linux/arch/powerpc/mm/slb_low.S

262 lines
7.1 KiB
ArmAsm
Raw Normal View History

/*
* Low-level SLB routines
*
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
*
* Based on earlier C version:
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
* Copyright (c) 2001 Dave Engebretsen
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/processor.h>
#include <asm/ppc_asm.h>
#include <asm/asm-offsets.h>
#include <asm/cputable.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/firmware.h>
/* void slb_allocate_realmode(unsigned long ea);
*
* Create an SLB entry for the given EA (user or kernel).
* r3 = faulting address, r13 = PACA
* r9, r10, r11 are clobbered by this function
* No other registers are examined or changed.
*/
_GLOBAL(slb_allocate_realmode)
/* r3 = faulting address */
srdi r9,r3,60 /* get region */
srdi r10,r3,28 /* get esid */
cmpldi cr7,r9,0xc /* cmp PAGE_OFFSET for later use */
/* r3 = address, r10 = esid, cr7 = <> PAGE_OFFSET */
blt cr7,0f /* user or kernel? */
/* kernel address: proto-VSID = ESID */
/* WARNING - MAGIC: we don't use the VSID 0xfffffffff, but
* this code will generate the protoVSID 0xfffffffff for the
* top segment. That's ok, the scramble below will translate
* it to VSID 0, which is reserved as a bad VSID - one which
* will never have any pages in it. */
/* Check if hitting the linear mapping of the vmalloc/ioremap
* kernel space
*/
bne cr7,1f
/* Linear mapping encoding bits, the "li" instruction below will
* be patched by the kernel at boot
*/
_GLOBAL(slb_miss_kernel_load_linear)
li r11,0
b slb_finish_load
powerpc: Use 64k pages without needing cache-inhibited large pages Some POWER5+ machines can do 64k hardware pages for normal memory but not for cache-inhibited pages. This patch lets us use 64k hardware pages for most user processes on such machines (assuming the kernel has been configured with CONFIG_PPC_64K_PAGES=y). User processes start out using 64k pages and get switched to 4k pages if they use any non-cacheable mappings. With this, we use 64k pages for the vmalloc region and 4k pages for the imalloc region. If anything creates a non-cacheable mapping in the vmalloc region, the vmalloc region will get switched to 4k pages. I don't know of any driver other than the DRM that would do this, though, and these machines don't have AGP. When a region gets switched from 64k pages to 4k pages, we do not have to clear out all the 64k HPTEs from the hash table immediately. We use the _PAGE_COMBO bit in the Linux PTE to indicate whether the page was hashed in as a 64k page or a set of 4k pages. If hash_page is trying to insert a 4k page for a Linux PTE and it sees that it has already been inserted as a 64k page, it first invalidates the 64k HPTE before inserting the 4k HPTE. The hash invalidation routines also use the _PAGE_COMBO bit, to determine whether to look for a 64k HPTE or a set of 4k HPTEs to remove. With those two changes, we can tolerate a mix of 4k and 64k HPTEs in the hash table, and they will all get removed when the address space is torn down. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-06-15 10:45:18 +10:00
1: /* vmalloc/ioremap mapping encoding bits, the "li" instructions below
* will be patched by the kernel at boot
*/
powerpc: Use 64k pages without needing cache-inhibited large pages Some POWER5+ machines can do 64k hardware pages for normal memory but not for cache-inhibited pages. This patch lets us use 64k hardware pages for most user processes on such machines (assuming the kernel has been configured with CONFIG_PPC_64K_PAGES=y). User processes start out using 64k pages and get switched to 4k pages if they use any non-cacheable mappings. With this, we use 64k pages for the vmalloc region and 4k pages for the imalloc region. If anything creates a non-cacheable mapping in the vmalloc region, the vmalloc region will get switched to 4k pages. I don't know of any driver other than the DRM that would do this, though, and these machines don't have AGP. When a region gets switched from 64k pages to 4k pages, we do not have to clear out all the 64k HPTEs from the hash table immediately. We use the _PAGE_COMBO bit in the Linux PTE to indicate whether the page was hashed in as a 64k page or a set of 4k pages. If hash_page is trying to insert a 4k page for a Linux PTE and it sees that it has already been inserted as a 64k page, it first invalidates the 64k HPTE before inserting the 4k HPTE. The hash invalidation routines also use the _PAGE_COMBO bit, to determine whether to look for a 64k HPTE or a set of 4k HPTEs to remove. With those two changes, we can tolerate a mix of 4k and 64k HPTEs in the hash table, and they will all get removed when the address space is torn down. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-06-15 10:45:18 +10:00
BEGIN_FTR_SECTION
/* check whether this is in vmalloc or ioremap space */
clrldi r11,r10,48
cmpldi r11,(VMALLOC_SIZE >> 28) - 1
bgt 5f
lhz r11,PACAVMALLOCSLLP(r13)
b slb_finish_load
5:
END_FTR_SECTION_IFCLR(CPU_FTR_CI_LARGE_PAGE)
_GLOBAL(slb_miss_kernel_load_io)
li r11,0
b slb_finish_load
0: /* user address: proto-VSID = context << 15 | ESID. First check
* if the address is within the boundaries of the user region
*/
srdi. r9,r10,USER_ESID_BITS
bne- 8f /* invalid ea bits set */
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
/* when using slices, we extract the psize off the slice bitmaps
* and then we need to get the sllp encoding off the mmu_psize_defs
* array.
