binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
# ifndef _LINUX_BINDER_INTERNAL_H
# define _LINUX_BINDER_INTERNAL_H
# include <linux/export.h>
# include <linux/fs.h>
# include <linux/list.h>
# include <linux/miscdevice.h>
# include <linux/mutex.h>
2020-03-03 17:43:40 +01:00
# include <linux/refcount.h>
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
# include <linux/stddef.h>
# include <linux/types.h>
# include <linux/uidgid.h>
struct binder_context {
struct binder_node * binder_context_mgr_node ;
struct mutex context_mgr_node_lock ;
kuid_t binder_context_mgr_uid ;
const char * name ;
} ;
/**
* struct binder_device - information about a binder device node
* @ hlist : list of binder devices ( only used for devices requested via
* CONFIG_ANDROID_BINDER_DEVICES )
* @ miscdev : information about a binder character device node
* @ context : binder context information
* @ binderfs_inode : This is the inode of the root dentry of the super block
* belonging to a binderfs mount .
*/
struct binder_device {
struct hlist_node hlist ;
struct miscdevice miscdev ;
struct binder_context context ;
struct inode * binderfs_inode ;
2020-03-03 17:43:40 +01:00
refcount_t ref ;
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
} ;
2019-09-03 09:16:55 -07:00
/**
* binderfs_mount_opts - mount options for binderfs
* @ max : maximum number of allocatable binderfs binder devices
* @ stats_mode : enable binder stats in binderfs .
*/
struct binderfs_mount_opts {
int max ;
int stats_mode ;
} ;
/**
* binderfs_info - information about a binderfs mount
* @ ipc_ns : The ipc namespace the binderfs mount belongs to .
* @ control_dentry : This records the dentry of this binderfs mount
* binder - control device .
* @ root_uid : uid that needs to be used when a new binder device is
* created .
* @ root_gid : gid that needs to be used when a new binder device is
* created .
* @ mount_opts : The mount options in use .
* @ device_count : The current number of allocated binder devices .
* @ proc_log_dir : Pointer to the directory dentry containing process - specific
* logs .
*/
struct binderfs_info {
struct ipc_namespace * ipc_ns ;
struct dentry * control_dentry ;
kuid_t root_uid ;
kgid_t root_gid ;
struct binderfs_mount_opts mount_opts ;
int device_count ;
struct dentry * proc_log_dir ;
} ;
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
extern const struct file_operations binder_fops ;
2019-09-04 13:07:03 +02:00
extern char * binder_devices_param ;
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
# ifdef CONFIG_ANDROID_BINDERFS
extern bool is_binderfs_device ( const struct inode * inode ) ;
2019-09-03 09:16:55 -07:00
extern struct dentry * binderfs_create_file ( struct dentry * dir , const char * name ,
const struct file_operations * fops ,
void * data ) ;
extern void binderfs_remove_file ( struct dentry * dentry ) ;
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
# else
static inline bool is_binderfs_device ( const struct inode * inode )
{
return false ;
}
2019-09-03 09:16:55 -07:00
static inline struct dentry * binderfs_create_file ( struct dentry * dir ,
const char * name ,
const struct file_operations * fops ,
void * data )
{
return NULL ;
}
static inline void binderfs_remove_file ( struct dentry * dentry ) { }
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
# endif
2019-01-31 01:25:02 +01:00
# ifdef CONFIG_ANDROID_BINDERFS
extern int __init init_binderfs ( void ) ;
# else
static inline int __init init_binderfs ( void )
{
return 0 ;
}
# endif
2019-09-03 09:16:53 -07:00
int binder_stats_show ( struct seq_file * m , void * unused ) ;
DEFINE_SHOW_ATTRIBUTE ( binder_stats ) ;
int binder_state_show ( struct seq_file * m , void * unused ) ;
DEFINE_SHOW_ATTRIBUTE ( binder_state ) ;
int binder_transactions_show ( struct seq_file * m , void * unused ) ;
DEFINE_SHOW_ATTRIBUTE ( binder_transactions ) ;
2019-09-03 09:16:54 -07:00
int binder_transaction_log_show ( struct seq_file * m , void * unused ) ;
DEFINE_SHOW_ATTRIBUTE ( binder_transaction_log ) ;
struct binder_transaction_log_entry {
int debug_id ;
int debug_id_done ;
int call_type ;
int from_proc ;
int from_thread ;
int target_handle ;
int to_proc ;
int to_thread ;
int to_node ;
int data_size ;
int offsets_size ;
int return_error_line ;
uint32_t return_error ;
uint32_t return_error_param ;
2019-10-08 15:01:59 +02:00
char context_name [ BINDERFS_MAX_NAME + 1 ] ;
2019-09-03 09:16:54 -07:00
} ;
struct binder_transaction_log {
atomic_t cur ;
bool full ;
struct binder_transaction_log_entry entry [ 32 ] ;
} ;
extern struct binder_transaction_log binder_transaction_log ;
extern struct binder_transaction_log binder_transaction_log_failed ;
binder: implement binderfs
As discussed at Linux Plumbers Conference 2018 in Vancouver [1] this is the
implementation of binderfs.
