linux/include/uapi/sound/firewire.h

288 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX license identifier to uapi header files with no license Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:08:43 +01:00
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
#ifndef _UAPI_SOUND_FIREWIRE_H_INCLUDED
#define _UAPI_SOUND_FIREWIRE_H_INCLUDED
#include <linux/ioctl.h>
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
#include <linux/types.h>
/* events can be read() from the hwdep device */
#define SNDRV_FIREWIRE_EVENT_LOCK_STATUS 0x000010cc
#define SNDRV_FIREWIRE_EVENT_DICE_NOTIFICATION 0xd1ce004e
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
#define SNDRV_FIREWIRE_EVENT_EFW_RESPONSE 0x4e617475
#define SNDRV_FIREWIRE_EVENT_DIGI00X_MESSAGE 0x746e736c
#define SNDRV_FIREWIRE_EVENT_MOTU_NOTIFICATION 0x64776479
#define SNDRV_FIREWIRE_EVENT_TASCAM_CONTROL 0x7473636d
#define SNDRV_FIREWIRE_EVENT_MOTU_REGISTER_DSP_CHANGE 0x4d545244
#define SNDRV_FIREWIRE_EVENT_FF400_MESSAGE 0x4f6c6761
struct snd_firewire_event_common {
unsigned int type; /* SNDRV_FIREWIRE_EVENT_xxx */
};
struct snd_firewire_event_lock_status {
unsigned int type;
unsigned int status; /* 0/1 = unlocked/locked */
};
struct snd_firewire_event_dice_notification {
unsigned int type;
unsigned int notification; /* DICE-specific bits */
};
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
#define SND_EFW_TRANSACTION_USER_SEQNUM_MAX ((__u32)((__u16)~0) - 1)
/* each field should be in big endian */
struct snd_efw_transaction {
__be32 length;
__be32 version;
__be32 seqnum;
__be32 category;
__be32 command;
__be32 status;
treewide: uapi: Replace zero-length arrays with flexible-array members There is a regular need in the kernel to provide a way to declare having a dynamically sized set of trailing elements in a structure. Kernel code should always use “flexible array members”[1] for these cases. The older style of one-element or zero-length arrays should no longer be used[2]. This code was transformed with the help of Coccinelle: (linux-5.19-rc2$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch) @@ identifier S, member, array; type T1, T2; @@ struct S { ... T1 member; T2 array[ - 0 ]; }; -fstrict-flex-arrays=3 is coming and we need to land these changes to prevent issues like these in the short future: ../fs/minix/dir.c:337:3: warning: 'strcpy' will always overflow; destination buffer has size 0, but the source string has length 2 (including NUL byte) [-Wfortify-source] strcpy(de3->name, "."); ^ Since these are all [0] to [] changes, the risk to UAPI is nearly zero. If this breaks anything, we can use a union with a new member name. [1] https://en.wikipedia.org/wiki/Flexible_array_member [2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays Link: https://github.com/KSPP/linux/issues/78 Build-tested-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/62b675ec.wKX6AOZ6cbE71vtF%25lkp@intel.com/ Acked-by: Dan Williams <dan.j.williams@intel.com> # For ndctl.h Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2022-04-06 19:36:51 -05:00
__be32 params[];
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
};
struct snd_firewire_event_efw_response {
unsigned int type;
treewide: uapi: Replace zero-length arrays with flexible-array members There is a regular need in the kernel to provide a way to declare having a dynamically sized set of trailing elements in a structure. Kernel code should always use “flexible array members”[1] for these cases. The older style of one-element or zero-length arrays should no longer be used[2]. This code was transformed with the help of Coccinelle: (linux-5.19-rc2$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch) @@ identifier S, member, array; type T1, T2; @@ struct S { ... T1 member; T2 array[ - 0 ]; }; -fstrict-flex-arrays=3 is