2013-03-26 13:59:05 -07:00
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Implement f a s t S H A - 2 5 6 w i t h A V X 1 i n s t r u c t i o n s . ( x86 _ 6 4 )
#
# Copyright ( C ) 2 0 1 3 I n t e l C o r p o r a t i o n .
#
# Authors :
# James G u i l f o r d < j a m e s . g u i l f o r d @intel.com>
# Kirk Y a p < k i r k . s . y a p @intel.com>
# Tim C h e n < t i m . c . c h e n @linux.intel.com>
#
# This s o f t w a r e i s a v a i l a b l e t o y o u u n d e r a c h o i c e o f o n e o f t w o
# licenses. Y o u m a y c h o o s e t o b e l i c e n s e d u n d e r t h e t e r m s o f t h e G N U
# General P u b l i c L i c e n s e ( G P L ) V e r s i o n 2 , a v a i l a b l e f r o m t h e f i l e
# COPYING i n t h e m a i n d i r e c t o r y o f t h i s s o u r c e t r e e , o r t h e
# OpenIB. o r g B S D l i c e n s e b e l o w :
#
# Redistribution a n d u s e i n s o u r c e a n d b i n a r y f o r m s , w i t h o r
# without m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g
# conditions a r e m e t :
#
# - Redistributions o f s o u r c e c o d e m u s t r e t a i n t h e a b o v e
# copyright n o t i c e , t h i s l i s t o f c o n d i t i o n s a n d t h e f o l l o w i n g
# disclaimer.
#
# - Redistributions i n b i n a r y f o r m m u s t r e p r o d u c e t h e a b o v e
# copyright n o t i c e , t h i s l i s t o f c o n d i t i o n s a n d t h e f o l l o w i n g
# disclaimer i n t h e d o c u m e n t a t i o n a n d / o r o t h e r m a t e r i a l s
# provided w i t h t h e d i s t r i b u t i o n .
#
# THE S O F T W A R E I S P R O V I D E D " A S I S " , W I T H O U T W A R R A N T Y O F A N Y K I N D ,
# EXPRESS O R I M P L I E D , I N C L U D I N G B U T N O T L I M I T E D T O T H E W A R R A N T I E S O F
# MERCHANTABILITY, F I T N E S S F O R A P A R T I C U L A R P U R P O S E A N D
# NONINFRINGEMENT. I N N O E V E N T S H A L L T H E A U T H O R S O R C O P Y R I G H T H O L D E R S
# BE L I A B L E F O R A N Y C L A I M , D A M A G E S O R O T H E R L I A B I L I T Y , W H E T H E R I N A N
# ACTION O F C O N T R A C T , T O R T O R O T H E R W I S E , A R I S I N G F R O M , O U T O F O R I N
# CONNECTION W I T H T H E S O F T W A R E O R T H E U S E O R O T H E R D E A L I N G S I N T H E
# SOFTWARE.
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
# This c o d e i s d e s c r i b e d i n a n I n t e l W h i t e - P a p e r :
# " Fast S H A - 2 5 6 I m p l e m e n t a t i o n s o n I n t e l A r c h i t e c t u r e P r o c e s s o r s "
#
# To f i n d i t , s u r f t o h t t p : / / w w w . i n t e l . c o m / p / e n _ U S / e m b e d d e d
# and s e a r c h f o r t h a t t i t l e .
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# This c o d e s c h e d u l e s 1 b l o c k a t a t i m e , w i t h 4 l a n e s p e r b l o c k
