linux/tools/perf/util/env.c

357 lines
7.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
// SPDX-License-Identifier: GPL-2.0
#include "cpumap.h"
#include "debug.h"
#include "env.h"
#include "util/header.h"
#include <linux/ctype.h>
#include <linux/zalloc.h>
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
#include "bpf-event.h"
#include <errno.h>
#include <sys/utsname.h>
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
#include <bpf/libbpf.h>
#include <stdlib.h>
#include <string.h>
struct perf_env perf_env;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
void perf_env__insert_bpf_prog_info(struct perf_env *env,
struct bpf_prog_info_node *info_node)
{
__u32 prog_id = info_node->info_linear->info.id;
struct bpf_prog_info_node *node;
struct rb_node *parent = NULL;
struct rb_node **p;
down_write(&env->bpf_progs.lock);
p = &env->bpf_progs.infos.rb_node;
while (*p != NULL) {
parent = *p;
node = rb_entry(parent, struct bpf_prog_info_node, rb_node);
if (prog_id < node->info_linear->info.id) {
p = &(*p)->rb_left;
} else if (prog_id > node->info_linear->info.id) {
p = &(*p)->rb_right;
} else {
pr_debug("duplicated bpf prog info %u\n", prog_id);
goto out;
}
}
rb_link_node(&info_node->rb_node, parent, p);
rb_insert_color(&info_node->rb_node, &env->bpf_progs.infos);
env->bpf_progs.infos_cnt++;
out:
up_write(&env->bpf_progs.lock);
}
struct bpf_prog_info_node *perf_env__find_bpf_prog_info(struct perf_env *env,
__u32 prog_id)
{
struct bpf_prog_info_node *node = NULL;
struct rb_node *n;
down_read(&env->bpf_progs.lock);
n = env->bpf_progs.infos.rb_node;
while (n) {
node = rb_entry(n, struct bpf_prog_info_node, rb_node);
if (prog_id < node->info_linear->info.id)
n = n->rb_left;
else if (prog_id > node->info_linear->info.id)
n = n->rb_right;
else
goto out;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
}
node = NULL;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
out:
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
up_read(&env->bpf_progs.lock);
return node;
}
void perf_env__insert_btf(struct perf_env *env, struct btf_node *btf_node)
{
struct rb_node *parent = NULL;
__u32 btf_id = btf_node->id;
struct btf_node *node;
struct rb_node **p;
down_write(&env->bpf_progs.lock);
p = &env->bpf_progs.btfs.rb_node;
while (*p != NULL) {
parent = *p;
node = rb_entry(parent, struct btf_node, rb_node);
if (btf_id < node->id) {
p = &(*p)->rb_left;
} else if (btf_id > node->id) {
p = &(*p)->rb_right;
} else {
pr_debug("duplicated btf %u\n", btf_id);
goto out;
}
}
rb_link_node(&btf_node->rb_node, parent, p);
rb_insert_color(&btf_node->rb_node, &env->bpf_progs.btfs);
env->bpf_progs.btfs_cnt++;
out:
up_write(&env->bpf_progs.lock);
}
struct btf_node *perf_env__find_btf(struct perf_env *env, __u32 btf_id)
{
struct btf_node *node = NULL;
struct rb_node *n;
down_read(&env->bpf_progs.lock);
n = env->bpf_progs.btfs.rb_node;
while (n) {
node = rb_entry(n, struct btf_node, rb_node);
if (btf_id < node->id)
n = n->rb_left;
else if (btf_id > node->id)
n = n->rb_right;
else
goto out;
}
node = NULL;
out:
up_read(&env->bpf_progs.lock);
return node;
}
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
/* purge data in bpf_progs.infos tree */
static void perf_env__purge_bpf(struct perf_env *env)
{
struct rb_root *root;
struct rb_node *next;
down_write(&env->bpf_progs.lock);
root = &env->bpf_progs.infos;
next = rb_first(root);
while (next) {
struct bpf_prog_info_node *node;
node = rb_entry(next, struct bpf_prog_info_node, rb_node);
next = rb_next(&node->rb_node);
rb_erase(&node->rb_node, root);
free(node);
}
env->bpf_progs.infos_cnt = 0;
root = &env->bpf_progs.btfs;
next = rb_first(root);
while (next) {
struct btf_node *node;
node = rb_entry(next, struct btf_node, rb_node);
next = rb_next(&node->rb_node);
rb_erase(&node->rb_node, root);
free(node);
}
env->bpf_progs.btfs_cnt = 0;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
