linux/sound/pci/asihpi/hpi6000.c

1800 lines
48 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/******************************************************************************
AudioScience HPI driver
Copyright (C) 1997-2011 AudioScience Inc. <support@audioscience.com>
Hardware Programming Interface (HPI) for AudioScience ASI6200 series adapters.
These PCI bus adapters are based on the TI C6711 DSP.
Exported functions:
void HPI_6000(struct hpi_message *phm, struct hpi_response *phr)
#defines
HIDE_PCI_ASSERTS to show the PCI asserts
PROFILE_DSP2 get profile data from DSP2 if present (instead of DSP 1)
(C) Copyright AudioScience Inc. 1998-2003
*******************************************************************************/
#define SOURCEFILE_NAME "hpi6000.c"
#include "hpi_internal.h"
#include "hpimsginit.h"
#include "hpidebug.h"
#include "hpi6000.h"
#include "hpidspcd.h"
#include "hpicmn.h"
#define HPI_HIF_BASE (0x00000200) /* start of C67xx internal RAM */
#define HPI_HIF_ADDR(member) \
(HPI_HIF_BASE + offsetof(struct hpi_hif_6000, member))
#define HPI_HIF_ERROR_MASK 0x4000
/* HPI6000 specific error codes */
#define HPI6000_ERROR_BASE 900 /* not actually used anywhere */
/* operational/messaging errors */
#define HPI6000_ERROR_MSG_RESP_IDLE_TIMEOUT 901
#define HPI6000_ERROR_RESP_GET_LEN 902
#define HPI6000_ERROR_MSG_RESP_GET_RESP_ACK 903
#define HPI6000_ERROR_MSG_GET_ADR 904
#define HPI6000_ERROR_RESP_GET_ADR 905
#define HPI6000_ERROR_MSG_RESP_BLOCKWRITE32 906
#define HPI6000_ERROR_MSG_RESP_BLOCKREAD32 907
#define HPI6000_ERROR_CONTROL_CACHE_PARAMS 909
#define HPI6000_ERROR_SEND_DATA_IDLE_TIMEOUT 911
#define HPI6000_ERROR_SEND_DATA_ACK 912
#define HPI6000_ERROR_SEND_DATA_ADR 913
#define HPI6000_ERROR_SEND_DATA_TIMEOUT 914
#define HPI6000_ERROR_SEND_DATA_CMD 915
#define HPI6000_ERROR_SEND_DATA_WRITE 916
#define HPI6000_ERROR_SEND_DATA_IDLECMD 917
#define HPI6000_ERROR_GET_DATA_IDLE_TIMEOUT 921
#define HPI6000_ERROR_GET_DATA_ACK 922
#define HPI6000_ERROR_GET_DATA_CMD 923
#define HPI6000_ERROR_GET_DATA_READ 924
#define HPI6000_ERROR_GET_DATA_IDLECMD 925
#define HPI6000_ERROR_CONTROL_CACHE_ADDRLEN 951
#define HPI6000_ERROR_CONTROL_CACHE_READ 952
#define HPI6000_ERROR_CONTROL_CACHE_FLUSH 953
#define HPI6000_ERROR_MSG_RESP_GETRESPCMD 961
#define HPI6000_ERROR_MSG_RESP_IDLECMD 962
/* Initialisation/bootload errors */
#define HPI6000_ERROR_UNHANDLED_SUBSYS_ID 930
/* can't access PCI2040 */
#define HPI6000_ERROR_INIT_PCI2040 931
/* can't access DSP HPI i/f */
#define HPI6000_ERROR_INIT_DSPHPI 932
/* can't access internal DSP memory */
#define HPI6000_ERROR_INIT_DSPINTMEM 933
/* can't access SDRAM - test#1 */
#define HPI6000_ERROR_INIT_SDRAM1 934
/* can't access SDRAM - test#2 */
#define HPI6000_ERROR_INIT_SDRAM2 935
#define HPI6000_ERROR_INIT_VERIFY 938
#define HPI6000_ERROR_INIT_NOACK 939
#define HPI6000_ERROR_INIT_PLDTEST1 941
#define HPI6000_ERROR_INIT_PLDTEST2 942
/* local defines */
#define HIDE_PCI_ASSERTS
#define PROFILE_DSP2
/* for PCI2040 i/f chip */
/* HPI CSR registers */
/* word offsets from CSR base */
/* use when io addresses defined as u32 * */
