linux/tools/perf/util/event.h

206 lines
4.7 KiB
C
Raw Normal View History

perf: Do the big rename: Performance Counters -> Performance Events Bye-bye Performance Counters, welcome Performance Events! In the past few months the perfcounters subsystem has grown out its initial role of counting hardware events, and has become (and is becoming) a much broader generic event enumeration, reporting, logging, monitoring, analysis facility. Naming its core object 'perf_counter' and naming the subsystem 'perfcounters' has become more and more of a misnomer. With pending code like hw-breakpoints support the 'counter' name is less and less appropriate. All in one, we've decided to rename the subsystem to 'performance events' and to propagate this rename through all fields, variables and API names. (in an ABI compatible fashion) The word 'event' is also a bit shorter than 'counter' - which makes it slightly more convenient to write/handle as well. Thanks goes to Stephane Eranian who first observed this misnomer and suggested a rename. User-space tooling and ABI compatibility is not affected - this patch should be function-invariant. (Also, defconfigs were not touched to keep the size down.) This patch has been generated via the following script: FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/PERF_EVENT_/PERF_RECORD_/g' \ -e 's/PERF_COUNTER/PERF_EVENT/g' \ -e 's/perf_counter/perf_event/g' \ -e 's/nb_counters/nb_events/g' \ -e 's/swcounter/swevent/g' \ -e 's/tpcounter_event/tp_event/g' \ $FILES for N in $(find . -name perf_counter.[ch]); do M=$(echo $N | sed 's/perf_counter/perf_event/g') mv $N $M done FILES=$(find . -name perf_event.*) sed -i \ -e 's/COUNTER_MASK/REG_MASK/g' \ -e 's/COUNTER/EVENT/g' \ -e 's/\<event\>/event_id/g' \ -e 's/counter/event/g' \ -e 's/Counter/Event/g' \ $FILES ... to keep it as correct as possible. This script can also be used by anyone who has pending perfcounters patches - it converts a Linux kernel tree over to the new naming. We tried to time this change to the point in time where the amount of pending patches is the smallest: the end of the merge window. Namespace clashes were fixed up in a preparatory patch - and some stylistic fallout will be fixed up in a subsequent patch. ( NOTE: 'counters' are still the proper terminology when we deal with hardware registers - and these sed scripts are a bit over-eager in renaming them. I've undone some of that, but in case there's something left where 'counter' would be better than 'event' we can undo that on an individual basis instead of touching an otherwise nicely automated patch. ) Suggested-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Howells <dhowells@redhat.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <linux-arch@vger.kernel.org> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-21 12:02:48 +02:00
#ifndef __PERF_RECORD_H
#define __PERF_RECORD_H
#include <limits.h>
#include "../perf.h"
#include "map.h"
/*
* PERF_SAMPLE_IP | PERF_SAMPLE_TID | *
*/
struct ip_event {
struct perf_event_header header;
u64 ip;
u32 pid, tid;
unsigned char __more_data[];
};
struct mmap_event {
struct perf_event_header header;
u32 pid, tid;
u64 start;
u64 len;
u64 pgoff;
char filename[PATH_MAX];
};
struct comm_event {
struct perf_event_header header;
u32 pid, tid;
char comm[16];
};
struct fork_event {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
};
struct lost_event {
struct perf_event_header header;
u64 id;
u64 lost;
};
/*
* PERF_FORMAT_ENABLED | PERF_FORMAT_RUNNING | PERF_FORMAT_ID
*/
struct read_event {
struct perf_event_header header;
u32 pid, tid;
u64 value;
u64 time_enabled;
u64 time_running;
u64 id;
};
#define PERF_SAMPLE_MASK \
(PERF_SAMPLE_IP | PERF_SAMPLE_TID | \
PERF_SAMPLE_TIME | PERF_SAMPLE_ADDR | \
PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD)
struct sample_event {
struct perf_event_header header;
u64 array[];
};
struct perf_sample {
u64 ip;
u32 pid, tid;
u64 time;
u64 addr;
u64 id;
u64 stream_id;
u64 period;
u32 cpu;
u32 raw_size;
void *raw_data;
struct ip_callchain *callchain;
};