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# ifdef C O N F I G _ A S _ A V X
# include < l i n u x / l i n k a g e . h >
# # assume b u f f e r s n o t a l i g n e d
# define V M O V D Q v m o v d q u
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Define M a c r o s
# addm [ m e m ] , r e g
# Add r e g t o m e m u s i n g r e g - m e m a d d a n d s t o r e
.macro addm p1 p2
add \ p1 , \ p2
mov \ p2 , \ p1
.endm
.macro MY_ROR p1 p2
shld $ ( 3 2 - ( \ p1 ) ) , \ p2 , \ p2
.endm
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# COPY_ X M M _ A N D _ B S W A P x m m , [ m e m ] , b y t e _ f l i p _ m a s k
# Load x m m w i t h m e m a n d b y t e s w a p e a c h d w o r d
.macro COPY_XMM_AND_BSWAP p1 p2 p3
VMOVDQ \ p2 , \ p1
vpshufb \ p3 , \ p1 , \ p1
.endm
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
X0 = % x m m 4
X1 = % x m m 5
X2 = % x m m 6
X3 = % x m m 7
XTMP0 = % x m m 0
XTMP1 = % x m m 1
XTMP2 = % x m m 2
XTMP3 = % x m m 3
XTMP4 = % x m m 8
XFER = % x m m 9
XTMP5 = % x m m 1 1
SHUF_ 0 0 B A = % x m m 1 0 # s h u f f l e x B x A - > 00 B A
SHUF_ D C 0 0 = % x m m 1 2 # s h u f f l e x D x C - > D C 00
BYTE_ F L I P _ M A S K = % x m m 1 3
NUM_ B L K S = % r d x # 3 r d a r g
2015-04-09 12:55:47 +02:00
INP = % r s i # 2 n d a r g
CTX = % r d i # 1 s t a r g
2013-03-26 13:59:05 -07:00
2015-04-09 12:55:47 +02:00
SRND = % r s i # c l o b b e r s I N P
2013-03-26 13:59:05 -07:00
c = % e c x
d = % r8 d
e = % e d x
2017-09-18 14:42:07 -05:00
TBL = % r12
2013-03-26 13:59:05 -07:00
a = % e a x
b = % e b x
f = % r9 d
g = % r10 d
h = % r11 d
y0 = % r13 d
y1 = % r14 d
y2 = % r15 d
_ INP_ E N D _ S I Z E = 8
_ INP_ S I Z E = 8
2013-05-21 17:09:41 +03:00
_ XFER_ S I Z E = 1 6
2013-03-26 13:59:05 -07:00
_ XMM_ S A V E _ S I Z E = 0
_ INP_ E N D = 0
_ INP = _ I N P _ E N D + _ I N P _ E N D _ S I Z E
_ XFER = _ I N P + _ I N P _ S I Z E
_ XMM_ S A V E = _ X F E R + _ X F E R _ S I Z E
STACK_ S I Z E = _ X M M _ S A V E + _ X M M _ S A V E _ S I Z E
# rotate_ X s
# Rotate v a l u e s o f s y m b o l s X 0 . . . X 3
.macro rotate_Xs
X_ = X 0
X0 = X 1
X1 = X 2
X2 = X 3
X3 = X _
.endm
# ROTATE_ A R G S
# Rotate v a l u e s o f s y m b o l s a . . . h
.macro ROTATE_ARGS
TMP_ = h
h = g
g = f
f = e
e = d
d = c
c = b
b = a
a = T M P _
.endm
.macro FOUR_ROUNDS_AND_SCHED
# # compute s0 f o u r a t a t i m e a n d s1 t w o a t a t i m e
# # compute W [ - 1 6 ] + W [ - 7 ] 4 a t a t i m e
mov e , y 0 # y 0 = e
MY_ R O R ( 2 5 - 1 1 ) , y 0 # y 0 = e > > ( 2 5 - 1 1 )
mov a , y 1 # y 1 = a
vpalignr $ 4 , X 2 , X 3 , X T M P 0 # X T M P 0 = W [ - 7 ]
MY_ R O R ( 2 2 - 1 3 ) , y 1 # y 1 = a > > ( 2 2 - 1 3 )
xor e , y 0 # y 0 = e ^ ( e > > ( 2 5 - 1 1 ) )
mov f , y 2 # y 2 = f