#define INTERRUPT_EVENT_SET 0
#define INTERRUPT_EVENT_CLEAR 1
#define INTERRUPT_MASK_SET 2
#define INTERRUPT_MASK_CLEAR 3
#define HPI_ERROR_REPORT 4
#define HPI_RESET 5
#define HPI_DATA_WIDTH 6
#define MAX_DSPS 2
/* HPI registers, spaced 8K bytes = 2K words apart */
#define DSP_SPACING 0x800
#define CONTROL 0x0000
#define ADDRESS 0x0200
#define DATA_AUTOINC 0x0400
#define DATA 0x0600
#define TIMEOUT 500000
struct dsp_obj {
__iomem u32 *prHPI_control;
__iomem u32 *prHPI_address;
__iomem u32 *prHPI_data;
__iomem u32 *prHPI_data_auto_inc;
char c_dsp_rev; /*A, B */
u32 control_cache_address_on_dsp;
u32 control_cache_length_on_dsp;
struct hpi_adapter_obj *pa_parent_adapter;
};
struct hpi_hw_obj {
__iomem u32 *dw2040_HPICSR;
__iomem u32 *dw2040_HPIDSP;
u16 num_dsp;
struct dsp_obj ado[MAX_DSPS];
u32 message_buffer_address_on_dsp;
u32 response_buffer_address_on_dsp;
u32 pCI2040HPI_error_count;
struct hpi_control_cache_single control_cache[HPI_NMIXER_CONTROLS];
struct hpi_control_cache *p_cache;
};
static u16 hpi6000_dsp_block_write32(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 hpi_address, u32 *source, u32 count);
static u16 hpi6000_dsp_block_read32(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 hpi_address, u32 *dest, u32 count);
static short hpi6000_adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
u32 *pos_error_code);
static short hpi6000_check_PCI2040_error_flag(struct hpi_adapter_obj *pao,
u16 read_or_write);
#define H6READ 1
#define H6WRITE 0
static short hpi6000_update_control_cache(struct hpi_adapter_obj *pao,
struct hpi_message *phm);
static short hpi6000_message_response_sequence(struct hpi_adapter_obj *pao,
u16 dsp_index, struct hpi_message *phm, struct hpi_response *phr);
static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
struct hpi_response *phr);
static short hpi6000_wait_dsp_ack(struct hpi_adapter_obj *pao, u16 dsp_index,
u32 ack_value);
static short hpi6000_send_host_command(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 host_cmd);
static void hpi6000_send_dsp_interrupt(struct dsp_obj *pdo);
static short hpi6000_send_data(struct hpi_adapter_obj *pao, u16 dsp_index,
struct hpi_message *phm, struct hpi_response *phr);
static short hpi6000_get_data(struct hpi_adapter_obj *pao, u16 dsp_index,
struct hpi_message *phm, struct hpi_response *phr);
static void hpi_write_word(struct dsp_obj *pdo, u32 address, u32 data);
static u32 hpi_read_word(struct dsp_obj *pdo, u32 address);
static void hpi_write_block(struct dsp_obj *pdo, u32 address, u32 *pdata,
u32 length);
static void hpi_read_block(struct dsp_obj *pdo, u32 address, u32 *pdata,
u32 length);
static void subsys_create_adapter(struct hpi_message *phm,
struct hpi_response *phr);
static void adapter_delete(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static void adapter_get_asserts(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr);
static short create_adapter_obj(struct hpi_adapter_obj *pao,
u32 *pos_error_code);
static void delete_adapter_obj(struct hpi_adapter_obj *pao);
/* local globals */
static u16 gw_pci_read_asserts; /* used to count PCI2040 errors */