*
* XXX This is a bit inefficient especially for the normal case,
* so we should try to implement a fast path for the standard page
* size using the old sllp value so we avoid the array. We cannot
* really do dynamic patching unfortunately as processes might flip
* between 4k and 64k standard page size
*/
#ifdef CONFIG_PPC_MM_SLICES
[PATCH] ppc64: Fix bug in SLB miss handler for hugepages This patch, however, should be applied on top of the 64k-page-size patch to fix some problems with hugepage (some pre-existing, another introduced by this patch). The patch fixes a bug in the SLB miss handler for hugepages on ppc64 introduced by the dynamic hugepage patch (commit id c594adad5653491813959277fb87a2fef54c4e05) due to a misunderstanding of the srd instruction's behaviour (mea culpa). The problem arises when a 64-bit process maps some hugepages in the low 4GB of the address space (unusual). In this case, as well as the 256M segment in question being marked for hugepages, other segments at 32G intervals will be incorrectly marked for hugepages. In the process, this patch tweaks the semantics of the hugepage bitmaps to be more sensible. Previously, an address below 4G was marked for hugepages if the appropriate segment bit in the "low areas" bitmask was set *or* if the low bit in the "high areas" bitmap was set (which would mark all addresses below 1TB for hugepage). With this patch, any given address is governed by a single bitmap. Addresses below 4GB are marked for hugepage if and only if their bit is set in the "low areas" bitmap (256M granularity). Addresses between 4GB and 1TB are marked for hugepage iff the low bit in the "high areas" bitmap is set. Higher addresses are marked for hugepage iff their bit in the "high areas" bitmap is set (1TB granularity). To avoid conflicts, this patch must be applied on top of BenH's pending patch for 64k base page size [0]. As such, this patch also addresses a hugepage problem introduced by that patch. That patch allows hugepages of 1MB in size on hardware which supports it, however, that won't work when using 4k pages (4 level pagetable), because in that case hugepage PTEs are stored at the PMD level, and each PMD entry maps 2MB. This patch simply disallows hugepages in that case (we can do something cleverer to re-enable them some other day). Built, booted, and a handful of hugepage related tests passed on POWER5 LPAR (both ARCH=powerpc and ARCH=ppc64). [0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 00:57:52 -08:00
cmpldi r10,16
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
/* Get the slice index * 4 in r11 and matching slice size mask in r9 */
ld r9,PACALOWSLICESPSIZE(r13)
sldi r11,r10,2
[PATCH] ppc64: Fix bug in SLB miss handler for hugepages This patch, however, should be applied on top of the 64k-page-size patch to fix some problems with hugepage (some pre-existing, another introduced by this patch). The patch fixes a bug in the SLB miss handler for hugepages on ppc64 introduced by the dynamic hugepage patch (commit id c594adad5653491813959277fb87a2fef54c4e05) due to a misunderstanding of the srd instruction's behaviour (mea culpa). The problem arises when a 64-bit process maps some hugepages in the low 4GB of the address space (unusual). In this case, as well as the 256M segment in question being marked for hugepages, other segments at 32G intervals will be incorrectly marked for hugepages. In the process, this patch tweaks the semantics of the hugepage bitmaps to be more sensible. Previously, an address below 4G was marked for hugepages if the appropriate segment bit in the "low areas" bitmask was set *or* if the low bit in the "high areas" bitmap was set (which would mark all addresses below 1TB for hugepage). With this patch, any given address is governed by a single bitmap. Addresses below 4GB are marked for hugepage if and only if their bit is set in the "low areas" bitmap (256M granularity). Addresses between 4GB and 1TB are marked for hugepage iff the low bit in the "high areas" bitmap is set. Higher addresses are marked for hugepage iff their bit in the "high