coming and we need to land these changes to prevent issues like these in the short future: ../fs/minix/dir.c:337:3: warning: 'strcpy' will always overflow; destination buffer has size 0, but the source string has length 2 (including NUL byte) [-Wfortify-source] strcpy(de3->name, "."); ^ Since these are all [0] to [] changes, the risk to UAPI is nearly zero. If this breaks anything, we can use a union with a new member name. [1] https://en.wikipedia.org/wiki/Flexible_array_member [2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays Link: https://github.com/KSPP/linux/issues/78 Build-tested-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/62b675ec.wKX6AOZ6cbE71vtF%25lkp@intel.com/ Acked-by: Dan Williams <dan.j.williams@intel.com> # For ndctl.h Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2022-04-06 19:36:51 -05:00
__be32 response[]; /* some responses */
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
};
struct snd_firewire_event_digi00x_message {
unsigned int type;
__u32 message; /* Digi00x-specific message */
};
struct snd_firewire_event_motu_notification {
unsigned int type;
__u32 message; /* MOTU-specific bits. */
};
struct snd_firewire_tascam_change {
unsigned int index;
__be32 before;
__be32 after;
};
struct snd_firewire_event_tascam_control {
unsigned int type;
treewide: uapi: Replace zero-length arrays with flexible-array members There is a regular need in the kernel to provide a way to declare having a dynamically sized set of trailing elements in a structure. Kernel code should always use “flexible array members”[1] for these cases. The older style of one-element or zero-length arrays should no longer be used[2]. This code was transformed with the help of Coccinelle: (linux-5.19-rc2$ spatch --jobs $(getconf _NPROCESSORS_ONLN) --sp-file script.cocci --include-headers --dir . > output.patch) @@ identifier S, member, array; type T1, T2; @@ struct S { ... T1 member; T2 array[ - 0 ]; }; -fstrict-flex-arrays=3 is coming and we need to land these changes to prevent issues like these in the short future: ../fs/minix/dir.c:337:3: warning: 'strcpy' will always overflow; destination buffer has size 0, but the source string has length 2 (including NUL byte) [-Wfortify-source] strcpy(de3->name, "."); ^ Since these are all [0] to [] changes, the risk to UAPI is nearly zero. If this breaks anything, we can use a union with a new member name. [1] https://en.wikipedia.org/wiki/Flexible_array_member [2] https://www.kernel.org/doc/html/v5.16/process/deprecated.html#zero-length-and-one-element-arrays Link: https://github.com/KSPP/linux/issues/78 Build-tested-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/62b675ec.wKX6AOZ6cbE71vtF%25lkp@intel.com/ Acked-by: Dan Williams <dan.j.williams@intel.com> # For ndctl.h Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2022-04-06 19:36:51 -05:00
struct snd_firewire_tascam_change changes[];
};
struct snd_firewire_event_motu_register_dsp_change {
unsigned int type;
__u32 count; /* The number of changes. */
__u32 changes[]; /* Encoded event for change of register DSP. */
};
/**
* struct snd_firewire_event_ff400_message - the container for message from Fireface 400 when
* operating hardware knob.
*
* @type: Fixed to SNDRV_FIREWIRE_EVENT_FF400_MESSAGE.
* @message_count: The number of messages.
* @messages.message: The messages expressing hardware knob operation.
* @messages.tstamp: The isochronous cycle at which the request subaction of asynchronous
* transaction was sent to deliver the message. It has 16 bit unsigned integer
* value. The higher 3 bits of value expresses the lower three bits of second
* field in the format of CYCLE_TIME, up to 7. The rest 13 bits expresses cycle
* field up to 7999.
*
* The structure expresses message transmitted by Fireface 400 when operating hardware knob.