static u16 gw_pci_write_asserts; /* used to count PCI2040 errors */
static void subsys_message(struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_SUBSYS_CREATE_ADAPTER:
subsys_create_adapter(phm, phr);
break;
default:
phr->error = HPI_ERROR_INVALID_FUNC;
break;
}
}
static void control_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
switch (phm->function) {
case HPI_CONTROL_GET_STATE:
if (pao->has_control_cache) {
u16 err;
err = hpi6000_update_control_cache(pao, phm);
if (err) {
if (err >= HPI_ERROR_BACKEND_BASE) {
phr->error =
HPI_ERROR_CONTROL_CACHING;
phr->specific_error = err;
} else {
phr->error = err;
}
break;
}
if (hpi_check_control_cache(phw->p_cache, phm, phr))
break;
}
hw_message(pao, phm, phr);
break;
case HPI_CONTROL_SET_STATE:
hw_message(pao, phm, phr);
hpi_cmn_control_cache_sync_to_msg(phw->p_cache, phm, phr);
break;
case HPI_CONTROL_GET_INFO:
default:
hw_message(pao, phm, phr);
break;
}
}
static void adapter_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_ADAPTER_GET_ASSERT:
adapter_get_asserts(pao, phm, phr);
break;
case HPI_ADAPTER_DELETE:
adapter_delete(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
}
static void outstream_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_OSTREAM_HOSTBUFFER_ALLOC:
case HPI_OSTREAM_HOSTBUFFER_FREE:
/* Don't let these messages go to the HW function because
* they're called without locking the spinlock.
* For the HPI6000 adapters the HW would return
* HPI_ERROR_INVALID_FUNC anyway.
*/
phr->error = HPI_ERROR_INVALID_FUNC;
break;
default:
hw_message(pao, phm, phr);
return;
}
}
static void instream_message(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
switch (phm->function) {
case HPI_ISTREAM_HOSTBUFFER_ALLOC:
case HPI_ISTREAM_HOSTBUFFER_FREE:
/* Don't let these messages go to the HW function because
* they're called without locking the spinlock.
* For the HPI6000 adapters the HW would return
* HPI_ERROR_INVALID_FUNC anyway.
*/
phr->error = HPI_ERROR_INVALID_FUNC;
break;
default:
hw_message(pao, phm, phr);
return;
}
}
/************************************************************************/
/** HPI_6000()
* Entry point from HPIMAN
* All calls to the HPI start here
*/
void HPI_6000(struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_adapter_obj *pao = NULL;
if (phm->object != HPI_OBJ_SUBSYSTEM) {
pao = hpi_find_adapter(phm->adapter_index);
if (!pao) {
hpi_init_response(phr, phm->object, phm->function,
HPI_ERROR_BAD_ADAPTER_NUMBER);
HPI_DEBUG_LOG(DEBUG, "invalid adapter index: %d \n",
phm->adapter_index);
return;
}
/* Don't even try to communicate with crashed DSP */
if (pao->dsp_crashed >= 10) {
hpi_init_response(phr, phm->object, phm->function,
HPI_ERROR_DSP_HARDWARE);
HPI_DEBUG_LOG(DEBUG, "adapter %d dsp crashed\n",
phm->adapter_index);
return;
}
}
/* Init default response including the size field */
if (phm->function != HPI_SUBSYS_CREATE_ADAPTER)
hpi_init_response(phr, phm->object, phm->function,
HPI_ERROR_PROCESSING_MESSAGE);
switch (phm->type) {
case HPI_TYPE_REQUEST:
switch (phm->object) {
case HPI_OBJ_SUBSYSTEM:
subsys_message(phm, phr);
