linux/fs/nfsd/xdr.h

170 lines
3.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
/* XDR types for nfsd. This is mainly a typing exercise. */
#ifndef LINUX_NFSD_H
#define LINUX_NFSD_H
#include <linux/vfs.h>
#include "nfsd.h"
#include "nfsfh.h"
struct nfsd_fhandle {
struct svc_fh fh;
};
struct nfsd_sattrargs {
struct svc_fh fh;
struct iattr attrs;
};
struct nfsd_diropargs {
struct svc_fh fh;
char * name;
unsigned int len;
};
struct nfsd_readargs {
struct svc_fh fh;
__u32 offset;
__u32 count;
};
struct nfsd_writeargs {
svc_fh fh;
__u32 offset;
int len;
NFSD: Clean up legacy NFS WRITE argument XDR decoders Move common code in NFSD's legacy NFS WRITE decoders into a helper. The immediate benefit is reduction of code duplication and some nice micro-optimizations (see below). In the long term, this helper can perform a per-transport call-out to fill the rq_vec (say, using RDMA Reads). The legacy WRITE decoders and procs are changed to work like NFSv4, which constructs the rq_vec just before it is about to call vfs_writev. Why? Calling a transport call-out from the proc instead of the XDR decoder means that the incoming FH can be resolved to a particular filesystem and file. This would allow pages from the backing file to be presented to the transport to be filled, rather than presenting anonymous pages and copying or flipping them into the file's page cache later. I also prefer using the pages in rq_arg.pages, instead of pulling the data pages directly out of the rqstp::rq_pages array. This is currently the way the NFSv3 write decoder works, but the other two do not seem to take this approach. Fixing this removes the only reference to rq_pages found in NFSD, eliminating an NFSD assumption about how transports use the pages in rq_pages. Lastly, avoid setting up the first element of rq_vec as a zero- length buffer. This happens with an RDMA transport when a normal Read chunk is present because the data payload is in rq_arg's page list (none of it is in the head buffer). Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
2018-03-27 10:54:07 -04:00
struct kvec first;
};
struct nfsd_createargs {
struct svc_fh fh;
char * name;
unsigned int len;
struct iattr attrs;
};
struct nfsd_renameargs {
struct svc_fh ffh;
char * fname;
unsigned int flen;
struct svc_fh tfh;
char * tname;
unsigned int tlen;
};
struct nfsd_linkargs {
struct svc_fh ffh;
struct svc_fh tfh;
char * tname;
unsigned int tlen;
};
struct nfsd_symlinkargs {
struct svc_fh ffh;
char * fname;
unsigned int flen;
char * tname;
unsigned int tlen;
struct iattr attrs;
struct kvec first;
};
struct nfsd_readdirargs {
struct svc_fh fh;
__u32 cookie;
__u32 count;
};
struct nfsd_stat {
__be32 status;
};
struct nfsd_attrstat {
__be32 status;
struct svc_fh fh;
struct kstat stat;
};
struct nfsd_diropres {
__be32 status;
struct svc_fh fh;
struct kstat stat;
};
struct nfsd_readlinkres {
__be32 status;
int len;
};
struct nfsd_readres {
__be32 status;
struct svc_fh fh;
unsigned long count;
struct kstat stat;
};
struct nfsd_readdirres {
__be32 status;
int count;
struct readdir_cd common;
__be32 * buffer;
int buflen;
__be32 * offset;
};
struct nfsd_statfsres {
__be32 status;
struct kstatfs stats;
};
/*
* Storage requirements for XDR arguments and results.
*/
union nfsd_xdrstore {
struct nfsd_sattrargs sattr;
struct nfsd_diropargs dirop;
struct nfsd_readargs read;
struct nfsd_writeargs write;
struct nfsd_createargs create;
struct nfsd_renameargs rename;
struct nfsd_linkargs link;
struct nfsd_symlinkargs symlink;
struct nfsd_readdirargs readdir;
};
#define NFS2_SVC_XDRSIZE sizeof(union nfsd_xdrstore)
int nfssvc_decode_fhandleargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_sattrargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_diropargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_readargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_writeargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_createargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_renameargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_linkargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_symlinkargs(struct svc_rqst *, __be32 *);
int nfssvc_decode_readdirargs(struct svc_rqst *, __be32 *);
int nfssvc_encode_stat(struct svc_rqst *, __be32 *);
int nfssvc_encode_attrstat(struct svc_rqst *, __be32 *);
int nfssvc_encode_diropres(struct svc_rqst *, __be32 *);
int nfssvc_encode_readlinkres(struct svc_rqst *, __be32 *);
int nfssvc_encode_readres(struct svc_rqst *, __be32 *);
int nfssvc_encode_statfsres(struct svc_rqst *, __be32 *);
int nfssvc_encode_readdirres(struct svc_rqst *, __be32 *);
int nfssvc_encode_entry(void *, const char *name,
int namlen, loff_t offset, u64 ino, unsigned int);
void nfssvc_release_attrstat(struct svc_rqst *rqstp);
void nfssvc_release_diropres(struct svc_rqst *rqstp);
void nfssvc_release_readres(struct svc_rqst *rqstp);
/* Helper functions for NFSv2 ACL code */
__be32 *nfs2svc_encode_fattr(struct svc_rqst *rqstp, __be32 *p, struct svc_fh *fhp, struct kstat *stat);
bool svcxdr_decode_fhandle(struct xdr_stream *xdr, struct svc_fh *fhp);
#endif /* LINUX_NFSD_H */