areas" bitmap is set (1TB granularity). To avoid conflicts, this patch must be applied on top of BenH's pending patch for 64k base page size [0]. As such, this patch also addresses a hugepage problem introduced by that patch. That patch allows hugepages of 1MB in size on hardware which supports it, however, that won't work when using 4k pages (4 level pagetable), because in that case hugepage PTEs are stored at the PMD level, and each PMD entry maps 2MB. This patch simply disallows hugepages in that case (we can do something cleverer to re-enable them some other day). Built, booted, and a handful of hugepage related tests passed on POWER5 LPAR (both ARCH=powerpc and ARCH=ppc64). [0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 00:57:52 -08:00
blt 5f
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
ld r9,PACAHIGHSLICEPSIZE(r13)
srdi r11,r10,(SLICE_HIGH_SHIFT - SLICE_LOW_SHIFT - 2)
andi. r11,r11,0x3c
[PATCH] ppc64: Fix bug in SLB miss handler for hugepages This patch, however, should be applied on top of the 64k-page-size patch to fix some problems with hugepage (some pre-existing, another introduced by this patch). The patch fixes a bug in the SLB miss handler for hugepages on ppc64 introduced by the dynamic hugepage patch (commit id c594adad5653491813959277fb87a2fef54c4e05) due to a misunderstanding of the srd instruction's behaviour (mea culpa). The problem arises when a 64-bit process maps some hugepages in the low 4GB of the address space (unusual). In this case, as well as the 256M segment in question being marked for hugepages, other segments at 32G intervals will be incorrectly marked for hugepages. In the process, this patch tweaks the semantics of the hugepage bitmaps to be more sensible. Previously, an address below 4G was marked for hugepages if the appropriate segment bit in the "low areas" bitmask was set *or* if the low bit in the "high areas" bitmap was set (which would mark all addresses below 1TB for hugepage). With this patch, any given address is governed by a single bitmap. Addresses below 4GB are marked for hugepage if and only if their bit is set in the "low areas" bitmap (256M granularity). Addresses between 4GB and 1TB are marked for hugepage iff the low bit in the "high areas" bitmap is set. Higher addresses are marked for hugepage iff their bit in the "high areas" bitmap is set (1TB granularity). To avoid conflicts, this patch must be applied on top of BenH's pending patch for 64k base page size [0]. As such, this patch also addresses a hugepage problem introduced by that patch. That patch allows hugepages of 1MB in size on hardware which supports it, however, that won't work when using 4k pages (4 level pagetable), because in that case hugepage PTEs are stored at the PMD level, and each PMD entry maps 2MB. This patch simply disallows hugepages in that case (we can do something cleverer to re-enable them some other day). Built, booted, and a handful of hugepage related tests passed on POWER5 LPAR (both ARCH=powerpc and ARCH=ppc64). [0] http://gate.crashing.org/~benh/ppc64-64k-pages.diff Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07 00:57:52 -08:00
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
5: /* Extract the psize and multiply to get an array offset */
srd r9,r9,r11
andi. r9,r9,0xf
mulli r9,r9,MMUPSIZEDEFSIZE
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
/* Now get to the array and obtain the sllp
*/
ld r11,PACATOC(r13)
ld r11,mmu_psize_defs@got(r11)
add r11,r11,r9
ld r11,MMUPSIZESLLP(r11)
ori r11,r11,SLB_VSID_USER
#else
/* paca context sllp already contains the SLB_VSID_USER bits */
