linux/drivers/lightnvm/pblk-rl.c

185 lines
4.8 KiB
C
Raw Normal View History

lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-15 21:55:50 +03:00
/*
* Copyright (C) 2016 CNEX Labs
* Initial release: Javier Gonzalez <javier@cnexlabs.com>
* Matias Bjorling <matias@cnexlabs.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* pblk-rl.c - pblk's rate limiter for user I/O
*
*/
#include "pblk.h"
static void pblk_rl_kick_u_timer(struct pblk_rl *rl)
{
mod_timer(&rl->u_timer, jiffies + msecs_to_jiffies(5000));
}
int pblk_rl_user_may_insert(struct pblk_rl *rl, int nr_entries)
{
int rb_user_cnt = atomic_read(&rl->rb_user_cnt);
return (!(rb_user_cnt + nr_entries > rl->rb_user_max));
}
int pblk_rl_gc_may_insert(struct pblk_rl *rl, int nr_entries)
{
int rb_gc_cnt = atomic_read(&rl->rb_gc_cnt);
int rb_user_active;
/* If there is no user I/O let GC take over space on the write buffer */
rb_user_active = READ_ONCE(rl->rb_user_active);
return (!(rb_gc_cnt + nr_entries > rl->rb_gc_max && rb_user_active));
}
void pblk_rl_user_in(struct pblk_rl *rl, int nr_entries)
{
atomic_add(nr_entries, &rl->rb_user_cnt);
/* Release user I/O state. Protect from GC */
smp_store_release(&rl->rb_user_active, 1);
pblk_rl_kick_u_timer(rl);
}
void pblk_rl_gc_in(struct pblk_rl *rl, int nr_entries)
{
atomic_add(nr_entries, &rl->rb_gc_cnt);
}
void pblk_rl_out(struct pblk_rl *rl, int nr_user, int nr_gc)
{
atomic_sub(nr_user, &rl->rb_user_cnt);
atomic_sub(nr_gc, &rl->rb_gc_cnt);
}
unsigned long pblk_rl_nr_free_blks(struct pblk_rl *rl)
{
return atomic_read(&rl->free_blocks);
}
/*
* We check for (i) the number of free blocks in the current LUN and (ii) the
* total number of free blocks in the pblk instance. This is to even out the
* number of free blocks on each LUN when GC kicks in.
*
* Only the total number of free blocks is used to configure the rate limiter.
*/
static int pblk_rl_update_rates(struct pblk_rl *rl, unsigned long max)
{
unsigned long free_blocks = pblk_rl_nr_free_blks(rl);
if (free_blocks >= rl->high) {
rl->rb_user_max = max - rl->rb_gc_rsv;
rl->rb_gc_max = rl->rb_gc_rsv;
rl->rb_state = PBLK_RL_HIGH;
} else if (free_blocks < rl->high) {
int shift = rl->high_pw - rl->rb_windows_pw;
int user_windows = free_blocks >> shift;
int user_max = user_windows << PBLK_MAX_REQ_ADDRS_PW;
int gc_max;
rl->rb_user_max = user_max;
gc_max = max - rl->rb_user_max;
rl->rb_gc_max = max(gc_max, rl->rb_gc_rsv);
if (free_blocks > rl->low)
rl->rb_state = PBLK_RL_MID;
else
rl->rb_state = PBLK_RL_LOW;
}
return rl->rb_state;
}
void pblk_rl_set_gc_rsc(struct pblk_rl *rl, int rsv)
{
rl->rb_gc_rsv = rl->rb_gc_max = rsv;
}
void pblk_rl_free_lines_inc(struct pblk_rl *rl, struct pblk_line *line)
{
struct pblk *pblk = container_of(rl, struct pblk, rl);
int blk_in_line = atomic_read(&line->blk_in_line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-15 21:55:50 +03:00
int ret;
atomic_add(blk_in_line, &rl->free_blocks);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-15 21:55:50 +03:00
/* Rates will not change that often - no need to lock update */
ret = pblk_rl_update_rates(rl, rl->rb_budget);
if (ret == (PBLK_RL_MID | PBLK_RL_LOW))
pblk_gc_should_start(pblk);
else
pblk_gc_should_stop(pblk);
}
void pblk_rl_free_lines_dec(struct pblk_rl *rl, struct pblk_line *line)
{
struct pblk *pblk = container_of(rl, struct pblk, rl);
int blk_in_line = atomic_read(&line->blk_in_line);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-15 21:55:50 +03:00
int ret;
atomic_sub(blk_in_line, &rl->free_blocks);
lightnvm: physical block device (pblk) target This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-15 21:55:50 +03:00
/* Rates will not change that often - no need to lock update */
ret = pblk_rl_update_rates(rl, rl->rb_budget);
if (ret == (PBLK_RL_MID | PBLK_RL_LOW))
pblk_gc_should_start(pblk);
else
pblk_gc_should_stop(pblk);
}
int pblk_rl_gc_thrs(struct pblk_rl *rl)
{
return rl->high;
}
int pblk_rl_sysfs_rate_show(struct pblk_rl *rl)
{
return rl->rb_user_max;
}
static void pblk_rl_u_timer(unsigned long data)
{
struct pblk_rl *rl = (struct pblk_rl *)data;
/* Release user I/O state. Protect from GC */
smp_store_release(&rl->rb_user_active, 0);
}
void pblk_rl_free(struct pblk_rl *rl)
{
del_timer(&rl->u_timer);
}
void pblk_rl_init(struct pblk_rl *rl, int budget)
{
unsigned int rb_windows;
rl->high = rl->total_blocks / PBLK_USER_HIGH_THRS;
rl->low = rl->total_blocks / PBLK_USER_LOW_THRS;
rl->high_pw = get_count_order(rl->high);
/* This will always be a power-of-2 */
rb_windows = budget / PBLK_MAX_REQ_ADDRS;
rl->rb_windows_pw = get_count_order(rb_windows) + 1;
/* To start with, all buffer is available to user I/O writers */
rl->rb_budget = budget;
rl->rb_user_max = budget;
atomic_set(&rl->rb_user_cnt, 0);
rl->rb_gc_max = 0;
rl->rb_state = PBLK_RL_HIGH;
atomic_set(&rl->rb_gc_cnt, 0);
setup_timer(&rl->u_timer, pblk_rl_u_timer, (unsigned long)rl);
rl->rb_user_active = 0;
}