2005-04-17 02:20:36 +04:00
# ifndef _ASM_DMA_MAPPING_H
# define _ASM_DMA_MAPPING_H
# include <linux/device.h>
# include <asm/cache.h>
# include <asm/cacheflush.h>
# include <asm/scatterlist.h>
# include <asm/io.h>
# define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
# define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
extern unsigned long __nongprelbss dma_coherent_mem_start ;
extern unsigned long __nongprelbss dma_coherent_mem_end ;
2005-10-21 11:21:18 +04:00
void * dma_alloc_coherent ( struct device * dev , size_t size , dma_addr_t * dma_handle , gfp_t gfp ) ;
2005-04-17 02:20:36 +04:00
void dma_free_coherent ( struct device * dev , size_t size , void * vaddr , dma_addr_t dma_handle ) ;
/*
* These macros should be used after a pci_map_sg call has been done
* to get bus addresses of each of the SG entries and their lengths .
* You should only work with the number of sg entries pci_map_sg
* returns , or alternatively stop on the first sg_dma_len ( sg ) which
* is 0.
*/
2006-01-08 12:01:25 +03:00
# define sg_dma_address(sg) ((sg)->dma_address)
2005-04-17 02:20:36 +04:00
# define sg_dma_len(sg) ((sg)->length)
/*
* Map a single buffer of the indicated size for DMA in streaming mode .
* The 32 - bit bus address to use is returned .
*
* Once the device is given the dma address , the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single is performed .
*/
extern dma_addr_t dma_map_single ( struct device * dev , void * ptr , size_t size ,
enum dma_data_direction direction ) ;
/*
* Unmap a single streaming mode DMA translation . The dma_addr and size
* must match what was provided for in a previous pci_map_single call . All
* other usages are undefined .
*
* After this call , reads by the cpu to the buffer are guarenteed to see
* whatever the device wrote there .
*/
static inline
void dma_unmap_single ( struct device * dev , dma_addr_t dma_addr , size_t size ,
enum dma_data_direction direction )
{
BUG_ON ( direction = = DMA_NONE ) ;
}
/*
* Map a set of buffers described by scatterlist in streaming
* mode for DMA . This is the scather - gather version of the
* above pci_map_single interface . Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length . They are obtained via sg_dma_ { address , length } ( SG ) .
*
* NOTE : An implementation may be able to use a smaller number of
* DMA address / length pairs than there are SG table elements .
* ( for example via virtual mapping capabilities )
* The routine returns the number of addr / length pairs actually
* used , at most nents .
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here .
*/
extern int dma_map_sg ( struct device * dev , struct scatterlist * sg , int nents ,
enum dma_data_direction direction ) ;
/*
* Unmap a set of streaming mode DMA translations .
* Again , cpu read rules concerning calls here are the same as for
* pci_unmap_single ( ) above .
*/
static inline
void dma_unmap_sg ( struct device * dev , struct scatterlist * sg , int nhwentries ,
enum dma_data_direction direction )
{
BUG_ON ( direction = = DMA_NONE ) ;
}
extern
dma_addr_t dma_map_page ( struct device * dev , struct page * page , unsigned long offset ,
size_t size , enum dma_data_direction direction ) ;
static inline
void dma_unmap_page ( struct device * dev , dma_addr_t dma_address , size_t size ,
enum dma_data_direction direction )
{
BUG_ON ( direction = = DMA_NONE ) ;
}
static inline
void dma_sync_single_for_cpu ( struct device * dev , dma_addr_t dma_handle , size_t size ,
enum dma_data_direction direction )
{
}
static inline
void dma_sync_single_for_device ( struct device * dev , dma_addr_t dma_handle , size_t size ,
enum dma_data_direction direction )
{
flush_write_buffers ( ) ;
}
static inline
void dma_sync_single_range_for_cpu ( struct device * dev , dma_addr_t dma_handle ,
unsigned long offset , size_t size ,
enum dma_data_direction direction )
{
}
static inline
void dma_sync_single_range_for_device ( struct device * dev , dma_addr_t dma_handle ,
unsigned long offset , size_t size ,
enum dma_data_direction direction )
{
flush_write_buffers ( ) ;
}
static inline
void dma_sync_sg_for_cpu ( struct device * dev , struct scatterlist * sg , int nelems ,
enum dma_data_direction direction )
{
}
static inline
void dma_sync_sg_for_device ( struct device * dev , struct scatterlist * sg , int nelems ,
enum dma_data_direction direction )
{
flush_write_buffers ( ) ;
}
static inline
int dma_mapping_error ( dma_addr_t dma_addr )
{
return 0 ;
}
static inline
int dma_supported ( struct device * dev , u64 mask )
{
/*
* we fall back to GFP_DMA when the mask isn ' t all 1 s ,
* so we can ' t guarantee allocations that must be
* within a tighter range than GFP_DMA . .
*/
if ( mask < 0x00ffffff )
return 0 ;
return 1 ;
}
static inline
int dma_set_mask ( struct device * dev , u64 mask )
{
if ( ! dev - > dma_mask | | ! dma_supported ( dev , mask ) )
return - EIO ;
* dev - > dma_mask = mask ;
return 0 ;
}
static inline
int dma_get_cache_alignment ( void )
{
return 1 < < L1_CACHE_SHIFT ;
}
2006-12-07 07:38:54 +03:00
# define dma_is_consistent(d, h) (1)
2005-04-17 02:20:36 +04:00
static inline
2006-12-07 07:38:56 +03:00
void dma_cache_sync ( struct device * dev , void * vaddr , size_t size ,
2005-04-17 02:20:36 +04:00
enum dma_data_direction direction )
{
flush_write_buffers ( ) ;
}
# endif /* _ASM_DMA_MAPPING_H */