powerpc: Use 64k pages without needing cache-inhibited large pages Some POWER5+ machines can do 64k hardware pages for normal memory but not for cache-inhibited pages. This patch lets us use 64k hardware pages for most user processes on such machines (assuming the kernel has been configured with CONFIG_PPC_64K_PAGES=y). User processes start out using 64k pages and get switched to 4k pages if they use any non-cacheable mappings. With this, we use 64k pages for the vmalloc region and 4k pages for the imalloc region. If anything creates a non-cacheable mapping in the vmalloc region, the vmalloc region will get switched to 4k pages. I don't know of any driver other than the DRM that would do this, though, and these machines don't have AGP. When a region gets switched from 64k pages to 4k pages, we do not have to clear out all the 64k HPTEs from the hash table immediately. We use the _PAGE_COMBO bit in the Linux PTE to indicate whether the page was hashed in as a 64k page or a set of 4k pages. If hash_page is trying to insert a 4k page for a Linux PTE and it sees that it has already been inserted as a 64k page, it first invalidates the 64k HPTE before inserting the 4k HPTE. The hash invalidation routines also use the _PAGE_COMBO bit, to determine whether to look for a 64k HPTE or a set of 4k HPTEs to remove. With those two changes, we can tolerate a mix of 4k and 64k HPTEs in the hash table, and they will all get removed when the address space is torn down. Signed-off-by: Paul Mackerras <paulus@samba.org>
2006-06-15 10:45:18 +10:00
lhz r11,PACACONTEXTSLLP(r13)
[POWERPC] Introduce address space "slices" The basic issue is to be able to do what hugetlbfs does but with different page sizes for some other special filesystems; more specifically, my need is: - Huge pages - SPE local store mappings using 64K pages on a 4K base page size kernel on Cell - Some special 4K segments in 64K-page kernels for mapping a dodgy type of powerpc-specific infiniband hardware that requires 4K MMU mappings for various reasons I won't explain here. The main issues are: - To maintain/keep track of the page size per "segment" (as we can only have one page size per segment on powerpc, which are 256MB divisions of the address space). - To make sure special mappings stay within their allotted "segments" (including MAP_FIXED crap) - To make sure everybody else doesn't mmap/brk/grow_stack into a "segment" that is used for a special mapping Some of the necessary mechanisms to handle that were present in the hugetlbfs code, but mostly in ways not suitable for anything else. The patch relies on some changes to the generic get_unmapped_area() that just got merged. It still hijacks hugetlb callbacks here or there as the generic code hasn't been entirely cleaned up yet but that shouldn't be a problem. So what is a slice ? Well, I re-used the mechanism used formerly by our hugetlbfs implementation which divides the address space in "meta-segments" which I called "slices". The division is done using 256MB slices below 4G, and 1T slices above. Thus the address space is divided currently into 16 "low" slices and 16 "high" slices. (Special case: high slice 0 is the area between 4G and 1T). Doing so simplifies significantly the tracking of segments and avoids having to keep track of all the 256MB segments in the address space. While I used the "concepts" of hugetlbfs, I mostly re-implemented everything in a more generic way and "ported" hugetlbfs to it. Slices can have an associated page size, which is encoded in the mmu context and used by the SLB miss handler to set the segment sizes. The hash code currently doesn't care, it has a specific check for hugepages, though I might add a mechanism to provide per-slice hash mapping functions in the future. The slice code provide a pair of "generic" get_unmapped_area() (bottomup and topdown) functions that should work with any slice size. There is some trickiness here so I would appreciate people to have a look at the implementation of these and let me know if I got something wrong. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-05-08 16:27:27 +10:00
#endif /* CONFIG_PPC_MM_SLICES */
ld r9,PACACONTEXTID(r13)
rldimi r10,r9,USER_ESID_BITS,0
b slb_finish_load
8: /* invalid EA */
li r10,0 /* BAD_VSID */
li r11,SLB_VSID_USER /* flags don't much matter */
b slb_finish_load
#ifdef __DISABLED__
/* void slb_allocate_user(unsigned long ea);
*
* Create an SLB entry for the given EA (user or kernel).
* r3 = faulting address, r13 = PACA
* r9, r10, r11 are clobbered by this function
* No other registers are examined or changed.