MY_ R O R ( 1 1 - 6 ) , y 0 # y 0 = ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
xor a , y 1 # y 1 = a ^ ( a > > ( 2 2 - 1 3 )
xor g , y 2 # y 2 = f ^ g
vpaddd X 0 , X T M P 0 , X T M P 0 # X T M P 0 = W [ - 7 ] + W [ - 1 6 ]
xor e , y 0 # y 0 = e ^ ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
and e , y 2 # y 2 = ( f ^ g ) & e
MY_ R O R ( 1 3 - 2 ) , y 1 # y 1 = ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
# # compute s0
vpalignr $ 4 , X 0 , X 1 , X T M P 1 # X T M P 1 = W [ - 1 5 ]
xor a , y 1 # y 1 = a ^ ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
MY_ R O R 6 , y 0 # y 0 = S 1 = ( e > > 6 ) & ( e > > 1 1 ) ^ ( e > > 2 5 )
xor g , y 2 # y 2 = C H = ( ( f ^ g ) & e ) ^ g
MY_ R O R 2 , y 1 # y 1 = S 0 = ( a > > 2 ) ^ ( a > > 1 3 ) ^ ( a > > 2 2 )
add y 0 , y 2 # y 2 = S 1 + C H
add _ X F E R ( % r s p ) , y 2 # y 2 = k + w + S 1 + C H
mov a , y 0 # y 0 = a
add y 2 , h # h = h + S 1 + C H + k + w
mov a , y 2 # y 2 = a
vpsrld $ 7 , X T M P 1 , X T M P 2
or c , y 0 # y 0 = a | c
add h , d # d = d + h + S 1 + C H + k + w
and c , y 2 # y 2 = a & c
vpslld $ ( 3 2 - 7 ) , X T M P 1 , X T M P 3
and b , y 0 # y 0 = ( a | c ) & b
add y 1 , h # h = h + S 1 + C H + k + w + S 0
vpor X T M P 2 , X T M P 3 , X T M P 3 # X T M P 1 = W [ - 1 5 ] M Y _ R O R 7
or y 2 , y 0 # y 0 = M A J = ( a | c ) & b ) | ( a & c )
add y 0 , h # h = h + S 1 + C H + k + w + S 0 + M A J
ROTATE_ A R G S
mov e , y 0 # y 0 = e
mov a , y 1 # y 1 = a
MY_ R O R ( 2 5 - 1 1 ) , y 0 # y 0 = e > > ( 2 5 - 1 1 )
xor e , y 0 # y 0 = e ^ ( e > > ( 2 5 - 1 1 ) )
mov f , y 2 # y 2 = f
MY_ R O R ( 2 2 - 1 3 ) , y 1 # y 1 = a > > ( 2 2 - 1 3 )
vpsrld $ 1 8 , X T M P 1 , X T M P 2 #
xor a , y 1 # y 1 = a ^ ( a > > ( 2 2 - 1 3 )
MY_ R O R ( 1 1 - 6 ) , y 0 # y 0 = ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
xor g , y 2 # y 2 = f ^ g
vpsrld $ 3 , X T M P 1 , X T M P 4 # X T M P 4 = W [ - 1 5 ] > > 3
MY_ R O R ( 1 3 - 2 ) , y 1 # y 1 = ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
xor e , y 0 # y 0 = e ^ ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
and e , y 2 # y 2 = ( f ^ g ) & e
MY_ R O R 6 , y 0 # y 0 = S 1 = ( e > > 6 ) & ( e > > 1 1 ) ^ ( e > > 2 5 )
vpslld $ ( 3 2 - 1 8 ) , X T M P 1 , X T M P 1
xor a , y 1 # y 1 = a ^ ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
xor g , y 2 # y 2 = C H = ( ( f ^ g ) & e ) ^ g
vpxor X T M P 1 , X T M P 3 , X T M P 3 #
add y 0 , y 2 # y 2 = S 1 + C H
add ( 1 * 4 + _ X F E R ) ( % r s p ) , y 2 # y 2 = k + w + S 1 + C H
MY_ R O R 2 , y 1 # y 1 = S 0 = ( a > > 2 ) ^ ( a > > 1 3 ) ^ ( a > > 2 2 )
vpxor X T M P 2 , X T M P 3 , X T M P 3 # X T M P 1 = W [ - 1 5 ] M Y _ R O R 7 ^ W [ - 1 5 ] M Y _ R O R
mov a , y 0 # y 0 = a
add y 2 , h # h = h + S 1 + C H + k + w
mov a , y 2 # y 2 = a
vpxor X T M P 4 , X T M P 3 , X T M P 1 # X T M P 1 = s0
