nat.ko 3598 844 0 4442 115a nf_nat_ipv6.ko 3187 844 0 4031 fbf nf_nat_ipv4.ko after: text data bss dec hex filename 22948 1612 4136 28696 7018 nf_nat.ko ... with ipv4/v6 nat now provided directly via nf_nat.ko. Also changes: ret = nf_nat_ipv4_fn(priv, skb, state); if (ret != NF_DROP && ret != NF_STOLEN && into if (ret != NF_ACCEPT) return ret; everywhere. The nat hooks never should return anything other than ACCEPT or DROP (and the latter only in rare error cases). The original code uses multi-line ANDing including assignment-in-if: if (ret != NF_DROP && ret != NF_STOLEN && !(IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) && (ct = nf_ct_get(skb, &ctinfo)) != NULL) { I removed this while moving, breaking those in separate conditionals and moving the assignments into extra lines. checkpatch still generates some warnings: 1. Overly long lines (of moved code). Breaking them is even more ugly. so I kept this as-is. 2. use of extern function declarations in a .c file. This is necessary evil, we must call nf_nat_l3proto_register() from the nat core now. All l3proto related functions are removed later in this series, those prototypes are then removed as well. v2: keep empty nf_nat_ipv6_csum_update stub for CONFIG_IPV6=n case. v3: remove IS_ENABLED(NF_NAT_IPV4/6) tests, NF_NAT_IPVx toggles are removed here. v4: also get rid of the assignments in conditionals. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-02-19 17:38:21 +01:00
if (IS_ENABLED(CONFIG_NF_NAT) &&
2016-03-18 14:33:45 +01:00
info->family == NFPROTO_IPV4) {
if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
info->range.min_addr.ip) ||
(info->range.max_addr.ip
!= info->range.min_addr.ip &&
(nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
info->range.max_addr.ip))))
return false;
netfilter: nat: merge nf_nat_ipv4,6 into nat core before: text data bss dec hex filename 16566 1576 4136 22278 5706 nf_nat.ko 3598 844 0 4442 115a nf_nat_ipv6.ko 3187 844 0 4031 fbf nf_nat_ipv4.ko after: text data bss dec hex filename 22948 1612 4136 28696 7018 nf_nat.ko ... with ipv4/v6 nat now provided directly via nf_nat.ko. Also changes: ret = nf_nat_ipv4_fn(priv, skb, state); if (ret != NF_DROP && ret != NF_STOLEN && into if (ret != NF_ACCEPT) return ret; everywhere. The nat hooks never should return anything other than ACCEPT or DROP (and the latter only in rare error cases). The original code uses multi-line ANDing including assignment-in-if: if (ret != NF_DROP && ret != NF_STOLEN && !(IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) && (ct = nf_ct_get(skb, &ctinfo)) != NULL) { I removed this while moving, breaking those in separate conditionals and moving the assignments into extra lines. checkpatch still generates some warnings: 1. Overly long lines (of moved code). Breaking them is even more ugly. so I kept this as-is. 2. use of extern function declarations in a .c file. This is necessary evil, we must call nf_nat_l3proto_register() from the nat core now. All l3proto related functions are removed later in this series, those prototypes are then removed as well. v2: keep empty nf_nat_ipv6_csum_update stub for CONFIG_IPV6=n case. v3: remove IS_ENABLED(NF_NAT_IPV4/6) tests, NF_NAT_IPVx toggles are removed here. v4: also get rid of the assignments in conditionals. Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-02-19 17:38:21 +01:00
} else if (IS_ENABLED(CONFIG_IPV6) &&
2016-03-18 14:33:45 +01:00
info->family == NFPROTO_IPV6) {
if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
&info->range.min_addr.in6) ||
(memcmp(&info->range.max_addr.in6,
&info->range.min_addr.in6,
sizeof(info->range.max_addr.in6)) &&
(nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
&info->range.max_addr.in6))))
return false;
} else {
return false;
}
}
if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
(nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
ntohs(info->range.min_proto.all)) ||
(info->range.max_proto.all != info->range.min_proto.all &&
nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
ntohs(info->range.max_proto.all)))))
return false;
if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
return false;
if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
return false;
if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
return false;
out:
nla_nest_end(skb, start);
return true;
}
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
struct sk_buff *skb)
{
struct nlattr *start;
start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT);
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
if (!start)
return -EMSGSIZE;
if (ct_info->commit && nla_put_flag(skb, ct_info->force
? OVS_CT_ATTR_FORCE_COMMIT
: OVS_CT_ATTR_COMMIT))
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
&ct_info->mark))
return -EMSGSIZE;
if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
labels_nonzero(&ct_info->labels.mask) &&
nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
&ct_info->labels))
return -EMSGSIZE;
if (ct_info->helper) {
if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