*/
struct snd_firewire_event_ff400_message {
unsigned int type;
unsigned int message_count;
struct {
__u32 message;
__u32 tstamp;
} messages[];
};
union snd_firewire_event {
struct snd_firewire_event_common common;
struct snd_firewire_event_lock_status lock_status;
struct snd_firewire_event_dice_notification dice_notification;
ALSA: fireworks: Add command/response functionality into hwdep interface This commit adds two functionality for hwdep interface, adds two parameters for this driver, add a node for proc interface. To receive responses from devices, this driver already allocate own callback into initial memory space in host controller. This means no one can allocate its own callback to the address. So this driver must give a way for user applications to receive responses. This commit adds a functionality to receive responses via hwdep interface. The application can receive responses to read from this interface. To achieve this, this commit adds a buffer to queue responses. The default size of this buffer is 1024 bytes. This size can be changed to give preferrable size to 'resp_buf_size' parameter for this driver. The application should notice rest of space in this buffer because this driver don't push responses when this buffer has no space. Additionaly, this commit adds a functionality to transmit commands via hwdep interface. The application can transmit commands to write into this interface. I note that the application can transmit one command at once, but can receive as many responses as possible untill the user-buffer is full. When using these interfaces, the application must keep maximum number of sequence number in command within the number in firewire.h because this driver uses this number to distinguish the response is against the command by the application or this driver. Usually responses against commands which the application transmits are pushed into this buffer. But to enable 'resp_buf_debug' parameter for this driver, all responses are pushed into the buffer. When using this mode, I reccomend to expand the size of buffer. Finally this commit adds a new node into proc interface to output status of the buffer. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2014-04-25 22:45:13 +09:00
struct snd_firewire_event_efw_response efw_response;
struct snd_firewire_event_digi00x_message digi00x_message;
struct snd_firewire_event_tascam_control tascam_control;
struct snd_firewire_event_motu_notification motu_notification;
struct snd_firewire_event_motu_register_dsp_change motu_register_dsp_change;
struct snd_firewire_event_ff400_message ff400_message;
};
#define SNDRV_FIREWIRE_IOCTL_GET_INFO _IOR('H', 0xf8, struct snd_firewire_get_info)
#define SNDRV_FIREWIRE_IOCTL_LOCK _IO('H', 0xf9)
#define SNDRV_FIREWIRE_IOCTL_UNLOCK _IO('H', 0xfa)
#define SNDRV_FIREWIRE_IOCTL_TASCAM_STATE _IOR('H', 0xfb, struct snd_firewire_tascam_state)
#define SNDRV_FIREWIRE_IOCTL_MOTU_REGISTER_DSP_METER _IOR('H', 0xfc, struct snd_firewire_motu_register_dsp_meter)
#define SNDRV_FIREWIRE_IOCTL_MOTU_COMMAND_DSP_METER _IOR('H', 0xfd, struct snd_firewire_motu_command_dsp_meter)
#define SNDRV_FIREWIRE_IOCTL_MOTU_REGISTER_DSP_PARAMETER _IOR('H', 0xfe, struct snd_firewire_motu_register_dsp_parameter)
#define SNDRV_FIREWIRE_TYPE_DICE 1
#define SNDRV_FIREWIRE_TYPE_FIREWORKS 2
#define SNDRV_FIREWIRE_TYPE_BEBOB 3
#define SNDRV_FIREWIRE_TYPE_OXFW 4
#define SNDRV_FIREWIRE_TYPE_DIGI00X 5
#define SNDRV_FIREWIRE_TYPE_TASCAM 6
#define SNDRV_FIREWIRE_TYPE_MOTU 7
#define SNDRV_FIREWIRE_TYPE_FIREFACE 8
struct snd_firewire_get_info {
unsigned int type; /* SNDRV_FIREWIRE_TYPE_xxx */
unsigned int card; /* same as fw_cdev_get_info.card */
unsigned char guid[8];
char device_name[16]; /* device node in /dev */
};
/*
* SNDRV_FIREWIRE_IOCTL_LOCK prevents the driver from streaming.
* Returns -EBUSY if the driver is already streaming.
*/
#define SNDRV_FIREWIRE_TASCAM_STATE_COUNT 64
struct snd_firewire_tascam_state {
__be32 data[SNDRV_FIREWIRE_TASCAM_STATE_COUNT];
};
/*
* In below MOTU models, software is allowed to control their DSP by accessing to registers.