or c , y 0 # y 0 = a | c
add h , d # d = d + h + S 1 + C H + k + w
and c , y 2 # y 2 = a & c
# # compute l o w s1
vpshufd $ 0 b11 1 1 1 0 1 0 , X 3 , X T M P 2 # X T M P 2 = W [ - 2 ] { B B A A }
and b , y 0 # y 0 = ( a | c ) & b
add y 1 , h # h = h + S 1 + C H + k + w + S 0
vpaddd X T M P 1 , X T M P 0 , X T M P 0 # X T M P 0 = W [ - 1 6 ] + W [ - 7 ] + s0
or y 2 , y 0 # y 0 = M A J = ( a | c ) & b ) | ( a & c )
add y 0 , h # h = h + S 1 + C H + k + w + S 0 + M A J
ROTATE_ A R G S
mov e , y 0 # y 0 = e
mov a , y 1 # y 1 = a
MY_ R O R ( 2 5 - 1 1 ) , y 0 # y 0 = e > > ( 2 5 - 1 1 )
xor e , y 0 # y 0 = e ^ ( e > > ( 2 5 - 1 1 ) )
MY_ R O R ( 2 2 - 1 3 ) , y 1 # y 1 = a > > ( 2 2 - 1 3 )
mov f , y 2 # y 2 = f
xor a , y 1 # y 1 = a ^ ( a > > ( 2 2 - 1 3 )
MY_ R O R ( 1 1 - 6 ) , y 0 # y 0 = ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
vpsrld $ 1 0 , X T M P 2 , X T M P 4 # X T M P 4 = W [ - 2 ] > > 1 0 { B B A A }
xor g , y 2 # y 2 = f ^ g
vpsrlq $ 1 9 , X T M P 2 , X T M P 3 # X T M P 3 = W [ - 2 ] M Y _ R O R 1 9 { x B x A }
xor e , y 0 # y 0 = e ^ ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
and e , y 2 # y 2 = ( f ^ g ) & e
vpsrlq $ 1 7 , X T M P 2 , X T M P 2 # X T M P 2 = W [ - 2 ] M Y _ R O R 1 7 { x B x A }
MY_ R O R ( 1 3 - 2 ) , y 1 # y 1 = ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
xor a , y 1 # y 1 = a ^ ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
xor g , y 2 # y 2 = C H = ( ( f ^ g ) & e ) ^ g
MY_ R O R 6 , y 0 # y 0 = S 1 = ( e > > 6 ) & ( e > > 1 1 ) ^ ( e > > 2 5 )
vpxor X T M P 3 , X T M P 2 , X T M P 2 #
add y 0 , y 2 # y 2 = S 1 + C H
MY_ R O R 2 , y 1 # y 1 = S 0 = ( a > > 2 ) ^ ( a > > 1 3 ) ^ ( a > > 2 2 )
add ( 2 * 4 + _ X F E R ) ( % r s p ) , y 2 # y 2 = k + w + S 1 + C H
vpxor X T M P 2 , X T M P 4 , X T M P 4 # X T M P 4 = s1 { x B x A }
mov a , y 0 # y 0 = a
add y 2 , h # h = h + S 1 + C H + k + w
mov a , y 2 # y 2 = a
vpshufb S H U F _ 0 0 B A , X T M P 4 , X T M P 4 # X T M P 4 = s1 { 0 0 B A }
or c , y 0 # y 0 = a | c
add h , d # d = d + h + S 1 + C H + k + w
and c , y 2 # y 2 = a & c
vpaddd X T M P 4 , X T M P 0 , X T M P 0 # X T M P 0 = { . . . , . . . , W [ 1 ] , W [ 0 ] }
and b , y 0 # y 0 = ( a | c ) & b
add y 1 , h # h = h + S 1 + C H + k + w + S 0
# # compute h i g h s1
vpshufd $ 0 b01 0 1 0 0 0 0 , X T M P 0 , X T M P 2 # X T M P 2 = W [ - 2 ] { D D C C }
or y 2 , y 0 # y 0 = M A J = ( a | c ) & b ) | ( a & c )
add y 0 , h # h = h + S 1 + C H + k + w + S 0 + M A J
ROTATE_ A R G S
mov e , y 0 # y 0 = e
MY_ R O R ( 2 5 - 1 1 ) , y 0 # y 0 = e > > ( 2 5 - 1 1 )
mov a , y 1 # y 1 = a
MY_ R O R ( 2 2 - 1 3 ) , y 1 # y 1 = a > > ( 2 2 - 1 3 )
xor e , y 0 # y 0 = e ^ ( e > > ( 2 5 - 1 1 ) )
mov f , y 2 # y 2 = f