break;
case HPI_OBJ_ADAPTER:
phr->size =
sizeof(struct hpi_response_header) +
sizeof(struct hpi_adapter_res);
adapter_message(pao, phm, phr);
break;
case HPI_OBJ_CONTROL:
control_message(pao, phm, phr);
break;
case HPI_OBJ_OSTREAM:
outstream_message(pao, phm, phr);
break;
case HPI_OBJ_ISTREAM:
instream_message(pao, phm, phr);
break;
default:
hw_message(pao, phm, phr);
break;
}
break;
default:
phr->error = HPI_ERROR_INVALID_TYPE;
break;
}
}
/************************************************************************/
/* SUBSYSTEM */
/* create an adapter object and initialise it based on resource information
* passed in the message
* NOTE - you cannot use this function AND the FindAdapters function at the
* same time, the application must use only one of them to get the adapters
*/
static void subsys_create_adapter(struct hpi_message *phm,
struct hpi_response *phr)
{
/* create temp adapter obj, because we don't know what index yet */
struct hpi_adapter_obj ao;
struct hpi_adapter_obj *pao;
u32 os_error_code;
u16 err = 0;
u32 dsp_index = 0;
HPI_DEBUG_LOG(VERBOSE, "subsys_create_adapter\n");
memset(&ao, 0, sizeof(ao));
ao.priv = kzalloc(sizeof(struct hpi_hw_obj), GFP_KERNEL);
if (!ao.priv) {
HPI_DEBUG_LOG(ERROR, "can't get mem for adapter object\n");
phr->error = HPI_ERROR_MEMORY_ALLOC;
return;
}
/* create the adapter object based on the resource information */
ao.pci = *phm->u.s.resource.r.pci;
err = create_adapter_obj(&ao, &os_error_code);
if (err) {
delete_adapter_obj(&ao);
if (err >= HPI_ERROR_BACKEND_BASE) {
phr->error = HPI_ERROR_DSP_BOOTLOAD;
phr->specific_error = err;
} else {
phr->error = err;
}
phr->u.s.data = os_error_code;
return;
}
/* need to update paParentAdapter */
pao = hpi_find_adapter(ao.index);
if (!pao) {
/* We just added this adapter, why can't we find it!? */
HPI_DEBUG_LOG(ERROR, "lost adapter after boot\n");
phr->error = HPI_ERROR_BAD_ADAPTER;
return;
}
for (dsp_index = 0; dsp_index < MAX_DSPS; dsp_index++) {
struct hpi_hw_obj *phw = pao->priv;
phw->ado[dsp_index].pa_parent_adapter = pao;
}
phr->u.s.adapter_type = ao.type;
phr->u.s.adapter_index = ao.index;
phr->error = 0;
}
static void adapter_delete(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
delete_adapter_obj(pao);
hpi_delete_adapter(pao);
phr->error = 0;
}
/* this routine is called from SubSysFindAdapter and SubSysCreateAdapter */
static short create_adapter_obj(struct hpi_adapter_obj *pao,
u32 *pos_error_code)
{
short boot_error = 0;
u32 dsp_index = 0;
u32 control_cache_size = 0;
u32 control_cache_count = 0;
struct hpi_hw_obj *phw = pao->priv;
/* The PCI2040 has the following address map */
/* BAR0 - 4K = HPI control and status registers on PCI2040 (HPI CSR) */
/* BAR1 - 32K = HPI registers on DSP */
phw->dw2040_HPICSR = pao->pci.ap_mem_base[0];
phw->dw2040_HPIDSP = pao->pci.ap_mem_base[1];
HPI_DEBUG_LOG(VERBOSE, "csr %p, dsp %p\n", phw->dw2040_HPICSR,
phw->dw2040_HPIDSP);
/* set addresses for the possible DSP HPI interfaces */
for (dsp_index = 0; dsp_index < MAX_DSPS; dsp_index++) {
phw->ado[dsp_index].prHPI_control =
phw->dw2040_HPIDSP + (CONTROL +