perf symbols: Use the buildids if present With this change 'perf record' will intercept PERF_RECORD_MMAP calls, creating a linked list of DSOs, then when the session finishes, it will traverse this list and read the buildids, stashing them at the end of the file and will set up a new feature bit in the header bitmask. 'perf report' will then notice this feature and populate the 'dsos' list and set the build ids. When reading the symtabs it will refuse to load from a file that doesn't have the same build id. This improves the reliability of the profiler output, as symbols and profiling data is more guaranteed to match. Example: [root@doppio ~]# perf report | head /home/acme/bin/perf with build id b1ea544ac3746e7538972548a09aadecc5753868 not found, continuing without symbols # Samples: 2621434559 # # Overhead Command Shared Object Symbol # ........ ............... ............................. ...... # 7.91% init [kernel] [k] read_hpet 7.64% init [kernel] [k] mwait_idle_with_hints 7.60% swapper [kernel] [k] read_hpet 7.60% swapper [kernel] [k] mwait_idle_with_hints 3.65% init [kernel] [k] 0xffffffffa02339d9 [root@doppio ~]# In this case the 'perf' binary was an older one, vanished, so its symbols probably wouldn't match or would cause subtly different (and misleading) output. Next patches will support the kernel as well, reading the build id notes for it and the modules from /sys. Another patch should also introduce a new plumbing command: 'perf list-buildids' that will then be used in porcelain that is distro specific to fetch -debuginfo packages where such buildids are present. This will in turn allow for one to run 'perf record' in one machine and 'perf report' in another. Future work on having the buildid sent directly from the kernel in the PERF_RECORD_MMAP event is needed to close races, as the DSO can be changed during a 'perf record' session, but this patch at least helps with non-corner cases and current/older kernels. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K. Prasad <prasad@linux.vnet.ibm.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roland McGrath <roland@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1257367843-26224-1-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-04 18:50:43 -02:00
#define BUILD_ID_SIZE 20
struct build_id_event {
struct perf_event_header header;
pid_t pid;
perf symbols: Use the buildids if present With this change 'perf record' will intercept PERF_RECORD_MMAP calls, creating a linked list of DSOs, then when the session finishes, it will traverse this list and read the buildids, stashing them at the end of the file and will set up a new feature bit in the header bitmask. 'perf report' will then notice this feature and populate the 'dsos' list and set the build ids. When reading the symtabs it will refuse to load from a file that doesn't have the same build id. This improves the reliability of the profiler output, as symbols and profiling data is more guaranteed to match. Example: [root@doppio ~]# perf report | head /home/acme/bin/perf with build id b1ea544ac3746e7538972548a09aadecc5753868 not found, continuing without symbols # Samples: 2621434559 # # Overhead Command Shared Object Symbol # ........ ............... ............................. ...... # 7.91% init [kernel] [k] read_hpet 7.64% init [kernel] [k] mwait_idle_with_hints 7.60% swapper [kernel] [k] read_hpet 7.60% swapper [kernel] [k] mwait_idle_with_hints 3.65% init [kernel] [k] 0xffffffffa02339d9 [root@doppio ~]# In this case the 'perf' binary was an older one, vanished, so its symbols probably wouldn't match or would cause subtly different (and misleading) output. Next patches will support the kernel as well, reading the build id notes for it and the modules from /sys. Another patch should also introduce a new plumbing command: 'perf list-buildids' that will then be used in porcelain that is distro specific to fetch -debuginfo packages where such buildids are present. This will in turn allow for one to run 'perf record' in one machine and 'perf report' in another. Future work on having the buildid sent directly from the kernel in the PERF_RECORD_MMAP event is needed to close races, as the DSO can be changed during a 'perf record' session, but this patch at least helps with non-corner cases and current/older kernels. Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Frank Ch. Eigler <fche@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Jim Keniston <jkenisto@us.ibm.com> Cc: K. Prasad <prasad@linux.vnet.ibm.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roland McGrath <roland@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Steven Rostedt <rostedt@goodmis.org> LKML-Reference: <1257367843-26224-1-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-04 18:50:43 -02:00