*
* It is called with translation enabled in order to be able to walk the
* page tables. This is not currently used.
*/
_GLOBAL(slb_allocate_user)
/* r3 = faulting address */
srdi r10,r3,28 /* get esid */
crset 4*cr7+lt /* set "user" flag for later */
/* check if we fit in the range covered by the pagetables*/
srdi. r9,r3,PGTABLE_EADDR_SIZE
crnot 4*cr0+eq,4*cr0+eq
beqlr
/* now we need to get to the page tables in order to get the page
* size encoding from the PMD. In the future, we'll be able to deal
* with 1T segments too by getting the encoding from the PGD instead
*/
ld r9,PACAPGDIR(r13)
cmpldi cr0,r9,0
beqlr
rlwinm r11,r10,8,25,28
ldx r9,r9,r11 /* get pgd_t */
cmpldi cr0,r9,0
beqlr
rlwinm r11,r10,3,17,28
ldx r9,r9,r11 /* get pmd_t */
cmpldi cr0,r9,0
beqlr
/* build vsid flags */
andi. r11,r9,SLB_VSID_LLP
ori r11,r11,SLB_VSID_USER
/* get context to calculate proto-VSID */
ld r9,PACACONTEXTID(r13)
rldimi r10,r9,USER_ESID_BITS,0
/* fall through slb_finish_load */
#endif /* __DISABLED__ */
/*
* Finish loading of an SLB entry and return
*
* r3 = EA, r10 = proto-VSID, r11 = flags, clobbers r9, cr7 = <> PAGE_OFFSET
*/
slb_finish_load:
ASM_VSID_SCRAMBLE(r10,r9)
rldimi r11,r10,SLB_VSID_SHIFT,16 /* combine VSID and flags */
/* r3 = EA, r11 = VSID data */
/*
* Find a slot, round robin. Previously we tried to find a
* free slot first but that took too long. Unfortunately we
* dont have any LRU information to help us choose a slot.
*/
#ifdef CONFIG_PPC_ISERIES
BEGIN_FW_FTR_SECTION
/*
* On iSeries, the "bolted" stack segment can be cast out on
* shared processor switch so we need to check for a miss on
* it and restore it to the right slot.
*/
ld r9,PACAKSAVE(r13)
clrrdi r9,r9,28
clrrdi r3,r3,28
li r10,SLB_NUM_BOLTED-1 /* Stack goes in last bolted slot */
cmpld r9,r3
beq 3f
END_FW_FTR_SECTION_IFSET(FW_FEATURE_ISERIES)
#endif /* CONFIG_PPC_ISERIES */
ld r10,PACASTABRR(r13)
addi r10,r10,1
/* use a cpu feature mask if we ever change our slb size */
cmpldi r10,SLB_NUM_ENTRIES
blt+ 4f
li r10,SLB_NUM_BOLTED
4:
std r10,PACASTABRR(r13)
3:
rldimi r3,r10,0,36 /* r3= EA[0:35] | entry */
oris r10,r3,SLB_ESID_V@h /* r3 |= SLB_ESID_V */
/* r3 = ESID data, r11 = VSID data */
/*
* No need for an isync before or after this slbmte. The exception
* we enter with and the rfid we exit with are context synchronizing.
*/
slbmte r11,r10
/* we're done for kernel addresses */
crclr 4*cr0+eq /* set result to "success" */
bgelr cr7
/* Update the slb cache */
lhz r3,PACASLBCACHEPTR(r13) /* offset = paca->slb_cache_ptr */
cmpldi r3,SLB_CACHE_ENTRIES
bge 1f
/* still room in the slb cache */
sldi r11,r3,1 /* r11 = offset * sizeof(u16) */
rldicl r10,r10,36,28 /* get low 16 bits of the ESID */
add r11,r11,r13 /* r11 = (u16 *)paca + offset */
sth r10,PACASLBCACHE(r11) /* paca->slb_cache[offset] = esid */
addi r3,r3,1 /* offset++ */
b 2f
1: /* offset >= SLB_CACHE_ENTRIES */
li r3,SLB_CACHE_ENTRIES+1
2:
sth r3,PACASLBCACHEPTR(r13) /* paca->slb_cache_ptr = offset */
crclr 4*cr0+eq /* set result to "success" */
blr