linux/fs/afs/rxrpc.c

946 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/* Maintain an RxRPC server socket to do AFS communications through
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include "internal.h"
#include "afs_cm.h"
#include "protocol_yfs.h"
#define RXRPC_TRACE_ONLY_DEFINE_ENUMS
#include <trace/events/rxrpc.h>
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct workqueue_struct *afs_async_calls;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_process_async_call(struct work_struct *);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static int afs_deliver_cm_op_id(struct afs_call *);
/* asynchronous incoming call initial processing */
static const struct afs_call_type afs_RXCMxxxx = {
.name = "CB.xxxx",
.deliver = afs_deliver_cm_op_id,
};
/*
* open an RxRPC socket and bind it to be a server for callback notifications
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
*/
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
int afs_open_socket(struct afs_net *net)
{
struct sockaddr_rxrpc srx;
struct socket *socket;
int ret;
_enter("");
ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 22:30:37 +01:00
if (ret < 0)
goto error_1;
socket->sk->sk_allocation = GFP_NOFS;
/* bind the callback manager's address to make this a server socket */
memset(&srx, 0, sizeof(srx));
srx.srx_family = AF_RXRPC;
srx.srx_service = CM_SERVICE;
srx.transport_type = SOCK_DGRAM;
srx.transport_len = sizeof(srx.transport.sin6);
srx.transport.sin6.sin6_family = AF_INET6;
srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
ret = rxrpc_sock_set_min_security_level(socket->sk,
RXRPC_SECURITY_ENCRYPT);
if (ret < 0)
goto error_2;
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
if (ret == -EADDRINUSE) {
srx.transport.sin6.sin6_port = 0;
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
}
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 22:30:37 +01:00
if (ret < 0)
goto error_2;
srx.srx_service = YFS_CM_SERVICE;
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
if (ret < 0)
goto error_2;
/* Ideally, we'd turn on service upgrade here, but we can't because
* OpenAFS is buggy and leaks the userStatus field from packet to
* packet and between FS packets and CB packets - so if we try to do an
* upgrade on an FS packet, OpenAFS will leak that into the CB packet
* it sends back to us.
*/
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
afs_rx_discard_new_call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 22:30:37 +01:00
ret = kernel_listen(socket, INT_MAX);
if (ret < 0)
goto error_2;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
net->socket = socket;
afs_charge_preallocation(&net->charge_preallocation_work);
_leave(" = 0");
return 0;
rxrpc: Limit the listening backlog Limit the socket incoming call backlog queue size so that a remote client can't pump in sufficient new calls that the server runs out of memory. Note that this is partially theoretical at the moment since whilst the number of calls is limited, the number of packets trying to set up new calls is not. This will be addressed in a later patch. If the caller of listen() specifies a backlog INT_MAX, then they get the current maximum; anything else greater than max_backlog or anything negative incurs EINVAL. The limit on the maximum queue size can be set by: echo N >/proc/sys/net/rxrpc/max_backlog where 4<=N<=32. Further, set the default backlog to 0, requiring listen() to be called before we start actually queueing new calls. Whilst this kind of is a change in the UAPI, the caller can't actually *accept* new calls anyway unless they've first called listen() to put the socket into the LISTENING state - thus the aforementioned new calls would otherwise just sit there, eating up kernel memory. (Note that sockets that don't have a non-zero service ID bound don't get incoming calls anyway.) Given that the default backlog is now 0, make the AFS filesystem call kernel_listen() to set the maximum backlog for itself. Possible improvements include: (1) Trimming a too-large backlog to max_backlog when listen is called. (2) Trimming the backlog value whenever the value is used so that changes to max_backlog are applied to an open socket automatically. Note that the AFS filesystem opens one socket and keeps it open for extended periods, so would miss out on changes to max_backlog. (3) Having a separate setting for the AFS filesystem. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-10 22:30:37 +01:00
error_2:
sock_release(socket);
error_1:
_leave(" = %d", ret);
return ret;
}
/*
* close the RxRPC socket AFS was using
*/
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
void afs_close_socket(struct afs_net *net)
{
_enter("");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
kernel_listen(net->socket, 0);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
flush_workqueue(afs_async_calls);
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
if (net->spare_incoming_call) {
afs_put_call(net->spare_incoming_call);
net->spare_incoming_call = NULL;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
}
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
wait_var_event(&net->nr_outstanding_calls,
!atomic_read(&net->nr_outstanding_calls));
_debug("no outstanding calls");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
kernel_sock_shutdown(net->socket, SHUT_RDWR);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
flush_workqueue(afs_async_calls);
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
sock_release(net->socket);
_debug("dework");
_leave("");
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
* Allocate a call.
*/
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
static struct afs_call *afs_alloc_call(struct afs_net *net,
const struct afs_call_type *type,
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
gfp_t gfp)
{
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
struct afs_call *call;
int o;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
call = kzalloc(sizeof(*call), gfp);
if (!call)
return NULL;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
call->type = type;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
call->net = net;
call->debug_id = atomic_inc_return(&rxrpc_debug_id);
refcount_set(&call->ref, 1);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
INIT_WORK(&call->async_work, afs_process_async_call);
init_waitqueue_head(&call->waitq);
spin_lock_init(&call->state_lock);
call->iter = &call->def_iter;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
o = atomic_inc_return(&net->nr_outstanding_calls);
trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
__builtin_return_address(0));
return call;
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
* Dispose of a reference on a call.