MY_ R O R ( 1 1 - 6 ) , y 0 # y 0 = ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
vpsrld $ 1 0 , X T M P 2 , X T M P 5 # X T M P 5 = W [ - 2 ] > > 1 0 { D D C C }
xor a , y 1 # y 1 = a ^ ( a > > ( 2 2 - 1 3 )
xor g , y 2 # y 2 = f ^ g
vpsrlq $ 1 9 , X T M P 2 , X T M P 3 # X T M P 3 = W [ - 2 ] M Y _ R O R 1 9 { x D x C }
xor e , y 0 # y 0 = e ^ ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
and e , y 2 # y 2 = ( f ^ g ) & e
MY_ R O R ( 1 3 - 2 ) , y 1 # y 1 = ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
vpsrlq $ 1 7 , X T M P 2 , X T M P 2 # X T M P 2 = W [ - 2 ] M Y _ R O R 1 7 { x D x C }
xor a , y 1 # y 1 = a ^ ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
MY_ R O R 6 , y 0 # y 0 = S 1 = ( e > > 6 ) & ( e > > 1 1 ) ^ ( e > > 2 5 )
xor g , y 2 # y 2 = C H = ( ( f ^ g ) & e ) ^ g
vpxor X T M P 3 , X T M P 2 , X T M P 2
MY_ R O R 2 , y 1 # y 1 = S 0 = ( a > > 2 ) ^ ( a > > 1 3 ) ^ ( a > > 2 2 )
add y 0 , y 2 # y 2 = S 1 + C H
add ( 3 * 4 + _ X F E R ) ( % r s p ) , y 2 # y 2 = k + w + S 1 + C H
vpxor X T M P 2 , X T M P 5 , X T M P 5 # X T M P 5 = s1 { x D x C }
mov a , y 0 # y 0 = a
add y 2 , h # h = h + S 1 + C H + k + w
mov a , y 2 # y 2 = a
vpshufb S H U F _ D C 0 0 , X T M P 5 , X T M P 5 # X T M P 5 = s1 { D C 0 0 }
or c , y 0 # y 0 = a | c
add h , d # d = d + h + S 1 + C H + k + w
and c , y 2 # y 2 = a & c
vpaddd X T M P 0 , X T M P 5 , X 0 # X 0 = { W [ 3 ] , W [ 2 ] , W [ 1 ] , W [ 0 ] }
and b , y 0 # y 0 = ( a | c ) & b
add y 1 , h # h = h + S 1 + C H + k + w + S 0
or y 2 , y 0 # y 0 = M A J = ( a | c ) & b ) | ( a & c )
add y 0 , h # h = h + S 1 + C H + k + w + S 0 + M A J
ROTATE_ A R G S
rotate_ X s
.endm
# # input i s [ r s p + _ X F E R + % 1 * 4 ]
.macro DO_ROUND round
mov e , y 0 # y 0 = e
MY_ R O R ( 2 5 - 1 1 ) , y 0 # y 0 = e > > ( 2 5 - 1 1 )
mov a , y 1 # y 1 = a
xor e , y 0 # y 0 = e ^ ( e > > ( 2 5 - 1 1 ) )
MY_ R O R ( 2 2 - 1 3 ) , y 1 # y 1 = a > > ( 2 2 - 1 3 )
mov f , y 2 # y 2 = f
xor a , y 1 # y 1 = a ^ ( a > > ( 2 2 - 1 3 )
MY_ R O R ( 1 1 - 6 ) , y 0 # y 0 = ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
xor g , y 2 # y 2 = f ^ g
xor e , y 0 # y 0 = e ^ ( e > > ( 1 1 - 6 ) ) ^ ( e > > ( 2 5 - 6 ) )
MY_ R O R ( 1 3 - 2 ) , y 1 # y 1 = ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
and e , y 2 # y 2 = ( f ^ g ) & e
xor a , y 1 # y 1 = a ^ ( a > > ( 1 3 - 2 ) ) ^ ( a > > ( 2 2 - 2 ) )
MY_ R O R 6 , y 0 # y 0 = S 1 = ( e > > 6 ) & ( e > > 1 1 ) ^ ( e > > 2 5 )
xor g , y 2 # y 2 = C H = ( ( f ^ g ) & e ) ^ g
add y 0 , y 2 # y 2 = S 1 + C H
MY_ R O R 2 , y 1 # y 1 = S 0 = ( a > > 2 ) ^ ( a > > 1 3 ) ^ ( a > > 2 2 )
offset = \ r o u n d * 4 + _ X F E R #
add o f f s e t ( % r s p ) , y 2 # y 2 = k + w + S 1 + C H
mov a , y 0 # y 0 = a
add y 2 , h # h = h + S 1 + C H + k + w
mov a , y 2 # y 2 = a
or c , y 0 # y 0 = a | c