* - 828mk2
* - 896hd
* - Traveler
* - 8 pre
* - Ultralite
* - 4 pre
* - Audio Express
*
* On the other hand, the status of DSP is split into specific messages included in the sequence of
* isochronous packet. ALSA firewire-motu driver gathers the messages and allow userspace applications
* to read it via ioctl. In 828mk2, 896hd, and Traveler, hardware meter for all of physical inputs
* are put into the message, while one pair of physical outputs is selected. The selection is done by
* LSB one byte in asynchronous write quadlet transaction to 0x'ffff'f000'0b2c.
*
* I note that V3HD/V4HD uses asynchronous transaction for the purpose. The destination address is
* registered to 0x'ffff'f000'0b38 and '0b3c by asynchronous write quadlet request. The size of
* message differs between 23 and 51 quadlets. For the case, the number of mixer bus can be extended
* up to 12.
*/
ALSA: firewire-motu: refine parser for meter information in register DSP models After further investigation, I realize that the total number of elements in array is not enough to store all of related messages from device. This commit refines meter array and message parser. In terms of channel identifier, register DSP models are classified to two categories: 1. the target of output is selectable 828mk2, 896hd, and Traveler are in the category. They transfer messages with channel identifier between 0x00 and 0x13 for input meters, therefore 20 elements are needed to store. On the other hand, they transfer messages with channel identifier for one pair of output meters. The selection is done by asynchronous write transaction to offset 0x'ffff'f000'0b2c. The table for relationship between written value and available identifiers is below: ============= =============== written value identifier pair ============= =============== 0x00000b00 0x80/0x81 0x00000b01 0x82/0x83 ... ... 0x00000b0b 0x96/0x97 ... ... 0x00000b10 0xa0/0xa1 ... ... 0x00000b3f 0xfe/0xff ... ... greater 0xfe/0xff ============= =============== Actually in the above three models, 0x96/0x97 pair is the maximum. Thus the number of available output meter is 24. 2. all of output is available 8 pre, Ultralite, Audio Express, and 4 pre are in the category. They transfer messages for output meters without any selection. The table for available identifier for each direction is below: ============== ========= ========== model input output ============== ========= ========== 8 pre 0x00-0x0f 0x82-0x8d Ultralite 0x00-0x09 0x82-0x8f Audio Express 0x00-0x09 0x80-0x8d 4 pre 0x00-0x09 0x80-0x8d ============== ========= ========== Some of available identifiers might not be used for actual output meters. Anyway, 24 plus 24 elements accommodate the input/output meters. I note that isochronous packet from V3HD/V4HD deliver no message. Notification by asynchronous transaction to registered address seems to be used for the purpose as well as for change of mixer parameter. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Link: https://lore.kernel.org/r/20211027125529.54295-3-o-takashi@sakamocchi.jp Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-10-27 21:55:28 +09:00
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_INPUT_COUNT 24
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_OUTPUT_COUNT 24
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_COUNT \
(SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_INPUT_COUNT + SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_OUTPUT_COUNT)
/**
* struct snd_firewire_motu_register_dsp_meter - the container for meter information in DSP
* controlled by register access
* @data: Signal level meters. The mapping between position and input/output channel is
* model-dependent.
*
* The structure expresses the part of DSP status for hardware meter. The u8 storage includes linear
* value for audio signal level between 0x00 and 0x7f.
*/
struct snd_firewire_motu_register_dsp_meter {
__u8 data[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_METER_COUNT];
};
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT 4
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT 20
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_INPUT_COUNT 10
#define SNDRV_FIREWIRE_MOTU_REGISTER_DSP_ALIGNED_INPUT_COUNT (SNDRV_FIREWIRE_MOTU_REGISTER_DSP_INPUT_COUNT + 2)
/**
* snd_firewire_motu_register_dsp_parameter - the container for parameters of DSP controlled
* by register access.