/* Abstract */
binderfs is a backwards-compatible filesystem for Android's binder ipc
mechanism. Each ipc namespace will mount a new binderfs instance. Mounting
binderfs multiple times at different locations in the same ipc namespace
will not cause a new super block to be allocated and hence it will be the
same filesystem instance.
Each new binderfs mount will have its own set of binder devices only
visible in the ipc namespace it has been mounted in. All devices in a new
binderfs mount will follow the scheme binder%d and numbering will always
start at 0.
/* Backwards compatibility */
Devices requested in the Kconfig via CONFIG_ANDROID_BINDER_DEVICES for the
initial ipc namespace will work as before. They will be registered via
misc_register() and appear in the devtmpfs mount. Specifically, the
standard devices binder, hwbinder, and vndbinder will all appear in their
standard locations in /dev. Mounting or unmounting the binderfs mount in
the initial ipc namespace will have no effect on these devices, i.e. they
will neither show up in the binderfs mount nor will they disappear when the
binderfs mount is gone.
/* binder-control */
Each new binderfs instance comes with a binder-control device. No other
devices will be present at first. The binder-control device can be used to
dynamically allocate binder devices. All requests operate on the binderfs
mount the binder-control device resides in.
Assuming a new instance of binderfs has been mounted at /dev/binderfs
via mount -t binderfs binderfs /dev/binderfs. Then a request to create a
new binder device can be made as illustrated in [2].
Binderfs devices can simply be removed via unlink().
/* Implementation details */
- dynamic major number allocation:
When binderfs is registered as a new filesystem it will dynamically
allocate a new major number. The allocated major number will be returned
in struct binderfs_device when a new binder device is allocated.
- global minor number tracking:
Minor are tracked in a global idr struct that is capped at
BINDERFS_MAX_MINOR. The minor number tracker is protected by a global
mutex. This is the only point of contention between binderfs mounts.
- struct binderfs_info:
Each binderfs super block has its own struct binderfs_info that tracks
specific details about a binderfs instance:
- ipc namespace
- dentry of the binder-control device
- root uid and root gid of the user namespace the binderfs instance
was mounted in
- mountable by user namespace root:
binderfs can be mounted by user namespace root in a non-initial user
namespace. The devices will be owned by user namespace root.
- binderfs binder devices without misc infrastructure:
New binder devices associated with a binderfs mount do not use the
full misc_register() infrastructure.
The misc_register() infrastructure can only create new devices in the
host's devtmpfs mount. binderfs does however only make devices appear
under its own mountpoint and thus allocates new character device nodes
from the inode of the root dentry of the super block. This will have
the side-effect that binderfs specific device nodes do not appear in
sysfs. This behavior is similar to devpts allocated pts devices and
has no effect on the functionality of the ipc mechanism itself.
[1]: https://goo.gl/JL2tfX
[2]: program to allocate a new binderfs binder device:
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <linux/android/binder_ctl.h>
int main(int argc, char *argv[])
{
int fd, ret, saved_errno;
size_t len;
struct binderfs_device device = { 0 };
if (argc < 2)
exit(EXIT_FAILURE);
len = strlen(argv[1]);
if (len > BINDERFS_MAX_NAME)
exit(EXIT_FAILURE);
memcpy(device.name, argv[1], len);
fd = open("/dev/binderfs/binder-control", O_RDONLY | O_CLOEXEC);
if (fd < 0) {
printf("%s - Failed to open binder-control device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
ret = ioctl(fd, BINDER_CTL_ADD, &device);
saved_errno = errno;
close(fd);
errno = saved_errno;
if (ret < 0) {
printf("%s - Failed to allocate new binder device\n",
strerror(errno));
exit(EXIT_FAILURE);
}
printf("Allocated new binder device with major %d, minor %d, and "
"name %s\n", device.major, device.minor,
device.name);
exit(EXIT_SUCCESS);
}
Cc: Martijn Coenen <maco@android.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-14 13:11:14 +01:00
# endif /* _LINUX_BINDER_INTERNAL_H */