add h , d # d = d + h + S 1 + C H + k + w
and c , y 2 # y 2 = a & c
and b , y 0 # y 0 = ( a | c ) & b
add y 1 , h # h = h + S 1 + C H + k + w + S 0
or y 2 , y 0 # y 0 = M A J = ( a | c ) & b ) | ( a & c )
add y 0 , h # h = h + S 1 + C H + k + w + S 0 + M A J
ROTATE_ A R G S
.endm
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# # void s h a25 6 _ t r a n s f o r m _ a v x ( v o i d * i n p u t _ d a t a , U I N T 3 2 d i g e s t [ 8 ] , U I N T 6 4 n u m _ b l k s )
2015-04-09 12:55:47 +02:00
# # arg 1 : p o i n t e r t o d i g e s t
# # arg 2 : p o i n t e r t o i n p u t d a t a
2013-03-26 13:59:05 -07:00
# # arg 3 : N u m b l o c k s
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
.text
2019-10-11 13:51:04 +02:00
SYM_ F U N C _ S T A R T ( s h a25 6 _ t r a n s f o r m _ a v x )
2013-03-26 13:59:05 -07:00
.align 32
pushq % r b x
2017-09-18 14:42:07 -05:00
pushq % r12
2013-03-26 13:59:05 -07:00
pushq % r13
pushq % r14
pushq % r15
2017-09-18 14:42:07 -05:00
pushq % r b p
movq % r s p , % r b p
2013-03-26 13:59:05 -07:00
subq $ S T A C K _ S I Z E , % r s p # a l l o c a t e s t a c k s p a c e
and $ ~ 1 5 , % r s p # a l i g n s t a c k p o i n t e r
shl $ 6 , N U M _ B L K S # c o n v e r t t o b y t e s
jz d o n e _ h a s h
add I N P , N U M _ B L K S # p o i n t e r t o e n d o f d a t a
mov N U M _ B L K S , _ I N P _ E N D ( % r s p )
# # load i n i t i a l d i g e s t
mov 4 * 0 ( C T X ) , a
mov 4 * 1 ( C T X ) , b
mov 4 * 2 ( C T X ) , c
mov 4 * 3 ( C T X ) , d
mov 4 * 4 ( C T X ) , e
mov 4 * 5 ( C T X ) , f
mov 4 * 6 ( C T X ) , g
mov 4 * 7 ( C T X ) , h
vmovdqa P S H U F F L E _ B Y T E _ F L I P _ M A S K ( % r i p ) , B Y T E _ F L I P _ M A S K
vmovdqa _ S H U F _ 0 0 B A ( % r i p ) , S H U F _ 0 0 B A
vmovdqa _ S H U F _ D C 0 0 ( % r i p ) , S H U F _ D C 0 0
loop0 :
lea K 2 5 6 ( % r i p ) , T B L
# # byte s w a p f i r s t 1 6 d w o r d s
COPY_ X M M _ A N D _ B S W A P X 0 , 0 * 1 6 ( I N P ) , B Y T E _ F L I P _ M A S K
COPY_ X M M _ A N D _ B S W A P X 1 , 1 * 1 6 ( I N P ) , B Y T E _ F L I P _ M A S K
COPY_ X M M _ A N D _ B S W A P X 2 , 2 * 1 6 ( I N P ) , B Y T E _ F L I P _ M A S K
COPY_ X M M _ A N D _ B S W A P X 3 , 3 * 1 6 ( I N P ) , B Y T E _ F L I P _ M A S K
mov I N P , _ I N P ( % r s p )
# # schedule 4 8 i n p u t d w o r d s , b y d o i n g 3 r o u n d s o f 1 6 e a c h
mov $ 3 , S R N D
.align 16
loop1 :
vpaddd ( T B L ) , X 0 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
FOUR_ R O U N D S _ A N D _ S C H E D
vpaddd 1 * 1 6 ( T B L ) , X 0 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
FOUR_ R O U N D S _ A N D _ S C H E D
vpaddd 2 * 1 6 ( T B L ) , X 0 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
FOUR_ R O U N D S _ A N D _ S C H E D