*/
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
void afs_put_call(struct afs_call *call)
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net = call->net;
unsigned int debug_id = call->debug_id;
bool zero;
int r, o;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
zero = __refcount_dec_and_test(&call->ref, &r);
o = atomic_read(&net->nr_outstanding_calls);
trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
__builtin_return_address(0));
if (zero) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
ASSERT(!work_pending(&call->async_work));
ASSERT(call->type->name != NULL);
if (call->rxcall) {
rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
rxrpc_kernel_put_call(net->socket, call->rxcall);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
call->rxcall = NULL;
}
if (call->type->destructor)
call->type->destructor(call);
afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
afs_put_addrlist(call->alist);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
kfree(call->request);
trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
__builtin_return_address(0));
kfree(call);
o = atomic_dec_return(&net->nr_outstanding_calls);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
if (o == 0)
wake_up_var(&net->nr_outstanding_calls);
}
}
static struct afs_call *afs_get_call(struct afs_call *call,
enum afs_call_trace why)
{
int r;
__refcount_inc(&call->ref, &r);
trace_afs_call(call->debug_id, why, r + 1,
atomic_read(&call->net->nr_outstanding_calls),
__builtin_return_address(0));
return call;
}
/*
* Queue the call for actual work.
*/
static void afs_queue_call_work(struct afs_call *call)
{
if (call->type->work) {
INIT_WORK(&call->work, call->type->work);
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
afs_get_call(call, afs_call_trace_work);
if (!queue_work(afs_wq, &call->work))
afs_put_call(call);
}
}
/*
* allocate a call with flat request and reply buffers
*/
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_call *afs_alloc_flat_call(struct afs_net *net,
const struct afs_call_type *type,
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
size_t request_size, size_t reply_max)
{
struct afs_call *call;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
call = afs_alloc_call(net, type, GFP_NOFS);
if (!call)
goto nomem_call;
if (request_size) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
call->request_size = request_size;
call->request = kmalloc(request_size, GFP_NOFS);
if (!call->request)
goto nomem_free;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (reply_max) {
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
call->reply_max = reply_max;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
call->buffer = kmalloc(reply_max, GFP_NOFS);
if (!call->buffer)
goto nomem_free;
}
afs_extract_to_buf(call, call->reply_max);
call->operation_ID = type->op;
init_waitqueue_head(&call->waitq);
return call;
nomem_free:
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
afs_put_call(call);
nomem_call:
return NULL;
}
/*
* clean up a call with flat buffer
*/
void afs_flat_call_destructor(struct afs_call *call)
{
_enter("");
kfree(call->request);
call->request = NULL;
kfree(call->buffer);
call->buffer = NULL;
}
/*
* Advance the AFS call state when the RxRPC call ends the transmit phase.
*/
static void afs_notify_end_request_tx(struct sock *sock,
struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
struct afs_call *call = (struct afs_call *)call_user_ID;
afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
}
/*
* Initiate a call and synchronously queue up the parameters for dispatch. Any
* error is stored into the call struct, which the caller must check for.
*/
void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
{
struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
struct rxrpc_call *rxcall;
struct msghdr msg;
struct kvec iov[1];
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
size_t len;
s64 tx_total_len;
int ret;
_enter(",{%pISp},", &srx->transport);
ASSERT(call->type != NULL);
ASSERT(call->type->name != NULL);
_debug("____MAKE %p{%s,%x} [%d]____",
call, call->type->name, key_serial(call->key),
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
atomic_read(&call->net->nr_outstanding_calls));
call->addr_ix = ac->index;
call->alist = afs_get_addrlist(ac->alist);
/* Work out the length we're going to transmit. This is awkward for
* calls such as FS.StoreData where there's an extra injection of data
* after the initial fixed part.
*/
tx_total_len = call->request_size;
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
if (call->write_iter)
tx_total_len += iov_iter_count(call->write_iter);
/* If the call is going to be asynchronous, we need an extra ref for
* the call to hold itself so the caller need not hang on to its ref.
*/
afs: Fix handling of an abort from a service handler When an AFS service handler function aborts a call, AF_RXRPC marks the call as complete - which means that it's not going to get any more packets from the receiver. This is a problem because reception of the final ACK is what triggers afs_deliver_to_call() to drop the final ref on the afs_call object. Instead, aborted AFS service calls may then just sit around waiting for ever or until they're displaced by a new call on the same connection channel or a connection-level abort. Fix this by calling afs_set_call_complete() to finalise the afs_call struct representing the call. However, we then need to drop the ref that stops the call from being deallocated. We can do this in afs_set_call_complete(), as the work queue is holding a separate ref of its own, but then we shouldn't do it in afs_process_async_call() and afs_delete_async_call(). call->drop_ref is set to indicate that a ref needs dropping for a call and this is dealt with when we transition a call to AFS_CALL_COMPLETE. But then we also need to get rid of the ref that pins an asynchronous client call. We can do this by the same mechanism, setting call->drop_ref for an async client call too. We can also get rid of call->incoming since nothing ever sets it and only one thing ever checks it (futilely). A trace of the rxrpc_call and afs_call struct ref counting looks like: <idle>-0 [001] ..s5 164.764892: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_new_incoming_call+0x473/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns5 164.766001: rxrpc_call: c=00000002 QUE u=4 sp=rxrpc_propose_ACK+0xbe/0x551 a=00000000442095b5 <idle>-0 [001] .Ns4 164.766005: rxrpc_call: c=00000002 PUT u=3 sp=rxrpc_new_incoming_call+0xa3f/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns7 164.766433: afs_call: c=00000002 WAKE u=2 o=11 sp=rxrpc_notify_socket+0x196/0x33c kworker/1:2-1810 [001] ...1 164.768409: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_process_call+0x25/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.769439: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000001 00000000 02 22 ACK CallAck kworker/1:2-1810 [001] ...1 164.769459: rxrpc_call: c=00000002 PUT u=2 sp=rxrpc_process_call+0x74f/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.770794: afs_call: c=00000002 QUEUE u=3 o=12 sp=afs_deliver_to_call+0x449/0x72c kworker/1:2-1810 [001] ...1 164.770829: afs_call: c=00000002 PUT u=2 o=12 sp=afs_process_async_call+0xdb/0x11e kworker/1:2-1810 [001] ...2 164.771084: rxrpc_abort: c=00000002 95786a88:00000008 s=0 a=1 e=1 K-1 kworker/1:2-1810 [001] ...1 164.771461: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000002 00000000 04 00 ABORT CallAbort kworker/1:2-1810 [001] ...1 164.771466: afs_call: c=00000002 PUT u=1 o=12 sp=SRXAFSCB_ProbeUuid+0xc1/0x106 The abort generated in SRXAFSCB_ProbeUuid(), labelled "K-1", indicates that the local filesystem/cache manager didn't recognise the UUID as its own. Fixes: 2067b2b3f484 ("afs: Fix the CB.ProbeUuid service handler to reply correctly") Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-13 13:46:08 +00:00
if (call->async) {
afs_get_call(call, afs_call_trace_get);
afs: Fix handling of an abort from a service handler When an AFS service handler function aborts a call, AF_RXRPC marks the call as complete - which means that it's not going to get any more packets from the receiver. This is a problem because reception of the final ACK is what triggers afs_deliver_to_call() to drop the final ref on the afs_call object. Instead, aborted AFS service calls may then just sit around waiting for ever or until they're displaced by a new call on the same connection channel or a connection-level abort. Fix this by calling afs_set_call_complete() to finalise the afs_call struct representing the call. However, we then need to drop the ref that stops the call from being deallocated. We can do this in afs_set_call_complete(), as the work queue is holding a separate ref of its own, but then we shouldn't do it in afs_process_async_call() and afs_delete_async_call(). call->drop_ref is set to indicate that a ref needs dropping for a call and this is dealt with when we transition a call to AFS_CALL_COMPLETE. But then we also need to get rid of the ref that pins an asynchronous client call. We can do this by the same mechanism, setting call->drop_ref for an async client call too. We can also get rid of call->incoming since nothing ever sets it and only one thing ever checks it (futilely). A trace of the rxrpc_call and afs_call struct ref counting looks like: <idle>-0 [001] ..s5 164.764892: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_new_incoming_call+0x473/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns5 164.766001: rxrpc_call: c=00000002 QUE u=4 sp=rxrpc_propose_ACK+0xbe/0x551 a=00000000442095b5 <idle>-0 [001] .Ns4 164.766005: rxrpc_call: c=00000002 PUT u=3 sp=rxrpc_new_incoming_call+0xa3f/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns7 164.766433: afs_call: c=00000002 WAKE u=2 o=11 sp=rxrpc_notify_socket+0x196/0x33c kworker/1:2-1810 [001] ...1 164.768409: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_process_call+0x25/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.769439: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000001 00000000 02 22 ACK CallAck kworker/1:2-1810 [001] ...1 164.769459: rxrpc_call: c=00000002 PUT u=2 sp=rxrpc_process_call+0x74f/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.770794: afs_call: c=00000002 QUEUE u=3 o=12 sp=afs_deliver_to_call+0x449/0x72c kworker/1:2-1810 [001] ...1 164.770829: afs_call: c=00000002 PUT u=2 o=12 sp=afs_process_async_call+0xdb/0x11e kworker/1:2-1810 [001] ...2 164.771084: rxrpc_abort: c=00000002 95786a88:00000008 s=0 a=1 e=1 K-1 kworker/1:2-1810 [001] ...1 164.771461: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000002 00000000 04 00 ABORT CallAbort kworker/1:2-1810 [001] ...1 164.771466: afs_call: c=00000002 PUT u=1 o=12 sp=SRXAFSCB_ProbeUuid+0xc1/0x106 The abort generated in SRXAFSCB_ProbeUuid(), labelled "K-1", indicates that the local filesystem/cache manager didn't recognise the UUID as its own. Fixes: 2067b2b3f484 ("afs: Fix the CB.ProbeUuid service handler to reply correctly") Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-13 13:46:08 +00:00
call->drop_ref = true;
}
/* create a call */
rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
(unsigned long)call,
rxrpc: Fix timeout of a call that hasn't yet been granted a channel afs_make_call() calls rxrpc_kernel_begin_call() to begin a call (which may get stalled in the background waiting for a connection to become available); it then calls rxrpc_kernel_set_max_life() to set the timeouts - but that starts the call timer so the call timer might then expire before we get a connection assigned - leading to the following oops if the call stalled: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... CPU: 1 PID: 5111 Comm: krxrpcio/0 Not tainted 6.3.0-rc7-build3+ #701 RIP: 0010:rxrpc_alloc_txbuf+0xc0/0x157 ... Call Trace: <TASK> rxrpc_send_ACK+0x50/0x13b rxrpc_input_call_event+0x16a/0x67d rxrpc_io_thread+0x1b6/0x45f ? _raw_spin_unlock_irqrestore+0x1f/0x35 ? rxrpc_input_packet+0x519/0x519 kthread+0xe7/0xef ? kthread_complete_and_exit+0x1b/0x1b ret_from_fork+0x22/0x30 Fix this by noting the timeouts in struct rxrpc_call when the call is created. The timer will be started when the first packet is transmitted. It shouldn't be possible to trigger this directly from userspace through AF_RXRPC as sendmsg() will return EBUSY if the call is in the waiting-for-conn state if it dropped out of the wait due to a signal. Fixes: 9d35d880e0e4 ("rxrpc: Move client call connection to the I/O thread") Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: "David S. Miller" <davem@davemloft.net> cc: Eric Dumazet <edumazet@google.com> cc: Jakub Kicinski <kuba@kernel.org> cc: Paolo Abeni <pabeni@redhat.com> cc: linux-afs@lists.infradead.org cc: netdev@vger.kernel.org cc: linux-kernel@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2023-04-28 21:27:56 +01:00
tx_total_len,
call->max_lifespan,
gfp,
(call->async ?