DSP_SPACING * dsp_index);
phw->ado[dsp_index].prHPI_address =
phw->dw2040_HPIDSP + (ADDRESS +
DSP_SPACING * dsp_index);
phw->ado[dsp_index].prHPI_data =
phw->dw2040_HPIDSP + (DATA + DSP_SPACING * dsp_index);
phw->ado[dsp_index].prHPI_data_auto_inc =
phw->dw2040_HPIDSP + (DATA_AUTOINC +
DSP_SPACING * dsp_index);
HPI_DEBUG_LOG(VERBOSE, "ctl %p, adr %p, dat %p, dat++ %p\n",
phw->ado[dsp_index].prHPI_control,
phw->ado[dsp_index].prHPI_address,
phw->ado[dsp_index].prHPI_data,
phw->ado[dsp_index].prHPI_data_auto_inc);
phw->ado[dsp_index].pa_parent_adapter = pao;
}
phw->pCI2040HPI_error_count = 0;
pao->has_control_cache = 0;
/* Set the default number of DSPs on this card */
/* This is (conditionally) adjusted after bootloading */
/* of the first DSP in the bootload section. */
phw->num_dsp = 1;
boot_error = hpi6000_adapter_boot_load_dsp(pao, pos_error_code);
if (boot_error)
return boot_error;
HPI_DEBUG_LOG(INFO, "bootload DSP OK\n");
phw->message_buffer_address_on_dsp = 0L;
phw->response_buffer_address_on_dsp = 0L;
/* get info about the adapter by asking the adapter */
/* send a HPI_ADAPTER_GET_INFO message */
{
struct hpi_message hm;
struct hpi_response hr0; /* response from DSP 0 */
struct hpi_response hr1; /* response from DSP 1 */
u16 error = 0;
HPI_DEBUG_LOG(VERBOSE, "send ADAPTER_GET_INFO\n");
memset(&hm, 0, sizeof(hm));
hm.type = HPI_TYPE_REQUEST;
hm.size = sizeof(struct hpi_message);
hm.object = HPI_OBJ_ADAPTER;
hm.function = HPI_ADAPTER_GET_INFO;
hm.adapter_index = 0;
memset(&hr0, 0, sizeof(hr0));
memset(&hr1, 0, sizeof(hr1));
hr0.size = sizeof(hr0);
hr1.size = sizeof(hr1);
error = hpi6000_message_response_sequence(pao, 0, &hm, &hr0);
if (hr0.error) {
HPI_DEBUG_LOG(DEBUG, "message error %d\n", hr0.error);
return hr0.error;
}
if (phw->num_dsp == 2) {
error = hpi6000_message_response_sequence(pao, 1, &hm,
&hr1);
if (error)
return error;
}
pao->type = hr0.u.ax.info.adapter_type;
pao->index = hr0.u.ax.info.adapter_index;
}
memset(&phw->control_cache[0], 0,
sizeof(struct hpi_control_cache_single) *
HPI_NMIXER_CONTROLS);
/* Read the control cache length to figure out if it is turned on */
control_cache_size =
hpi_read_word(&phw->ado[0],
HPI_HIF_ADDR(control_cache_size_in_bytes));
if (control_cache_size) {
control_cache_count =
hpi_read_word(&phw->ado[0],
HPI_HIF_ADDR(control_cache_count));
phw->p_cache =
hpi_alloc_control_cache(control_cache_count,
control_cache_size, (unsigned char *)
&phw->control_cache[0]
);
if (phw->p_cache)
pao->has_control_cache = 1;
}
HPI_DEBUG_LOG(DEBUG, "get adapter info ASI%04X index %d\n", pao->type,
pao->index);
if (phw->p_cache)
phw->p_cache->adap_idx = pao->index;
return hpi_add_adapter(pao);
}
static void delete_adapter_obj(struct hpi_adapter_obj *pao)
{
struct hpi_hw_obj *phw = pao->priv;
if (pao->has_control_cache)
hpi_free_control_cache(phw->p_cache);
/* reset DSPs on adapter */
iowrite32(0x0003000F, phw->dw2040_HPICSR + HPI_RESET);
kfree(phw);
}
/************************************************************************/
/* ADAPTER */
static void adapter_get_asserts(struct hpi_adapter_obj *pao,
struct hpi_message *phm, struct hpi_response *phr)