* @mixer.source.gain: The gain of source to mixer.
* @mixer.source.pan: The L/R balance of source to mixer.
* @mixer.source.flag: The flag of source to mixer, including mute, solo.
* @mixer.source.paired_balance: The L/R balance of paired source to mixer, only for 4 pre and
* Audio Express.
* @mixer.source.paired_width: The width of paired source to mixer, only for 4 pre and
* Audio Express.
* @mixer.output.paired_volume: The volume of paired output from mixer.
* @mixer.output.paired_flag: The flag of paired output from mixer.
* @output.main_paired_volume: The volume of paired main output.
* @output.hp_paired_volume: The volume of paired hp output.
* @output.hp_paired_assignment: The source assigned to paired hp output.
* @output.reserved: Padding for 32 bit alignment for future extension.
* @line_input.boost_flag: The flags of boost for line inputs, only for 828mk2 and Traveler.
* @line_input.nominal_level_flag: The flags of nominal level for line inputs, only for 828mk2 and
* Traveler.
* @line_input.reserved: Padding for 32 bit alignment for future extension.
* @input.gain_and_invert: The value including gain and invert for input, only for Ultralite, 4 pre
* and Audio Express.
* @input.flag: The flag of input; e.g. jack detection, phantom power, and pad, only for Ultralite,
* 4 pre and Audio express.
* @reserved: Padding so that the size of structure is kept to 512 byte, but for future extension.
*
* The structure expresses the set of parameters for DSP controlled by register access.
*/
struct snd_firewire_motu_register_dsp_parameter {
struct {
struct {
__u8 gain[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT];
__u8 pan[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT];
__u8 flag[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT];
__u8 paired_balance[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT];
__u8 paired_width[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_SRC_COUNT];
} source[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT];
struct {
__u8 paired_volume[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT];
__u8 paired_flag[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_MIXER_COUNT];
} output;
} mixer;
struct {
__u8 main_paired_volume;
__u8 hp_paired_volume;
__u8 hp_paired_assignment;
__u8 reserved[5];
} output;
struct {
__u8 boost_flag;
__u8 nominal_level_flag;
__u8 reserved[6];
} line_input;
struct {
__u8 gain_and_invert[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_ALIGNED_INPUT_COUNT];
__u8 flag[SNDRV_FIREWIRE_MOTU_REGISTER_DSP_ALIGNED_INPUT_COUNT];
} input;
__u8 reserved[64];
};
/*
* In below MOTU models, software is allowed to control their DSP by command in frame of
* asynchronous transaction to 0x'ffff'0001'0000:
*
* - 828 mk3 (FireWire only and Hybrid)
* - 896 mk3 (FireWire only and Hybrid)
* - Ultralite mk3 (FireWire only and Hybrid)
* - Traveler mk3
* - Track 16
*
* On the other hand, the states of hardware meter is split into specific messages included in the
* sequence of isochronous packet. ALSA firewire-motu driver gathers the message and allow userspace
* application to read it via ioctl.
*/
#define SNDRV_FIREWIRE_MOTU_COMMAND_DSP_METER_COUNT 400
/**
* struct snd_firewire_motu_command_dsp_meter - the container for meter information in DSP
* controlled by command
* @data: Signal level meters. The mapping between position and signal channel is model-dependent.
*
* The structure expresses the part of DSP status for hardware meter. The 32 bit storage is
* estimated to include IEEE 764 32 bit single precision floating point (binary32) value. It is
* expected to be linear value (not logarithm) for audio signal level between 0.0 and +1.0.
*/
struct snd_firewire_motu_command_dsp_meter {
#ifdef __KERNEL__
__u32 data[SNDRV_FIREWIRE_MOTU_COMMAND_DSP_METER_COUNT];
#else
float data[SNDRV_FIREWIRE_MOTU_COMMAND_DSP_METER_COUNT];
#endif
};
#endif /* _UAPI_SOUND_FIREWIRE_H_INCLUDED */