afs_wake_up_async_call :
afs_wake_up_call_waiter),
call->upgrade,
(call->intr ? RXRPC_PREINTERRUPTIBLE :
RXRPC_UNINTERRUPTIBLE),
call->debug_id);
if (IS_ERR(rxcall)) {
ret = PTR_ERR(rxcall);
call->error = ret;
goto error_kill_call;
}
call->rxcall = rxcall;
call->issue_time = ktime_get_real();
/* send the request */
iov[0].iov_base = call->request;
iov[0].iov_len = call->request_size;
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
msg.msg_control = NULL;
msg.msg_controllen = 0;
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
msg.msg_flags = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
&msg, call->request_size,
afs_notify_end_request_tx);
if (ret < 0)
goto error_do_abort;
afs: Use ITER_XARRAY for writing Use a single ITER_XARRAY iterator to describe the portion of a file to be transmitted to the server rather than generating a series of small ITER_BVEC iterators on the fly. This will make it easier to implement AIO in afs. In theory we could maybe use one giant ITER_BVEC, but that means potentially allocating a huge array of bio_vec structs (max 256 per page) when in fact the pagecache already has a structure listing all the relevant pages (radix_tree/xarray) that can be walked over. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/153685395197.14766.16289516750731233933.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/158861251312.340223.17924900795425422532.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465828607.1377938.6903132788463419368.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588535018.3465195.14509994354240338307.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118152415.1232039.6452879415814850025.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161048194.2537118.13763612220937637316.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340411602.1303470.4661108879482218408.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539555629.286939.5241869986617154517.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653811456.2770958.7017388543246759245.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789095005.6155.6789055030327407928.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
if (call->write_iter) {
msg.msg_iter = *call->write_iter;
msg.msg_flags &= ~MSG_MORE;
trace_afs_send_data(call, &msg);
ret = rxrpc_kernel_send_data(call->net->socket,
call->rxcall, &msg,
iov_iter_count(&msg.msg_iter),
afs_notify_end_request_tx);
*call->write_iter = msg.msg_iter;
trace_afs_sent_data(call, &msg, ret);
if (ret < 0)
goto error_do_abort;
}
/* Note that at this point, we may have received the reply or an abort
* - and an asynchronous call may already have completed.
*
* afs_wait_for_call_to_complete(call, ac)
* must be called to synchronously clean up.
*/
return;
error_do_abort:
if (ret != -ECONNABORTED) {
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_abort_call(call->net->socket, rxcall,
RX_USER_ABORT, ret,
afs_abort_send_data_error);
} else {
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
len = 0;
iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
rxrpc_kernel_recv_data(call->net->socket, rxcall,
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
&msg.msg_iter, &len, false,
&call->abort_code, &call->service_id);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ac->abort_code = call->abort_code;
ac->responded = true;
}
call->error = ret;
trace_afs_call_done(call);
error_kill_call:
if (call->type->done)
call->type->done(call);
/* We need to dispose of the extra ref we grabbed for an async call.
* The call, however, might be queued on afs_async_calls and we need to
* make sure we don't get any more notifications that might requeue it.
*/
if (call->rxcall)
rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
if (call->async) {
if (cancel_work_sync(&call->async_work))
afs_put_call(call);
afs_put_call(call);
}
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ac->error = ret;
call->state = AFS_CALL_COMPLETE;
_leave(" = %d", ret);
}
/*
* Log remote abort codes that indicate that we have a protocol disagreement
* with the server.
*/
static void afs_log_error(struct afs_call *call, s32 remote_abort)
{
static int max = 0;
const char *msg;
int m;
switch (remote_abort) {
case RX_EOF: msg = "unexpected EOF"; break;
case RXGEN_CC_MARSHAL: msg = "client marshalling"; break;
case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling"; break;
case RXGEN_SS_MARSHAL: msg = "server marshalling"; break;
case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling"; break;
case RXGEN_DECODE: msg = "opcode decode"; break;
case RXGEN_SS_XDRFREE: msg = "server XDR cleanup"; break;
case RXGEN_CC_XDRFREE: msg = "client XDR cleanup"; break;
case -32: msg = "insufficient data"; break;
default:
return;
}
m = max;
if (m < 3) {
max = m + 1;
pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
msg, call->type->name,
&call->alist->addrs[call->addr_ix].transport);
}
}
/*
* deliver messages to a call
*/
static void afs_deliver_to_call(struct afs_call *call)
{
enum afs_call_state state;
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
size_t len;
u32 abort_code, remote_abort = 0;
int ret;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
_enter("%s", call->type->name);
while (state = READ_ONCE(call->state),
state == AFS_CALL_CL_AWAIT_REPLY ||
state == AFS_CALL_SV_AWAIT_OP_ID ||
state == AFS_CALL_SV_AWAIT_REQUEST ||
state == AFS_CALL_SV_AWAIT_ACK
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
) {
if (state == AFS_CALL_SV_AWAIT_ACK) {
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
len = 0;
iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
ret = rxrpc_kernel_recv_data(call->net->socket,
call->rxcall, &call->def_iter,
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
&len, false, &remote_abort,
&call->service_id);
trace_afs_receive_data(call, &call->def_iter, false, ret);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (ret == -EINPROGRESS || ret == -EAGAIN)
return;
if (ret < 0 || ret == 1) {
if (ret == 1)
ret = 0;
goto call_complete;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
return;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
ret = call->type->deliver(call);
state = READ_ONCE(call->state);
if (ret == 0 && call->unmarshalling_error)
ret = -EBADMSG;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
switch (ret) {
case 0:
afs_queue_call_work(call);
if (state == AFS_CALL_CL_PROC_REPLY) {
if (call->op)
set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
&call->op->server->flags);
goto call_complete;
}
ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
goto done;
case -EINPROGRESS:
case -EAGAIN:
goto out;
case -ECONNABORTED:
ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
afs_log_error(call, call->abort_code);
goto done;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
case -ENOTSUPP:
abort_code = RXGEN_OPCODE;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
abort_code, ret,
afs_abort_op_not_supported);
goto local_abort;
case -EIO:
pr_err("kAFS: Call %u in bad state %u\n",
call->debug_id, state);
fallthrough;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
case -ENODATA:
case -EBADMSG:
case -EMSGSIZE:
case -ENOMEM:
case -EFAULT:
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
abort_code = RXGEN_CC_UNMARSHAL;
if (state != AFS_CALL_CL_AWAIT_REPLY)
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
abort_code = RXGEN_SS_UNMARSHAL;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
abort_code, ret,
afs_abort_unmarshal_error);
goto local_abort;
default:
abort_code = RX_CALL_DEAD;
rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
abort_code, ret,
afs_abort_general_error);
goto local_abort;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
}
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
done:
if (call->type->done)
call->type->done(call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
out:
_leave("");
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
return;
local_abort:
abort_code = 0;
call_complete:
afs_set_call_complete(call, ret, remote_abort);
state = AFS_CALL_COMPLETE;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
goto done;
}
/*
* Wait synchronously for a call to complete and clean up the call struct.
