2005-04-16 15:20:36 -07:00
/*
* linux / arch / m68k / mm / fault . c
*
* Copyright ( C ) 1995 Hamish Macdonald
*/
# include <linux/mman.h>
# include <linux/mm.h>
# include <linux/kernel.h>
# include <linux/ptrace.h>
# include <linux/interrupt.h>
# include <linux/module.h>
2015-05-11 17:52:11 +02:00
# include <linux/uaccess.h>
2005-04-16 15:20:36 -07:00
# include <asm/setup.h>
# include <asm/traps.h>
# include <asm/pgalloc.h>
extern void die_if_kernel ( char * , struct pt_regs * , long ) ;
int send_fault_sig ( struct pt_regs * regs )
{
siginfo_t siginfo = { 0 , 0 , 0 , } ;
siginfo . si_signo = current - > thread . signo ;
siginfo . si_code = current - > thread . code ;
siginfo . si_addr = ( void * ) current - > thread . faddr ;
2013-12-10 12:04:16 +01:00
pr_debug ( " send_fault_sig: %p,%d,%d \n " , siginfo . si_addr ,
siginfo . si_signo , siginfo . si_code ) ;
2005-04-16 15:20:36 -07:00
if ( user_mode ( regs ) ) {
force_sig_info ( siginfo . si_signo ,
& siginfo , current ) ;
} else {
2008-11-18 21:25:17 +01:00
if ( handle_kernel_fault ( regs ) )
2005-04-16 15:20:36 -07:00
return - 1 ;
//if (siginfo.si_signo == SIGBUS)
// force_sig_info(siginfo.si_signo,
// &siginfo, current);
/*
* Oops . The kernel tried to access some bad page . We ' ll have to
* terminate things with extreme prejudice .
*/
if ( ( unsigned long ) siginfo . si_addr < PAGE_SIZE )
2013-12-10 12:04:16 +01:00
pr_alert ( " Unable to handle kernel NULL pointer dereference " ) ;
2005-04-16 15:20:36 -07:00
else
2013-12-10 12:04:16 +01:00
pr_alert ( " Unable to handle kernel access " ) ;
pr_cont ( " at virtual address %p \n " , siginfo . si_addr ) ;
2005-04-16 15:20:36 -07:00
die_if_kernel ( " Oops " , regs , 0 /*error_code*/ ) ;
do_exit ( SIGKILL ) ;
}
return 1 ;
}
/*
* This routine handles page faults . It determines the problem , and
* then passes it off to one of the appropriate routines .
*
* error_code :
* bit 0 = = 0 means no page found , 1 means protection fault
* bit 1 = = 0 means read , 1 means write
*
* If this routine detects a bad access , it returns 1 , otherwise it
* returns 0.
*/
int do_page_fault ( struct pt_regs * regs , unsigned long address ,
unsigned long error_code )
{
struct mm_struct * mm = current - > mm ;
struct vm_area_struct * vma ;
2012-03-25 06:37:48 -04:00
int fault ;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE ;
2005-04-16 15:20:36 -07:00
2013-12-10 12:04:16 +01:00
pr_debug ( " do page fault: \n regs->sr=%#x, regs->pc=%#lx, address=%#lx, %ld, %p \n " ,
2013-12-10 11:35:47 +01:00
regs - > sr , regs - > pc , address , error_code , mm ? mm - > pgd : NULL ) ;
2005-04-16 15:20:36 -07:00
/*
* If we ' re in an interrupt or have no user
* context , we must not take the fault . .
*/
2015-05-11 17:52:11 +02:00
if ( faulthandler_disabled ( ) | | ! mm )
2005-04-16 15:20:36 -07:00
goto no_context ;
2013-09-12 15:13:39 -07:00
if ( user_mode ( regs ) )
flags | = FAULT_FLAG_USER ;
2012-03-25 06:37:48 -04:00
retry :
2005-04-16 15:20:36 -07:00
down_read ( & mm - > mmap_sem ) ;
vma = find_vma ( mm , address ) ;
if ( ! vma )
goto map_err ;
if ( vma - > vm_flags & VM_IO )
goto acc_err ;
if ( vma - > vm_start < = address )
goto good_area ;
if ( ! ( vma - > vm_flags & VM_GROWSDOWN ) )
goto map_err ;
if ( user_mode ( regs ) ) {
/* Accessing the stack below usp is always a bug. The
" + 256 " is there due to some instructions doing
pre - decrement on the stack and that doesn ' t show up
until later . */
if ( address + 256 < rdusp ( ) )
goto map_err ;
}
if ( expand_stack ( vma , address ) )
goto map_err ;
/*
* Ok , we have a good vm_area for this memory access , so
* we can handle it . .
*/
good_area :
2013-12-10 12:04:16 +01:00
pr_debug ( " do_page_fault: good_area \n " ) ;
2005-04-16 15:20:36 -07:00
switch ( error_code & 3 ) {
default : /* 3: write, present */
/* fall through */
case 2 : /* write, not present */
if ( ! ( vma - > vm_flags & VM_WRITE ) )
goto acc_err ;
2012-03-25 06:37:48 -04:00
flags | = FAULT_FLAG_WRITE ;
2005-04-16 15:20:36 -07:00
break ;
case 1 : /* read, present */
goto acc_err ;
case 0 : /* read, not present */
[PATCH] make PROT_WRITE imply PROT_READ
Make PROT_WRITE imply PROT_READ for a number of architectures which don't
support write only in hardware.