vpaddd 3 * 1 6 ( T B L ) , X 0 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
add $ 4 * 1 6 , T B L
FOUR_ R O U N D S _ A N D _ S C H E D
sub $ 1 , S R N D
jne l o o p1
mov $ 2 , S R N D
loop2 :
vpaddd ( T B L ) , X 0 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
DO_ R O U N D 0
DO_ R O U N D 1
DO_ R O U N D 2
DO_ R O U N D 3
vpaddd 1 * 1 6 ( T B L ) , X 1 , X F E R
vmovdqa X F E R , _ X F E R ( % r s p )
add $ 2 * 1 6 , T B L
DO_ R O U N D 0
DO_ R O U N D 1
DO_ R O U N D 2
DO_ R O U N D 3
vmovdqa X 2 , X 0
vmovdqa X 3 , X 1
sub $ 1 , S R N D
jne l o o p2
addm ( 4 * 0 ) ( C T X ) ,a
addm ( 4 * 1 ) ( C T X ) ,b
addm ( 4 * 2 ) ( C T X ) ,c
addm ( 4 * 3 ) ( C T X ) ,d
addm ( 4 * 4 ) ( C T X ) ,e
addm ( 4 * 5 ) ( C T X ) ,f
addm ( 4 * 6 ) ( C T X ) ,g
addm ( 4 * 7 ) ( C T X ) ,h
mov _ I N P ( % r s p ) , I N P
add $ 6 4 , I N P
cmp _ I N P _ E N D ( % r s p ) , I N P
jne l o o p0
done_hash :
2017-09-18 14:42:07 -05:00
mov % r b p , % r s p
popq % r b p
2013-03-26 13:59:05 -07:00
popq % r15
popq % r14
popq % r13
2017-09-18 14:42:07 -05:00
popq % r12
2013-03-26 13:59:05 -07:00
popq % r b x
ret
2019-10-11 13:51:04 +02:00
SYM_ F U N C _ E N D ( s h a25 6 _ t r a n s f o r m _ a v x )
2013-03-26 13:59:05 -07:00
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 22:33:04 +01:00
.section .rodata .cst256 .K256 , " aM" , @progbits, 256
2013-03-26 13:59:05 -07:00
.align 64
K256 :
.long 0 x4 2 8 a2 f98 ,0 x71 3 7 4 4 9 1 ,0 x b5 c0 f b c f ,0 x e 9 b5 d b a5
.long 0 x3 9 5 6 c25 b ,0 x59 f11 1 f1 ,0 x92 3 f82 a4 ,0 x a b1 c5 e d5
.long 0 xd8 0 7 a a98 ,0 x12 8 3 5 b01 ,0 x24 3 1 8 5 b e ,0 x55 0 c7 d c3
.long 0 x7 2 b e 5 d74 ,0 x80 d e b1 f e ,0 x9 b d c06 a7 ,0 x c19 b f17 4
.long 0 xe4 9 b69 c1 ,0 x e f b e 4 7 8 6 ,0 x0 f c19 d c6 ,0 x24 0 c a1 c c
.long 0 x2 d e 9 2 c6 f ,0 x4 a74 8 4 a a ,0 x5 c b0 a9 d c ,0 x76 f98 8 d a
.long 0 x9 8 3 e 5 1 5 2 ,0 x a83 1 c66 d ,0 x b00 3 2 7 c8 ,0 x b f59 7 f c7
.long 0 xc6 e 0 0 b f3 ,0 x d5 a79 1 4 7 ,0 x06 c a63 5 1 ,0 x14 2 9 2 9 6 7
.long 0 x2 7 b70 a85 ,0 x2 e 1 b21 3 8 ,0 x4 d2 c6 d f c ,0 x53 3 8 0 d13
.long 0 x6 5 0 a73 5 4 ,0 x76 6 a0 a b b ,0 x81 c2 c92 e ,0 x92 7 2 2 c85
.long 0 xa2 b f e 8 a1 ,0 x a81 a66 4 b ,0 x c24 b8 b70 ,0 x c76 c51 a3
.long 0 xd1 9 2 e 8 1 9 ,0 x d69 9 0 6 2 4 ,0 x f40 e 3 5 8 5 ,0 x10 6 a a07 0
.long 0 x1 9 a4 c11 6 ,0 x1 e 3 7 6 c08 ,0 x27 4 8 7 7 4 c ,0 x34 b0 b c b5
.long 0 x3 9 1 c0 c b3 ,0 x4 e d8 a a4 a ,0 x5 b9 c c a4 f ,0 x68 2 e 6 f f3
.long 0 x7 4 8 f82 e e ,0 x78 a56 3 6 f ,0 x84 c87 8 1 4 ,0 x8 c c70 2 0 8
.long 0 x9 0 b e f f f a ,0 x a45 0 6 c e b ,0 x b e f9 a3 f7 ,0 x c67 1 7 8 f2
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 22:33:04 +01:00
.section .rodata .cst16 .PSHUFFLE_BYTE_FLIP_MASK , " aM" , @progbits, 16
.align 16
2013-03-26 13:59:05 -07:00