*/
long afs_wait_for_call_to_complete(struct afs_call *call,
struct afs_addr_cursor *ac)
{
long ret;
bool rxrpc_complete = false;
DECLARE_WAITQUEUE(myself, current);
_enter("");
ret = call->error;
if (ret < 0)
goto out;
add_wait_queue(&call->waitq, &myself);
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
/* deliver any messages that are in the queue */
if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
call->need_attention) {
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
call->need_attention = false;
__set_current_state(TASK_RUNNING);
afs_deliver_to_call(call);
continue;
}
if (afs_check_call_state(call, AFS_CALL_COMPLETE))
break;
if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
/* rxrpc terminated the call. */
rxrpc_complete = true;
break;
}
schedule();
}
remove_wait_queue(&call->waitq, &myself);
__set_current_state(TASK_RUNNING);
if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
if (rxrpc_complete) {
afs_set_call_complete(call, call->error, call->abort_code);
} else {
/* Kill off the call if it's still live. */
_debug("call interrupted");
if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
RX_USER_ABORT, -EINTR,
afs_abort_interrupted))
afs_set_call_complete(call, -EINTR, 0);
}
}
spin_lock_bh(&call->state_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ac->abort_code = call->abort_code;
ac->error = call->error;
spin_unlock_bh(&call->state_lock);
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
ret = ac->error;
switch (ret) {
case 0:
ret = call->ret0;
call->ret0 = 0;
fallthrough;
afs: Overhaul volume and server record caching and fileserver rotation The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:50 +00:00
case -ECONNABORTED:
ac->responded = true;
break;
}
out:
_debug("call complete");
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
afs_put_call(call);
_leave(" = %p", (void *)ret);
return ret;
}
/*
* wake up a waiting call
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
struct afs_call *call = (struct afs_call *)call_user_ID;
call->need_attention = true;
wake_up(&call->waitq);
}
/*
* wake up an asynchronous call
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
struct afs_call *call = (struct afs_call *)call_user_ID;
int r;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
trace_afs_notify_call(rxcall, call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
call->need_attention = true;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
if (__refcount_inc_not_zero(&call->ref, &r)) {
trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
atomic_read(&call->net->nr_outstanding_calls),
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
__builtin_return_address(0));
if (!queue_work(afs_async_calls, &call->async_work))
afs_put_call(call);
}
}
/*
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
* Perform I/O processing on an asynchronous call. The work item carries a ref
* to the call struct that we either need to release or to pass on.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static void afs_process_async_call(struct work_struct *work)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
struct afs_call *call = container_of(work, struct afs_call, async_work);
_enter("");
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
call->need_attention = false;
afs_deliver_to_call(call);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
}
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
afs_put_call(call);
_leave("");
}
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
{
struct afs_call *call = (struct afs_call *)user_call_ID;
call->rxcall = rxcall;
}
/*
* Charge the incoming call preallocation.