While looking at this, I noticed that some architectures which do not
support write only mappings already take the exact same approach. For
example, in arch/alpha/mm/fault.c:
"
if (cause < 0) {
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
} else if (!cause) {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_WRITE)))
goto bad_area;
} else {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
}
"
Thus, this patch brings other architectures which do not support write only
mappings in-line and consistent with the rest. I've verified the patch on
ia64, x86_64 and x86.
Additional discussion:
Several architectures, including x86, can not support write-only mappings.
The pte for x86 reserves a single bit for protection and its two states are
read only or read/write. Thus, write only is not supported in h/w.
Currently, if i 'mmap' a page write-only, the first read attempt on that page
creates a page fault and will SEGV. That check is enforced in
arch/blah/mm/fault.c. However, if i first write that page it will fault in
and the pte will be set to read/write. Thus, any subsequent reads to the page
will succeed. It is this inconsistency in behavior that this patch is
attempting to address. Furthermore, if the page is swapped out, and then
brought back the first read will also cause a SEGV. Thus, any arbitrary read
on a page can potentially result in a SEGV.
According to the SuSv3 spec, "if the application requests only PROT_WRITE, the
implementation may also allow read access." Also as mentioned, some
archtectures, such as alpha, shown above already take the approach that i am
suggesting.
The counter-argument to this raised by Arjan, is that the kernel is enforcing
the write only mapping the best it can given the h/w limitations. This is
true, however Alan Cox, and myself would argue that the inconsitency in
behavior, that is applications can sometimes work/sometimes fails is highly
undesireable. If you read through the thread, i think people, came to an
agreement on the last patch i posted, as nobody has objected to it...
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Andi Kleen <ak@muc.de>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Ian Molton <spyro@f2s.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 01:58:58 -07:00
if ( ! ( vma - > vm_flags & ( VM_READ | VM_EXEC | VM_WRITE ) ) )
2005-04-16 15:20:36 -07:00
goto acc_err ;
}
/*
* If for any reason at all we couldn ' t handle the fault ,
* make sure we exit gracefully rather than endlessly redo
* the fault .
*/
2016-07-26 15:25:18 -07:00
fault = handle_mm_fault ( vma , address , flags ) ;
2013-12-10 12:04:16 +01:00
pr_debug ( " handle_mm_fault returns %d \n " , fault ) ;
2012-03-25 06:37:48 -04:00
if ( ( fault & VM_FAULT_RETRY ) & & fatal_signal_pending ( current ) )
return 0 ;
2007-07-19 01:47:05 -07:00
if ( unlikely ( fault & VM_FAULT_ERROR ) ) {
if ( fault & VM_FAULT_OOM )
goto out_of_memory ;
vm: add VM_FAULT_SIGSEGV handling support
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.
That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works. However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.
In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV. And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.
However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d4514 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space. And user space really
expected SIGSEGV, not SIGBUS.
To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it. They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.
This is the mindless minimal patch to do this. A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.
Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.
Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-29 10:51:32 -08:00
else if ( fault & VM_FAULT_SIGSEGV )
goto map_err ;
2007-07-19 01:47:05 -07:00
else if ( fault & VM_FAULT_SIGBUS )
goto bus_err ;
BUG ( ) ;
2005-04-16 15:20:36 -07:00
}
2012-03-25 06:37:48 -04:00
/*
* Major / minor page fault accounting is only done on the
* initial attempt . If we go through a retry , it is extremely
* likely that the page will be found in page cache at that point .
*/
if ( flags & FAULT_FLAG_ALLOW_RETRY ) {
if ( fault & VM_FAULT_MAJOR )
current - > maj_flt + + ;
else
current - > min_flt + + ;
if ( fault & VM_FAULT_RETRY ) {
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation . */
flags & = ~ FAULT_FLAG_ALLOW_RETRY ;
2012-10-08 16:32:19 -07:00
flags | = FAULT_FLAG_TRIED ;
2012-03-25 06:37:48 -04:00
/*
* No need to up_read ( & mm - > mmap_sem ) as we would
* have already released it in __lock_page_or_retry
* in mm / filemap . c .
*/
goto retry ;
}
}
2005-04-16 15:20:36 -07:00
up_read ( & mm - > mmap_sem ) ;
return 0 ;
/*
* We ran out of memory , or some other thing happened to us that made
* us unable to handle the page fault gracefully .
*/
out_of_memory :
up_read ( & mm - > mmap_sem ) ;
2010-04-23 02:06:20 +10:00
if ( ! user_mode ( regs ) )
goto no_context ;
pagefault_out_of_memory ( ) ;
return 0 ;
2005-04-16 15:20:36 -07:00
no_context :
current - > thread . signo = SIGBUS ;
current - > thread . faddr = address ;
return send_fault_sig ( regs ) ;
bus_err :
current - > thread . signo = SIGBUS ;
current - > thread . code = BUS_ADRERR ;
current - > thread . faddr = address ;
goto send_sig ;
map_err :
current - > thread . signo = SIGSEGV ;
current - > thread . code = SEGV_MAPERR ;
current - > thread . faddr = address ;
goto send_sig ;
acc_err :
current - > thread . signo = SIGSEGV ;
current - > thread . code = SEGV_ACCERR ;
current - > thread . faddr = address ;
send_sig :
up_read ( & mm - > mmap_sem ) ;
return send_fault_sig ( regs ) ;
}