PSHUFFLE_BYTE_FLIP_MASK :
.octa 0x0c0d0e0f08090a0b0405060700010203
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 22:33:04 +01:00
.section .rodata .cst16 ._SHUF_00BA , " aM" , @progbits, 16
.align 16
2013-03-26 13:59:05 -07:00
# shuffle x B x A - > 0 0 B A
_SHUF_00BA :
.octa 0xFFFFFFFFFFFFFFFF0b0a090803020100
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 22:33:04 +01:00
.section .rodata .cst16 ._SHUF_DC00 , " aM" , @progbits, 16
.align 16
2013-03-26 13:59:05 -07:00
# shuffle x D x C - > D C 0 0
_SHUF_DC00 :
.octa 0x0b0a090803020100FFFFFFFFFFFFFFFF
crypto: x86 - make constants readonly, allow linker to merge them
A lot of asm-optimized routines in arch/x86/crypto/ keep its
constants in .data. This is wrong, they should be on .rodata.
Mnay of these constants are the same in different modules.
For example, 128-bit shuffle mask 0x000102030405060708090A0B0C0D0E0F
exists in at least half a dozen places.
There is a way to let linker merge them and use just one copy.
The rules are as follows: mergeable objects of different sizes
should not share sections. You can't put them all in one .rodata
section, they will lose "mergeability".
GCC puts its mergeable constants in ".rodata.cstSIZE" sections,
or ".rodata.cstSIZE.<object_name>" if -fdata-sections is used.
This patch does the same:
.section .rodata.cst16.SHUF_MASK, "aM", @progbits, 16
It is important that all data in such section consists of
16-byte elements, not larger ones, and there are no implicit
use of one element from another.
When this is not the case, use non-mergeable section:
.section .rodata[.VAR_NAME], "a", @progbits
This reduces .data by ~15 kbytes:
text data bss dec hex filename
11097415 2705840 2630712 16433967 fac32f vmlinux-prev.o
11112095 2690672 2630712 16433479 fac147 vmlinux.o
Merged objects are visible in System.map:
ffffffff81a28810 r POLY
ffffffff81a28810 r POLY
ffffffff81a28820 r TWOONE
ffffffff81a28820 r TWOONE
ffffffff81a28830 r PSHUFFLE_BYTE_FLIP_MASK <- merged regardless of
ffffffff81a28830 r SHUF_MASK <------------- the name difference
ffffffff81a28830 r SHUF_MASK
ffffffff81a28830 r SHUF_MASK
..
ffffffff81a28d00 r K512 <- merged three identical 640-byte tables
ffffffff81a28d00 r K512
ffffffff81a28d00 r K512
Use of object names in section name suffixes is not strictly necessary,
but might help if someday link stage will use garbage collection
to eliminate unused sections (ld --gc-sections).
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Herbert Xu <herbert@gondor.apana.org.au>
CC: Josh Poimboeuf <jpoimboe@redhat.com>
CC: Xiaodong Liu <xiaodong.liu@intel.com>
CC: Megha Dey <megha.dey@intel.com>
CC: linux-crypto@vger.kernel.org
CC: x86@kernel.org
CC: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2017-01-19 22:33:04 +01:00
2013-03-26 13:59:05 -07:00
# endif