*/
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
void afs_charge_preallocation(struct work_struct *work)
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net =
container_of(work, struct afs_net, charge_preallocation_work);
struct afs_call *call = net->spare_incoming_call;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
for (;;) {
if (!call) {
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
if (!call)
break;
afs: Fix handling of an abort from a service handler When an AFS service handler function aborts a call, AF_RXRPC marks the call as complete - which means that it's not going to get any more packets from the receiver. This is a problem because reception of the final ACK is what triggers afs_deliver_to_call() to drop the final ref on the afs_call object. Instead, aborted AFS service calls may then just sit around waiting for ever or until they're displaced by a new call on the same connection channel or a connection-level abort. Fix this by calling afs_set_call_complete() to finalise the afs_call struct representing the call. However, we then need to drop the ref that stops the call from being deallocated. We can do this in afs_set_call_complete(), as the work queue is holding a separate ref of its own, but then we shouldn't do it in afs_process_async_call() and afs_delete_async_call(). call->drop_ref is set to indicate that a ref needs dropping for a call and this is dealt with when we transition a call to AFS_CALL_COMPLETE. But then we also need to get rid of the ref that pins an asynchronous client call. We can do this by the same mechanism, setting call->drop_ref for an async client call too. We can also get rid of call->incoming since nothing ever sets it and only one thing ever checks it (futilely). A trace of the rxrpc_call and afs_call struct ref counting looks like: <idle>-0 [001] ..s5 164.764892: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_new_incoming_call+0x473/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns5 164.766001: rxrpc_call: c=00000002 QUE u=4 sp=rxrpc_propose_ACK+0xbe/0x551 a=00000000442095b5 <idle>-0 [001] .Ns4 164.766005: rxrpc_call: c=00000002 PUT u=3 sp=rxrpc_new_incoming_call+0xa3f/0xb34 a=00000000442095b5 <idle>-0 [001] .Ns7 164.766433: afs_call: c=00000002 WAKE u=2 o=11 sp=rxrpc_notify_socket+0x196/0x33c kworker/1:2-1810 [001] ...1 164.768409: rxrpc_call: c=00000002 SEE u=3 sp=rxrpc_process_call+0x25/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.769439: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000001 00000000 02 22 ACK CallAck kworker/1:2-1810 [001] ...1 164.769459: rxrpc_call: c=00000002 PUT u=2 sp=rxrpc_process_call+0x74f/0x7ae a=00000000442095b5 kworker/1:2-1810 [001] ...1 164.770794: afs_call: c=00000002 QUEUE u=3 o=12 sp=afs_deliver_to_call+0x449/0x72c kworker/1:2-1810 [001] ...1 164.770829: afs_call: c=00000002 PUT u=2 o=12 sp=afs_process_async_call+0xdb/0x11e kworker/1:2-1810 [001] ...2 164.771084: rxrpc_abort: c=00000002 95786a88:00000008 s=0 a=1 e=1 K-1 kworker/1:2-1810 [001] ...1 164.771461: rxrpc_tx_packet: c=00000002 e9f1a7a8:95786a88:00000008:09c5 00000002 00000000 04 00 ABORT CallAbort kworker/1:2-1810 [001] ...1 164.771466: afs_call: c=00000002 PUT u=1 o=12 sp=SRXAFSCB_ProbeUuid+0xc1/0x106 The abort generated in SRXAFSCB_ProbeUuid(), labelled "K-1", indicates that the local filesystem/cache manager didn't recognise the UUID as its own. Fixes: 2067b2b3f484 ("afs: Fix the CB.ProbeUuid service handler to reply correctly") Signed-off-by: David Howells <dhowells@redhat.com>
2020-03-13 13:46:08 +00:00
call->drop_ref = true;
call->async = true;
call->state = AFS_CALL_SV_AWAIT_OP_ID;
init_waitqueue_head(&call->waitq);
afs_extract_to_tmp(call);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
}
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
if (rxrpc_kernel_charge_accept(net->socket,
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
afs_wake_up_async_call,
afs_rx_attach,
(unsigned long)call,
GFP_KERNEL,
call->debug_id) < 0)
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
break;
call = NULL;
}
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
net->spare_incoming_call = call;
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
}
/*
* Discard a preallocated call when a socket is shut down.
*/
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
unsigned long user_call_ID)
{
struct afs_call *call = (struct afs_call *)user_call_ID;
call->rxcall = NULL;
afs: Refcount the afs_call struct A static checker warning occurs in the AFS filesystem: fs/afs/cmservice.c:155 SRXAFSCB_CallBack() error: dereferencing freed memory 'call' due to the reply being sent before we access the server it points to. The act of sending the reply causes the call to be freed if an error occurs (but not if it doesn't). On top of this, the lifetime handling of afs_call structs is fragile because they get passed around through workqueues without any sort of refcounting. Deal with the issues by: (1) Fix the maybe/maybe not nature of the reply sending functions with regards to whether they release the call struct. (2) Refcount the afs_call struct and sort out places that need to get/put references. (3) Pass a ref through the work queue and release (or pass on) that ref in the work function. Care has to be taken because a work queue may already own a ref to the call. (4) Do the cleaning up in the put function only. (5) Simplify module cleanup by always incrementing afs_outstanding_calls whenever a call is allocated. (6) Set the backlog to 0 with kernel_listen() at the beginning of the process of closing the socket to prevent new incoming calls from occurring and to remove the contribution of preallocated calls from afs_outstanding_calls before we wait on it. A tracepoint is also added to monitor the afs_call refcount and lifetime. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David Howells <dhowells@redhat.com> Fixes: 08e0e7c82eea: "[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC."
2017-01-05 10:38:36 +00:00
afs_put_call(call);
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
/*
* Notification of an incoming call.