u8 build_id[ALIGN(BUILD_ID_SIZE, sizeof(u64))];
char filename[];
};
enum perf_user_event_type { /* above any possible kernel type */
PERF_RECORD_USER_TYPE_START = 64,
PERF_RECORD_HEADER_ATTR = 64,
PERF_RECORD_HEADER_EVENT_TYPE = 65,
PERF_RECORD_HEADER_TRACING_DATA = 66,
PERF_RECORD_HEADER_BUILD_ID = 67,
PERF_RECORD_FINISHED_ROUND = 68,
PERF_RECORD_HEADER_MAX
};
struct attr_event {
struct perf_event_header header;
struct perf_event_attr attr;
u64 id[];
};
#define MAX_EVENT_NAME 64
struct perf_trace_event_type {
u64 event_id;
char name[MAX_EVENT_NAME];
};
struct event_type_event {
struct perf_event_header header;
struct perf_trace_event_type event_type;
};
struct tracing_data_event {
struct perf_event_header header;
u32 size;
};
union perf_event {
struct perf_event_header header;
struct ip_event ip;
struct mmap_event mmap;
struct comm_event comm;
struct fork_event fork;
struct lost_event lost;
struct read_event read;
struct sample_event sample;
struct attr_event attr;
struct event_type_event event_type;
struct tracing_data_event tracing_data;
struct build_id_event build_id;
};
void perf_event__print_totals(void);
struct perf_event_ops;
struct perf_session;
perf tools: Fix thread_map event synthesizing in top and record Jeff Moyer reported these messages: Warning: ... trying to fall back to cpu-clock-ticks couldn't open /proc/-1/status couldn't open /proc/-1/maps [ls output] [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.008 MB perf.data (~363 samples) ] That lead me and David Ahern to see that something was fishy on the thread synthesizing routines, at least for the case where the workload is started from 'perf record', as -1 is the default for target_tid in 'perf record --tid' parameter, so somehow we were trying to synthesize the PERF_RECORD_MMAP and PERF_RECORD_COMM events for the thread -1, a bug. So I investigated this and noticed that when we introduced support for recording a process and its threads using --pid some bugs were introduced and that the way to fix it was to instead of passing the target_tid to the event synthesizing routines we should better pass the thread_map that has the list of threads for a --pid or just the single thread for a --tid. Checked in the following ways: On a 8-way machine run cyclictest: [root@emilia ~]# perf record cyclictest -a -t -n -p99 -i100 -d50 policy: fifo: loadavg: 0.00 0.13 0.31 2/139 28798 T: 0 (28791) P:99 I:100 C: 25072 Min: 4 Act: 5 Avg: 6 Max: 122 T: 1 (28792) P:98 I:150 C: 16715 Min: 4 Act: 6 Avg: 5 Max: 27 T: 2 (28793) P:97 I:200 C: 12534 Min: 4 Act: 5 Avg: 4 Max: 8 T: 3 (28794) P:96 I:250 C: 10028 Min: 4 Act: 5 Avg: 5 Max: 96 T: 4 (28795) P:95 I:300 C: 8357 Min: 5 Act: 6 Avg: 5 Max: 12 T: 5 (28796) P:94 I:350 C: 7163 Min: 5 Act: 6 Avg: 5 Max: 12 T: 6 (28797) P:93 I:400 C: 6267 Min: 4 Act: 5 Avg: 5 Max: 9 T: 7 (28798) P:92 I:450 C: 5571 Min: 4 Act: 5 Avg: 5 Max: 9 ^C[ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.108 MB perf.data (~4719 samples) ] [root@emilia ~]# This will create one extra thread per CPU: [root@emilia ~]# tuna -t cyclictest -CP thread ctxt_switches pid SCHED_ rtpri affinity voluntary nonvoluntary cmd 28825 OTHER 0 0xff 2169 671 cyclictest 28832 FIFO 93 6 52338 1 cyclictest 28833 FIFO 92 7 46524 1 cyclictest 28826 FIFO 99 0 209360 1 cyclictest 28827 FIFO 98 1 139577 1 cyclictest 28828 FIFO 97 2 104686 0 cyclictest 28829 FIFO 96 3 83751 1 cyclictest 28830 FIFO 95 4 69794 1 cyclictest 28831 FIFO 94 5 59825 1 cyclictest [root@emilia ~]# So we should expect only samples for the above 9 threads when using the --dump-raw-trace|-D perf report switch to look at the column with the tid: [root@emilia ~]# perf report -D | grep RECORD_SAMPLE | cut -d/ -f2 | cut -d: -f1 | sort | uniq -c 629 28825 110 28826 491 28827 308 28828 198 28829 621 28830 225 28831 203 28832 89 28833 [root@emilia ~]# So for workloads started by 'perf record' seems to work, now for existing workloads, just run cyclictest first, without 'perf record': [root@emilia ~]# tuna -t cyclictest -CP thread ctxt_switches pid SCHED_ rtpri affinity voluntary nonvoluntary cmd 28859 OTHER 0 0xff 594 200 cyclictest 28864 FIFO 95 4 16587 1 cyclictest 28865 FIFO 94 5 14219 1 cyclictest 28866 FIFO 93 6 12443 0 cyclictest 28867 FIFO 92 7 11062 1 cyclictest 28860 FIFO 99 0 49779 1 cyclictest 28861 FIFO 98 1 33190 1 cyclictest 28862 FIFO 97 2 24895 1 cyclictest 28863 FIFO 96 3 19918 1 cyclictest [root@emilia ~]# and then later did: [root@emilia ~]# perf record --pid 28859 sleep 3 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.027 MB perf.data (~1195 samples) ] [root@emilia ~]# To collect 3 seconds worth of samples for pid 28859 and its children: [root@emilia ~]# perf report -D | grep RECORD_SAMPLE | cut -d/ -f2 | cut -d: -f1 | sort | uniq -c 15 28859 33 28860 19 28861 13 28862 13 28863 10 28864 11 28865 9 28866 255 28867 [root@emilia ~]# Works, last thing is to check if looking at just one of those threads also works: [root@emilia ~]# perf record --tid 28866 sleep 3 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.006 MB perf.data (~242 samples) ] [root@emilia ~]# perf report -D | grep RECORD_SAMPLE | cut -d/ -f2 | cut -d: -f1 | sort | uniq -c 3 28866 [root@emilia ~]# Works too. Reported-by: Jeff Moyer <jmoyer@redhat.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Tom Zanussi <tzanussi@gmail.com> LKML-Reference: <new-submission> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2011-02-10 12:52:47 -02:00
struct thread_map;
typedef int (*perf_event__handler_t)(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
int perf_event__synthesize_thread_map(struct perf_event_ops *ops,
struct thread_map *threads,
perf_event__handler_t process,
struct perf_session *session);
int perf_event__synthesize_threads(struct perf_event_ops *ops,
perf_event__handler_t process,
struct perf_session *session);
int perf_event__synthesize_kernel_mmap(struct perf_event_ops *ops,
perf_event__handler_t process,
struct perf_session *session,
struct machine *machine,
const char *symbol_name);
int perf_event__synthesize_modules(struct perf_event_ops *ops,
perf_event__handler_t process,
struct perf_session *session,
struct machine *machine);
int perf_event__process_comm(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
int perf_event__process_lost(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
int perf_event__process_mmap(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
int perf_event__process_task(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
int perf_event__process(struct perf_event_ops *ops,
union perf_event *event,
struct perf_sample *sample,
struct perf_session *session);
perf tools: Consolidate symbol resolving across all tools Now we have a very high level routine for simple tools to process IP sample events: int event__preprocess_sample(const event_t *self, struct addr_location *al, symbol_filter_t filter) It receives the event itself and will insert new threads in the global threads list and resolve the map and symbol, filling all this info into the new addr_location struct, so that tools like annotate and report can further process the event by creating hist_entries in their specific way (with or without callgraphs, etc). It in turn uses the new next layer function: void thread__find_addr_location(struct thread *self, u8 cpumode, enum map_type type, u64 addr, struct addr_location *al, symbol_filter_t filter) This one will, given a thread (userspace or the kernel kthread one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE too in the near future) at the given cpumode, taking vdsos into account (userspace hit, but kernel symbol) and will fill all these details in the addr_location given. Tools that need a more compact API for plain function resolution, like 'kmem', can use this other one: struct symbol *thread__find_function(struct thread *self, u64 addr, symbol_filter_t filter) So, to resolve a kernel symbol, that is all the 'kmem' tool needs, its just a matter of calling: sym = thread__find_function(kthread, addr, NULL); The 'filter' parameter is needed because we do lazy parsing/loading of ELF symtabs or /proc/kallsyms. With this we remove more code duplication all around, which is always good, huh? :-) Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: John Kacur <jkacur@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-27 16:29:23 -02:00