up_write(&env->bpf_progs.lock);
}
void perf_env__exit(struct perf_env *env)
{
int i;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
perf_env__purge_bpf(env);
zfree(&env->hostname);
zfree(&env->os_release);
zfree(&env->version);
zfree(&env->arch);
zfree(&env->cpu_desc);
zfree(&env->cpuid);
zfree(&env->cmdline);
zfree(&env->cmdline_argv);
zfree(&env->sibling_cores);
zfree(&env->sibling_threads);
zfree(&env->pmu_mappings);
zfree(&env->cpu);
for (i = 0; i < env->nr_numa_nodes; i++)
perf_cpu_map__put(env->numa_nodes[i].map);
zfree(&env->numa_nodes);
for (i = 0; i < env->caches_cnt; i++)
cpu_cache_level__free(&env->caches[i]);
zfree(&env->caches);
for (i = 0; i < env->nr_memory_nodes; i++)
zfree(&env->memory_nodes[i].set);
zfree(&env->memory_nodes);
}
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
void perf_env__init(struct perf_env *env)
{
env->bpf_progs.infos = RB_ROOT;
env->bpf_progs.btfs = RB_ROOT;
perf bpf: Save bpf_prog_info in a rbtree in perf_env bpf_prog_info contains information necessary to annotate bpf programs. This patch saves bpf_prog_info for bpf programs loaded in the system. Some big picture of the next few patches: To fully annotate BPF programs with source code mapping, 4 different informations are needed: 1) PERF_RECORD_KSYMBOL 2) PERF_RECORD_BPF_EVENT 3) bpf_prog_info 4) btf Before this set, 1) and 2) in the list are already saved to perf.data file. For BPF programs that are already loaded before perf run, 1) and 2) are synthesized by perf_event__synthesize_bpf_events(). For short living BPF programs, 1) and 2) are generated by kernel. This set handles 3) and 4) from the list. Again, it is necessary to handle existing BPF program and short living program separately. This patch handles 3) for exising BPF programs while synthesizing 1) and 2) in perf_event__synthesize_bpf_events(). These data are stored in perf_env. The next patch saves these data from perf_env to perf.data as headers. Similarly, the two patches after the next saves 4) of existing BPF programs to perf_env and perf.data. Another patch later will handle 3) and 4) for short living BPF programs by monitoring 1) and 2) in a dedicate thread. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stanislav Fomichev <sdf@google.com> Cc: kernel-team@fb.com Link: http://lkml.kernel.org/r/20190312053051.2690567-7-songliubraving@fb.com [ set env->bpf_progs.infos_cnt to zero in perf_env__purge_bpf() as noted by jolsa ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-03-12 08:30:42 +03:00
init_rwsem(&env->bpf_progs.lock);
}
int perf_env__set_cmdline(struct perf_env *env, int argc, const char *argv[])
{
int i;
/* do not include NULL termination */
env->cmdline_argv = calloc(argc, sizeof(char *));
if (env->cmdline_argv == NULL)
goto out_enomem;
/*
* Must copy argv contents because it gets moved around during option
* parsing:
*/
for (i = 0; i < argc ; i++) {
env->cmdline_argv[i] = argv[i];
if (env->cmdline_argv[i] == NULL)
goto out_free;
}
env->nr_cmdline = argc;
return 0;
out_free:
zfree(&env->cmdline_argv);
out_enomem:
return -ENOMEM;
}
int perf_env__read_cpu_topology_map(struct perf_env *env)
{
int cpu, nr_cpus;
if (env->cpu != NULL)
return 0;
if (env->nr_cpus_avail == 0)
perf tools: Replace _SC_NPROCESSORS_CONF with max_present_cpu in cpu_topology_map There are 2 problems wrt. cpu_topology_map on systems with sparse CPUs: 1. offline/absent CPUs will have their socket_id and core_id set to -1 which triggers: "socket_id number is too big.You may need to upgrade the perf tool." 2. size of cpu_topology_map (perf_env.cpu[]) is allocated based on _SC_NPROCESSORS_CONF, but can be indexed with CPU ids going above. Users of perf_env.cpu[] are using CPU id as index. This can lead to read beyond what was allocated: ==19991== Invalid read of size 4 ==19991== at 0x490CEB: check_cpu_topology (topology.c:69) ==19991== by 0x490CEB: test_session_topology (topology.c:106) ... For example: _SC_NPROCESSORS_CONF == 16 available: 2 nodes (0-1) node 0 cpus: 0 6 8 10 16 22 24 26 node 0 size: 12004 MB node 0 free: 9470 MB node 1 cpus: 1 7 9 11 23 25 27 node 1 size: 12093 MB node 1 free: 9406 MB node distances: node 0 1 0: 10 20 1: 20 10 This patch changes HEADER_NRCPUS.nr_cpus_available from _SC_NPROCESSORS_CONF to max_present_cpu and updates any user of cpu_topology_map to iterate with nr_cpus_avail. As a consequence HEADER_CPU_TOPOLOGY core_id and socket_id lists get longer, but maintain compatibility with pre-patch state - index to cpu_topology_map is CPU id. perf test 36 -v 36: Session topology : --- start --- test child forked, pid 22211 templ file: /tmp/perf-test-gmdX5i CPU 0, core 0, socket 0 CPU 1, core 0, socket 1 CPU 6, core 10, socket 0 CPU 7, core 10, socket 1 CPU 8, core 1, socket 0 CPU 9, core 1, socket 1 CPU 10, core 9, socket 0 CPU 11, core 9, socket 1 CPU 16, core 0, socket 0 CPU 22, core 10, socket 0 CPU 23, core 10, socket 1 CPU 24, core 1, socket 0 CPU 25, core 1, socket 1 CPU 26, core 9, socket 0 CPU 27, core 9, socket 1 test child finished with 0 ---- end ---- Session topology: Ok Signed-off-by: Jan Stancek <jstancek@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/d7c05c6445fca74a8442c2c73cfffd349c52c44f.1487146877.git.jstancek@redhat.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2017-02-17 14:10:26 +03:00
env->nr_cpus_avail = cpu__max_present_cpu();
nr_cpus = env->nr_cpus_avail;
if (nr_cpus == -1)
return -EINVAL;
env->cpu = calloc(nr_cpus, sizeof(env->cpu[0]));
if (env->cpu == NULL)
return -ENOMEM;
for (cpu = 0; cpu < nr_cpus; ++cpu) {
env->cpu[cpu].core_id = cpu_map__get_core_id(cpu);
env->cpu[cpu].socket_id = cpu_map__get_socket_id(cpu);
env->cpu[cpu].die_id = cpu_map__get_die_id(cpu);
}
env->nr_cpus_avail = nr_cpus;
return 0;
}
int perf_env__read_cpuid(struct perf_env *env)
{
char cpuid[128];
int err = get_cpuid(cpuid, sizeof(cpuid));
if (err)
return err;
free(env->cpuid);
env->cpuid = strdup(cpuid);
if (env->cpuid == NULL)
return ENOMEM;
return 0;
}
static int perf_env__read_arch(struct perf_env *env)
{
struct utsname uts;
if (env->arch)
return 0;
if (!uname(&uts))
env->arch = strdup(uts.machine);
return env->arch ? 0 : -ENOMEM;
}
static int perf_env__read_nr_cpus_avail(struct perf_env *env)
{
if (env->nr_cpus_avail == 0)
env->nr_cpus_avail = cpu__max_present_cpu();
return env->nr_cpus_avail ? 0 : -ENOENT;
}
const char *perf_env__raw_arch(struct perf_env *env)
{
return env && !perf_env__read_arch(env) ? env->arch : "unknown";
}
int perf_env__nr_cpus_avail(struct perf_env *env)
{
return env && !perf_env__read_nr_cpus_avail(env) ? env->nr_cpus_avail : 0;
}
void cpu_cache_level__free(struct cpu_cache_level *cache)
{
zfree(&cache->type);
zfree(&cache->map);
zfree(&cache->size);
}
/*
* Return architecture name in a normalized form.
* The conversion logic comes from the Makefile.
*/
static const char *normalize_arch(char *arch)
{
if (!strcmp(arch, "x86_64"))
return "x86";
if (arch[0] == 'i' && arch[2] == '8' && arch[3] == '6')
return "x86";
if (!strcmp(arch, "sun4u") || !strncmp(arch, "sparc", 5))
return "sparc";
if (!strcmp(arch, "aarch64") || !strcmp(arch, "arm64"))
return "arm64";
if (!strncmp(arch, "arm", 3) || !strcmp(arch, "sa110"))
return "arm";
if (!strncmp(arch, "s390", 4))
return "s390";
if (!strncmp(arch, "parisc", 6))
return "parisc";
if (!strncmp(arch, "powerpc", 7) || !strncmp(arch, "ppc", 3))
return "powerpc";
if (!strncmp(arch, "mips", 4))
return "mips";
if (!strncmp(arch, "sh", 2) && isdigit(arch[2]))
return "sh";
return arch;
}
const char *perf_env__arch(struct perf_env *env)
{
struct utsname uts;
char *arch_name;
if (!env || !env->arch) { /* Assume local operation */
if (uname(&uts) < 0)
return NULL;
arch_name = uts.machine;
} else
arch_name = env->arch;
return normalize_arch(arch_name);
}