*/
rxrpc: Preallocate peers, conns and calls for incoming service requests Make it possible for the data_ready handler called from the UDP transport socket to completely instantiate an rxrpc_call structure and make it immediately live by preallocating all the memory it might need. The idea is to cut out the background thread usage as much as possible. [Note that the preallocated structs are not actually used in this patch - that will be done in a future patch.] If insufficient resources are available in the preallocation buffers, it will be possible to discard the DATA packet in the data_ready handler or schedule a BUSY packet without the need to schedule an attempt at allocation in a background thread. To this end: (1) Preallocate rxrpc_peer, rxrpc_connection and rxrpc_call structs to a maximum number each of the listen backlog size. The backlog size is limited to a maxmimum of 32. Only this many of each can be in the preallocation buffer. (2) For userspace sockets, the preallocation is charged initially by listen() and will be recharged by accepting or rejecting pending new incoming calls. (3) For kernel services {,re,dis}charging of the preallocation buffers is handled manually. Two notifier callbacks have to be provided before kernel_listen() is invoked: (a) An indication that a new call has been instantiated. This can be used to trigger background recharging. (b) An indication that a call is being discarded. This is used when the socket is being released. A function, rxrpc_kernel_charge_accept() is called by the kernel service to preallocate a single call. It should be passed the user ID to be used for that call and a callback to associate the rxrpc call with the kernel service's side of the ID. (4) Discard the preallocation when the socket is closed. (5) Temporarily bump the refcount on the call allocated in rxrpc_incoming_call() so that rxrpc_release_call() can ditch the preallocation ref on service calls unconditionally. This will no longer be necessary once the preallocation is used. Note that this does not yet control the number of active service calls on a client - that will come in a later patch. A future development would be to provide a setsockopt() call that allows a userspace server to manually charge the preallocation buffer. This would allow user call IDs to be provided in advance and the awkward manual accept stage to be bypassed. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 11:10:12 +01:00
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
unsigned long user_call_ID)
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net = afs_sock2net(sk);
queue_work(afs_wq, &net->charge_preallocation_work);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
}
/*
rxrpc: Fix races between skb free, ACK generation and replying Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 14:11:40 +01:00
* Grab the operation ID from an incoming cache manager call. The socket
* buffer is discarded on error or if we don't yet have sufficient data.
*/
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
static int afs_deliver_cm_op_id(struct afs_call *call)
{
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
int ret;
_enter("{%zu}", iov_iter_count(call->iter));
/* the operation ID forms the first four bytes of the request data */
ret = afs_extract_data(call, true);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (ret < 0)
return ret;
call->operation_ID = ntohl(call->tmp);
afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
/* ask the cache manager to route the call (it'll change the call type
* if successful) */
if (!afs_cm_incoming_call(call))
return -ENOTSUPP;
trace_afs_cb_call(call);
/* pass responsibility for the remainer of this message off to the
* cache manager op */
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
return call->type->deliver(call);
}
/*
* Advance the AFS call state when an RxRPC service call ends the transmit
* phase.
*/
static void afs_notify_end_reply_tx(struct sock *sock,
struct rxrpc_call *rxcall,
unsigned long call_user_ID)
{
struct afs_call *call = (struct afs_call *)call_user_ID;
afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
}
/*
* send an empty reply
*/
void afs_send_empty_reply(struct afs_call *call)
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net = call->net;
struct msghdr msg;
_enter("");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
afs_notify_end_reply_tx)) {
case 0:
_leave(" [replied]");
return;
case -ENOMEM:
_debug("oom");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_abort_call(net->socket, call->rxcall,
RXGEN_SS_MARSHAL, -ENOMEM,
afs_abort_oom);
fallthrough;
default:
_leave(" [error]");
return;
}
}
/*
* send a simple reply
*/
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net = call->net;
struct msghdr msg;
struct kvec iov[1];
int n;
_enter("");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
iov[0].iov_base = (void *) buf;
iov[0].iov_len = len;
msg.msg_name = NULL;
msg.msg_namelen = 0;
iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
afs_notify_end_reply_tx);
if (n >= 0) {
/* Success */
_leave(" [replied]");
return;
}
if (n == -ENOMEM) {
_debug("oom");
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
rxrpc_kernel_abort_call(net->socket, call->rxcall,
RXGEN_SS_MARSHAL, -ENOMEM,
afs_abort_oom);
}
_leave(" [error]");
}
/*
rxrpc: Fix races between skb free, ACK generation and replying Inside the kafs filesystem it is possible to occasionally have a call processed and terminated before we've had a chance to check whether we need to clean up the rx queue for that call because afs_send_simple_reply() ends the call when it is done, but this is done in a workqueue item that might happen to run to completion before afs_deliver_to_call() completes. Further, it is possible for rxrpc_kernel_send_data() to be called to send a reply before the last request-phase data skb is released. The rxrpc skb destructor is where the ACK processing is done and the call state is advanced upon release of the last skb. ACK generation is also deferred to a work item because it's possible that the skb destructor is not called in a context where kernel_sendmsg() can be invoked. To this end, the following changes are made: (1) kernel_rxrpc_data_consumed() is added. This should be called whenever an skb is emptied so as to crank the ACK and call states. This does not release the skb, however. kernel_rxrpc_free_skb() must now be called to achieve that. These together replace rxrpc_kernel_data_delivered(). (2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed(). This makes afs_deliver_to_call() easier to work as the skb can simply be discarded unconditionally here without trying to work out what the return value of the ->deliver() function means. The ->deliver() functions can, via afs_data_complete(), afs_transfer_reply() and afs_extract_data() mark that an skb has been consumed (thereby cranking the state) without the need to conditionally free the skb to make sure the state is correct on an incoming call for when the call processor tries to send the reply. (3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it has finished with a packet and MSG_PEEK isn't set. (4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data(). Because of this, we no longer need to clear the destructor and put the call before we free the skb in cases where we don't want the ACK/call state to be cranked. (5) The ->deliver() call-type callbacks are made to return -EAGAIN rather than 0 if they expect more data (afs_extract_data() returns -EAGAIN to the delivery function already), and the caller is now responsible for producing an abort if that was the last packet. (6) There are many bits of unmarshalling code where: ret = afs_extract_data(call, skb, last, ...); switch (ret) { case 0: break; case -EAGAIN: return 0; default: return ret; } is to be found. As -EAGAIN can now be passed back to the caller, we now just return if ret < 0: ret = afs_extract_data(call, skb, last, ...); if (ret < 0) return ret; (7) Checks for trailing data and empty final data packets has been consolidated as afs_data_complete(). So: if (skb->len > 0) return -EBADMSG; if (!last) return 0; becomes: ret = afs_data_complete(call, skb, last); if (ret < 0) return ret; (8) afs_transfer_reply() now checks the amount of data it has against the amount of data desired and the amount of data in the skb and returns an error to induce an abort if we don't get exactly what we want. Without these changes, the following oops can occasionally be observed, particularly if some printks are inserted into the delivery path: general protection fault: 0000 [#1] SMP Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc] CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: kafsd afs_async_workfn [kafs] task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000 RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1 RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002 RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710 RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0 Stack: 0000000000000006 000000000be04930 0000000000000000 ffff880400000000 ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446 ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38 Call Trace: [<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74 [<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1 [<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189 [<ffffffff810915f4>] lock_acquire+0x122/0x1b6 [<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49 [<ffffffff814c928f>] ? skb_dequeue+0x18/0x61 [<ffffffff814c928f>] skb_dequeue+0x18/0x61 [<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs] [<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs] [<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs] [<ffffffff81063a3a>] process_one_work+0x29d/0x57c [<ffffffff81064ac2>] worker_thread+0x24a/0x385 [<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0 [<ffffffff810696f5>] kthread+0xf3/0xfb [<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40 [<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 14:11:40 +01:00
* Extract a piece of data from the received data socket buffers.