ct_info->helper->name))
return -EMSGSIZE;
}
if (ct_info->have_eventmask &&
nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
return -EMSGSIZE;
if (ct_info->timeout[0]) {
if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout))
return -EMSGSIZE;
}
#if IS_ENABLED(CONFIG_NF_NAT)
if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
return -EMSGSIZE;
#endif
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
nla_nest_end(skb, start);
return 0;
}
void ovs_ct_free_action(const struct nlattr *a)
{
struct ovs_conntrack_info *ct_info = nla_data(a);
__ovs_ct_free_action(ct_info);
}
static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
{
if (ct_info->helper) {
#if IS_ENABLED(CONFIG_NF_NAT)
if (ct_info->nat)
nf_nat_helper_put(ct_info->helper);
#endif
nf_conntrack_helper_put(ct_info->helper);
}
if (ct_info->ct) {
if (ct_info->timeout[0])
nf_ct_destroy_timeout(ct_info->ct);
nf_ct_tmpl_free(ct_info->ct);
}
openvswitch: Add conntrack action Expose the kernel connection tracker via OVS. Userspace components can make use of the CT action to populate the connection state (ct_state) field for a flow. This state can be subsequently matched. Exposed connection states are OVS_CS_F_*: - NEW (0x01) - Beginning of a new connection. - ESTABLISHED (0x02) - Part of an existing connection. - RELATED (0x04) - Related to an established connection. - INVALID (0x20) - Could not track the connection for this packet. - REPLY_DIR (0x40) - This packet is in the reply direction for the flow. - TRACKED (0x80) - This packet has been sent through conntrack. When the CT action is executed by itself, it will send the packet through the connection tracker and populate the ct_state field with one or more of the connection state flags above. The CT action will always set the TRACKED bit. When the COMMIT flag is passed to the conntrack action, this specifies that information about the connection should be stored. This allows subsequent packets for the same (or related) connections to be correlated with this connection. Sending subsequent packets for the connection through conntrack allows the connection tracker to consider the packets as ESTABLISHED, RELATED, and/or REPLY_DIR. The CT action may optionally take a zone to track the flow within. This allows connections with the same 5-tuple to be kept logically separate from connections in other zones. If the zone is specified, then the "ct_zone" match field will be subsequently populated with the zone id. IP fragments are handled by transparently assembling them as part of the CT action. The maximum received unit (MRU) size is tracked so that refragmentation can occur during output. IP frag handling contributed by Andy Zhou. Based on original design by Justin Pettit. Signed-off-by: Joe Stringer <joestringer@nicira.com> Signed-off-by: Justin Pettit <jpettit@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Acked-by: Thomas Graf <tgraf@suug.ch> Acked-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-26 11:31:48 -07:00
}
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
{
int i, err;
ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
GFP_KERNEL);
if (!ovs_net->ct_limit_info)
return -ENOMEM;
ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
ovs_net->ct_limit_info->limits =
kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
GFP_KERNEL);
if (!ovs_net->ct_limit_info->limits) {
kfree(ovs_net->ct_limit_info);
return -ENOMEM;
}
for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
ovs_net->ct_limit_info->data =
nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
if (IS_ERR(ovs_net->ct_limit_info->data)) {
err = PTR_ERR(ovs_net->ct_limit_info->data);
kfree(ovs_net->ct_limit_info->limits);
kfree(ovs_net->ct_limit_info);
pr_err("openvswitch: failed to init nf_conncount %d\n", err);
return err;
}
return 0;
}
static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
{
const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
int i;
nf_conncount_destroy(net, NFPROTO_INET, info->data);
for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
struct hlist_head *head = &info->limits[i];
struct ovs_ct_limit *ct_limit;
hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
kfree_rcu(ct_limit, rcu);
}
kfree(ovs_net->ct_limit_info->limits);
kfree(ovs_net->ct_limit_info);
}
static struct sk_buff *
ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
struct ovs_header **ovs_reply_header)
{
struct ovs_header *ovs_header = info->userhdr;
struct sk_buff *skb;
skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!skb)
return ERR_PTR(-ENOMEM);
*ovs_reply_header = genlmsg_put(skb, info->snd_portid,
info->snd_seq,
&dp_ct_limit_genl_family, 0, cmd);
if (!*ovs_reply_header) {
nlmsg_free(skb);
return ERR_PTR(-EMSGSIZE);
}
(*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
return skb;
}
static bool check_zone_id(int zone_id, u16 *pzone)
{
if (zone_id >= 0 && zone_id <= 65535) {
*pzone = (u16)zone_id;
return true;
}
return false;
}
static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
struct ovs_ct_limit_info *info)
{
struct ovs_zone_limit *zone_limit;