struct addr_location;
int perf_event__preprocess_sample(const union perf_event *self,
struct perf_session *session,
struct addr_location *al,
struct perf_sample *sample,
symbol_filter_t filter);
perf tools: Consolidate symbol resolving across all tools Now we have a very high level routine for simple tools to process IP sample events: int event__preprocess_sample(const event_t *self, struct addr_location *al, symbol_filter_t filter) It receives the event itself and will insert new threads in the global threads list and resolve the map and symbol, filling all this info into the new addr_location struct, so that tools like annotate and report can further process the event by creating hist_entries in their specific way (with or without callgraphs, etc). It in turn uses the new next layer function: void thread__find_addr_location(struct thread *self, u8 cpumode, enum map_type type, u64 addr, struct addr_location *al, symbol_filter_t filter) This one will, given a thread (userspace or the kernel kthread one), will find the given type (MAP__FUNCTION now, MAP__VARIABLE too in the near future) at the given cpumode, taking vdsos into account (userspace hit, but kernel symbol) and will fill all these details in the addr_location given. Tools that need a more compact API for plain function resolution, like 'kmem', can use this other one: struct symbol *thread__find_function(struct thread *self, u64 addr, symbol_filter_t filter) So, to resolve a kernel symbol, that is all the 'kmem' tool needs, its just a matter of calling: sym = thread__find_function(kthread, addr, NULL); The 'filter' parameter is needed because we do lazy parsing/loading of ELF symtabs or /proc/kallsyms. With this we remove more code duplication all around, which is always good, huh? :-) Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: John Kacur <jkacur@redhat.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1259346563-12568-12-git-send-email-acme@infradead.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-27 16:29:23 -02:00
const char *perf_event__name(unsigned int id);
int perf_event__parse_sample(const union perf_event *event, u64 type,
int sample_size, bool sample_id_all,
perf tool: Fix endianness handling of u32 data in samples Currently, analyzing PPC data files on x86 the cpu field is always 0 and the tid and pid are backwards. For example, analyzing a PPC file on PPC the pid/tid fields show: rsyslogd 1210/1212 and analyzing the same PPC file using an x86 perf binary shows: rsyslogd 1212/1210 The problem is that the swap_op method for samples is perf_event__all64_swap which assumes all elements in the sample_data struct are u64s. cpu, tid and pid are u32s and need to be handled individually. Given that the swap is done before the sample is parsed, the simplest solution is to undo the 64-bit swap of those elements when the sample is parsed and do the proper swap. The RAW data field is generic and perf cannot have programmatic knowledge of how to treat that data. Instead a warning is given to the user. Thanks to Anton Blanchard for providing a data file for a mult-CPU PPC system so I could verify the fix for the CPU fields. v3 -> v4: - fixed use of WARN_ONCE v2 -> v3: - used WARN_ONCE for message regarding raw data - removed struct wrapper around union - fixed whitespace issues v1 -> v2: - added a union for undoing the byte-swap on u64 and redoing swap on u32's to address compiler errors (see git commit 65014ab3) Cc: Anton Blanchard <anton@samba.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1315321946-16993-1-git-send-email-dsahern@gmail.com Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2011-09-06 09:12:26 -06:00
struct perf_sample *sample, bool swapped);
#endif /* __PERF_RECORD_H */