*/
int afs_extract_data(struct afs_call *call, bool want_more)
{
afs: Lay the groundwork for supporting network namespaces Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-02 15:27:45 +00:00
struct afs_net *net = call->net;
struct iov_iter *iter = call->iter;
enum afs_call_state state;
u32 remote_abort = 0;
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
int ret;
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
_enter("{%s,%zu,%zu},%d",
call->type->name, call->iov_len, iov_iter_count(iter), want_more);
ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
afs: Don't truncate iter during data fetch Don't truncate the iterator to correspond to the actual data size when fetching the data from the server - rather, pass the length we want to read to rxrpc. This will allow the clear-after-read code in future to simply clear the remaining iterator capacity rather than having to reinitialise the iterator. Signed-off-by: David Howells <dhowells@redhat.com> Tested-By: Marc Dionne <marc.dionne@auristor.com> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org Link: https://lore.kernel.org/r/158861249201.340223.13035445866976590375.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/159465825061.1377938.14403904452300909320.stgit@warthog.procyon.org.uk/ Link: https://lore.kernel.org/r/160588531418.3465195.10712005940763063144.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161118148567.1232039.13380313332292947956.stgit@warthog.procyon.org.uk/ # rfc Link: https://lore.kernel.org/r/161161044610.2537118.17908520793806837792.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/161340407907.1303470.6501394859511712746.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/161539551721.286939.14655713136572200716.stgit@warthog.procyon.org.uk/ # v4 Link: https://lore.kernel.org/r/161653807790.2770958.14034599989374173734.stgit@warthog.procyon.org.uk/ # v5 Link: https://lore.kernel.org/r/161789090823.6155.15673999934535049102.stgit@warthog.procyon.org.uk/ # v6
2020-02-06 14:22:28 +00:00
&call->iov_len, want_more, &remote_abort,
&call->service_id);
trace_afs_receive_data(call, call->iter, want_more, ret);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (ret == 0 || ret == -EAGAIN)
return ret;
state = READ_ONCE(call->state);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
if (ret == 1) {
switch (state) {
case AFS_CALL_CL_AWAIT_REPLY:
afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
break;
case AFS_CALL_SV_AWAIT_REQUEST:
afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
break;
case AFS_CALL_COMPLETE:
kdebug("prem complete %d", call->error);
return afs_io_error(call, afs_io_error_extract);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
default:
break;
}
return 0;
}
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
afs_set_call_complete(call, ret, remote_abort);
rxrpc: Don't expose skbs to in-kernel users [ver #2] Don't expose skbs to in-kernel users, such as the AFS filesystem, but instead provide a notification hook the indicates that a call needs attention and another that indicates that there's a new call to be collected. This makes the following possibilities more achievable: (1) Call refcounting can be made simpler if skbs don't hold refs to calls. (2) skbs referring to non-data events will be able to be freed much sooner rather than being queued for AFS to pick up as rxrpc_kernel_recv_data will be able to consult the call state. (3) We can shortcut the receive phase when a call is remotely aborted because we don't have to go through all the packets to get to the one cancelling the operation. (4) It makes it easier to do encryption/decryption directly between AFS's buffers and sk_buffs. (5) Encryption/decryption can more easily be done in the AFS's thread contexts - usually that of the userspace process that issued a syscall - rather than in one of rxrpc's background threads on a workqueue. (6) AFS will be able to wait synchronously on a call inside AF_RXRPC. To make this work, the following interface function has been added: int rxrpc_kernel_recv_data( struct socket *sock, struct rxrpc_call *call, void *buffer, size_t bufsize, size_t *_offset, bool want_more, u32 *_abort_code); This is the recvmsg equivalent. It allows the caller to find out about the state of a specific call and to transfer received data into a buffer piecemeal. afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction logic between them. They don't wait synchronously yet because the socket lock needs to be dealt with. Five interface functions have been removed: rxrpc_kernel_is_data_last() rxrpc_kernel_get_abort_code() rxrpc_kernel_get_error_number() rxrpc_kernel_free_skb() rxrpc_kernel_data_consumed() As a temporary hack, sk_buffs going to an in-kernel call are queued on the rxrpc_call struct (->knlrecv_queue) rather than being handed over to the in-kernel user. To process the queue internally, a temporary function, temp_deliver_data() has been added. This will be replaced with common code between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a future patch. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-30 20:42:14 +01:00
return ret;
}
/*
* Log protocol error production.
*/
noinline int afs_protocol_error(struct afs_call *call,
enum afs_eproto_cause cause)
{
trace_afs_protocol_error(call, cause);
if (call)
call->unmarshalling_error = true;
return -EBADMSG;
}