int rem;
u16 zone;
rem = NLA_ALIGN(nla_len(nla_zone_limit));
zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
while (rem >= sizeof(*zone_limit)) {
if (unlikely(zone_limit->zone_id ==
OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
ovs_lock();
info->default_limit = zone_limit->limit;
ovs_unlock();
} else if (unlikely(!check_zone_id(
zone_limit->zone_id, &zone))) {
OVS_NLERR(true, "zone id is out of range");
} else {
struct ovs_ct_limit *ct_limit;
ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
if (!ct_limit)
return -ENOMEM;
ct_limit->zone = zone;
ct_limit->limit = zone_limit->limit;
ovs_lock();
ct_limit_set(info, ct_limit);
ovs_unlock();
}
rem -= NLA_ALIGN(sizeof(*zone_limit));
zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
NLA_ALIGN(sizeof(*zone_limit)));
}
if (rem)
OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
return 0;
}
static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
struct ovs_ct_limit_info *info)
{
struct ovs_zone_limit *zone_limit;
int rem;
u16 zone;
rem = NLA_ALIGN(nla_len(nla_zone_limit));
zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
while (rem >= sizeof(*zone_limit)) {
if (unlikely(zone_limit->zone_id ==
OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
ovs_lock();
info->default_limit = OVS_CT_LIMIT_DEFAULT;
ovs_unlock();
} else if (unlikely(!check_zone_id(
zone_limit->zone_id, &zone))) {
OVS_NLERR(true, "zone id is out of range");
} else {
ovs_lock();
ct_limit_del(info, zone);
ovs_unlock();
}
rem -= NLA_ALIGN(sizeof(*zone_limit));
zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
NLA_ALIGN(sizeof(*zone_limit)));
}
if (rem)
OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
return 0;
}
static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
struct sk_buff *reply)
{
struct ovs_zone_limit zone_limit;
int err;
zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
zone_limit.limit = info->default_limit;
err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
if (err)
return err;
return 0;
}
static int __ovs_ct_limit_get_zone_limit(struct net *net,
struct nf_conncount_data *data,
u16 zone_id, u32 limit,
struct sk_buff *reply)
{
struct nf_conntrack_zone ct_zone;
struct ovs_zone_limit zone_limit;
u32 conncount_key = zone_id;
zone_limit.zone_id = zone_id;
zone_limit.limit = limit;
nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
&ct_zone);
return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
}
static int ovs_ct_limit_get_zone_limit(struct net *net,
struct nlattr *nla_zone_limit,
struct ovs_ct_limit_info *info,
struct sk_buff *reply)
{
struct ovs_zone_limit *zone_limit;
int rem, err;
u32 limit;
u16 zone;
rem = NLA_ALIGN(nla_len(nla_zone_limit));
zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
while (rem >= sizeof(*zone_limit)) {
if (unlikely(zone_limit->zone_id ==
OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
err = ovs_ct_limit_get_default_limit(info, reply);
if (err)
return err;
} else if (unlikely(!check_zone_id(zone_limit->zone_id,
&zone))) {
OVS_NLERR(true, "zone id is out of range");
} else {
rcu_read_lock();
limit = ct_limit_get(info, zone);
rcu_read_unlock();
err = __ovs_ct_limit_get_zone_limit(
net, info->data, zone, limit, reply);
if (err)
return err;
}
rem -= NLA_ALIGN(sizeof(*zone_limit));
zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
NLA_ALIGN(sizeof(*zone_limit)));
}
if (rem)
OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
return 0;
}
static int ovs_ct_limit_get_all_zone_limit(struct net *net,
struct ovs_ct_limit_info *info,
struct sk_buff *reply)
{
struct ovs_ct_limit *ct_limit;
struct hlist_head *head;
int i, err = 0;
err = ovs_ct_limit_get_default_limit(info, reply);
if (err)
return err;
rcu_read_lock();
for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
head = &info->limits[i];
hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
err = __ovs_ct_limit_get_zone_limit(net, info->data,
ct_limit->zone, ct_limit->limit, reply);
if (err)
goto exit_err;
}
}
exit_err:
rcu_read_unlock();
return err;
}
static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr **a = info->attrs;
struct sk_buff *reply;
struct ovs_header *ovs_reply_header;
struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
int err;
reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
&ovs_reply_header);
if (IS_ERR(reply))
return PTR_ERR(reply);
if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
err = -EINVAL;
goto exit_err;
}
err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
ct_limit_info);
if (err)
goto exit_err;
static_branch_enable(&ovs_ct_limit_enabled);
genlmsg_end(reply, ovs_reply_header);
return genlmsg_reply(reply, info);
exit_err:
nlmsg_free(reply);
return err;
}
static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr **a = info->attrs;
struct sk_buff *reply;
struct ovs_header *ovs_reply_header;
struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
int err;
reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
&ovs_reply_header);
if (IS_ERR(reply))
return PTR_ERR(reply);
if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
err = -EINVAL;
goto exit_err;
}
err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
ct_limit_info);
if (err)
goto exit_err;
genlmsg_end(reply, ovs_reply_header);
return genlmsg_reply(reply, info);
exit_err:
nlmsg_free(reply);
return err;
}
static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr **a = info->attrs;
struct nlattr *nla_reply;
struct sk_buff *reply;
struct ovs_header *ovs_reply_header;
struct net *net = sock_net(skb->sk);
struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
int err;
reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
&ovs_reply_header);
if (IS_ERR(reply))
return PTR_ERR(reply);
nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
if (!nla_reply) {
err = -EMSGSIZE;
goto exit_err;
}
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
err = ovs_ct_limit_get_zone_limit(
net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
reply);
if (err)
goto exit_err;
} else {
err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
reply);
if (err)
goto exit_err;
}
nla_nest_end(reply, nla_reply);
genlmsg_end(reply, ovs_reply_header);
return genlmsg_reply(reply, info);
exit_err:
nlmsg_free(reply);
return err;
}
static struct genl_ops ct_limit_genl_ops[] = {
{ .cmd = OVS_CT_LIMIT_CMD_SET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
* privilege. */
.doit = ovs_ct_limit_cmd_set,
},
{ .cmd = OVS_CT_LIMIT_CMD_DEL,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
.flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
* privilege. */
.doit = ovs_ct_limit_cmd_del,
},
{ .cmd = OVS_CT_LIMIT_CMD_GET,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
.flags = 0, /* OK for unprivileged users. */
.doit = ovs_ct_limit_cmd_get,
},
};
static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
.name = OVS_CT_LIMIT_MCGROUP,
};
struct genl_family dp_ct_limit_genl_family __ro_after_init = {
.hdrsize = sizeof(struct ovs_header),
.name = OVS_CT_LIMIT_FAMILY,
.version = OVS_CT_LIMIT_VERSION,
.maxattr = OVS_CT_LIMIT_ATTR_MAX,
.policy = ct_limit_policy,
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
.netnsok = true,
.parallel_ops = true,
.ops = ct_limit_genl_ops,
.n_ops = ARRAY_SIZE(ct_limit_genl_ops),
.mcgrps = &ovs_ct_limit_multicast_group,
.n_mcgrps = 1,
.module = THIS_MODULE,
};
#endif
int ovs_ct_init(struct net *net)
{
unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
if (nf_connlabels_get(net, n_bits - 1)) {
ovs_net->xt_label = false;
OVS_NLERR(true, "Failed to set connlabel length");
} else {
ovs_net->xt_label = true;
}
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
return ovs_ct_limit_init(net, ovs_net);
#else
return 0;
#endif
}
void ovs_ct_exit(struct net *net)
{
struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
openvswitch: Support conntrack zone limit Currently, nf_conntrack_max is used to limit the maximum number of conntrack entries in the conntrack table for every network namespace. For the VMs and containers that reside in the same namespace, they share the same conntrack table, and the total # of conntrack entries for all the VMs and containers are limited by nf_conntrack_max. In this case, if one of the VM/container abuses the usage the conntrack entries, it blocks the others from committing valid conntrack entries into the conntrack table. Even if we can possibly put the VM in different network namespace, the current nf_conntrack_max configuration is kind of rigid that we cannot limit different VM/container to have different # conntrack entries. To address the aforementioned issue, this patch proposes to have a fine-grained mechanism that could further limit the # of conntrack entries per-zone. For example, we can designate different zone to different VM, and set conntrack limit to each zone. By providing this isolation, a mis-behaved VM only consumes the conntrack entries in its own zone, and it will not influence other well-behaved VMs. Moreover, the users can set various conntrack limit to different zone based on their preference. The proposed implementation utilizes Netfilter's nf_conncount backend to count the number of connections in a particular zone. If the number of connection is above a configured limitation, ovs will return ENOMEM to the userspace. If userspace does not configure the zone limit, the limit defaults to zero that is no limitation, which is backward compatible to the behavior without this patch. The following high leve APIs are provided to the userspace: - OVS_CT_LIMIT_CMD_SET: * set default connection limit for all zones * set the connection limit for a particular zone - OVS_CT_LIMIT_CMD_DEL: * remove the connection limit for a particular zone - OVS_CT_LIMIT_CMD_GET: * get the default connection limit for all zones * get the connection limit for a particular zone Signed-off-by: Yi-Hung Wei <yihung.wei@gmail.com> Acked-by: Pravin B Shelar <pshelar@ovn.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-24 17:56:43 -07:00
#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
ovs_ct_limit_exit(net, ovs_net);
#endif
if (ovs_net->xt_label)
nf_connlabels_put(net);
}