{
#ifndef HIDE_PCI_ASSERTS
/* if we have PCI2040 asserts then collect them */
if ((gw_pci_read_asserts > 0) || (gw_pci_write_asserts > 0)) {
phr->u.ax.assert.p1 =
gw_pci_read_asserts * 100 + gw_pci_write_asserts;
phr->u.ax.assert.p2 = 0;
phr->u.ax.assert.count = 1; /* assert count */
phr->u.ax.assert.dsp_index = -1; /* "dsp index" */
strcpy(phr->u.ax.assert.sz_message, "PCI2040 error");
phr->u.ax.assert.dsp_msg_addr = 0;
gw_pci_read_asserts = 0;
gw_pci_write_asserts = 0;
phr->error = 0;
} else
#endif
hw_message(pao, phm, phr); /*get DSP asserts */
return;
}
/************************************************************************/
/* LOW-LEVEL */
static short hpi6000_adapter_boot_load_dsp(struct hpi_adapter_obj *pao,
u32 *pos_error_code)
{
struct hpi_hw_obj *phw = pao->priv;
short error;
u32 timeout;
u32 read = 0;
u32 i = 0;
u32 data = 0;
u32 j = 0;
u32 test_addr = 0x80000000;
u32 test_data = 0x00000001;
u32 dw2040_reset = 0;
u32 dsp_index = 0;
u32 endian = 0;
u32 adapter_info = 0;
u32 delay = 0;
struct dsp_code dsp_code;
u16 boot_load_family = 0;
/* NOTE don't use wAdapterType in this routine. It is not setup yet */
switch (pao->pci.pci_dev->subsystem_device) {
case 0x5100:
case 0x5110: /* ASI5100 revB or higher with C6711D */
case 0x5200: /* ASI5200 PCIe version of ASI5100 */
case 0x6100:
case 0x6200:
boot_load_family = HPI_ADAPTER_FAMILY_ASI(0x6200);
break;
default:
return HPI6000_ERROR_UNHANDLED_SUBSYS_ID;
}
/* reset all DSPs, indicate two DSPs are present
* set RST3-=1 to disconnect HAD8 to set DSP in little endian mode
*/
endian = 0;
dw2040_reset = 0x0003000F;
iowrite32(dw2040_reset, phw->dw2040_HPICSR + HPI_RESET);
/* read back register to make sure PCI2040 chip is functioning
* note that bits 4..15 are read-only and so should always return zero,
* even though we wrote 1 to them
*/
hpios_delay_micro_seconds(1000);
delay = ioread32(phw->dw2040_HPICSR + HPI_RESET);
if (delay != dw2040_reset) {
HPI_DEBUG_LOG(ERROR, "INIT_PCI2040 %x %x\n", dw2040_reset,
delay);
return HPI6000_ERROR_INIT_PCI2040;
}
/* Indicate that DSP#0,1 is a C6X */
iowrite32(0x00000003, phw->dw2040_HPICSR + HPI_DATA_WIDTH);
/* set Bit30 and 29 - which will prevent Target aborts from being
* issued upon HPI or GP error
*/
iowrite32(0x60000000, phw->dw2040_HPICSR + INTERRUPT_MASK_SET);
/* isolate DSP HAD8 line from PCI2040 so that
* Little endian can be set by pullup
*/
dw2040_reset = dw2040_reset & (~(endian << 3));
iowrite32(dw2040_reset, phw->dw2040_HPICSR + HPI_RESET);
phw->ado[0].c_dsp_rev = 'B'; /* revB */
phw->ado[1].c_dsp_rev = 'B'; /* revB */
/*Take both DSPs out of reset, setting HAD8 to the correct Endian */
dw2040_reset = dw2040_reset & (~0x00000001); /* start DSP 0 */
iowrite32(dw2040_reset, phw->dw2040_HPICSR + HPI_RESET);
dw2040_reset = dw2040_reset & (~0x00000002); /* start DSP 1 */
iowrite32(dw2040_reset, phw->dw2040_HPICSR + HPI_RESET);
/* set HAD8 back to PCI2040, now that DSP set to little endian mode */
dw2040_reset = dw2040_reset & (~0x00000008);
iowrite32(dw2040_reset, phw->dw2040_HPICSR + HPI_RESET);
/*delay to allow DSP to get going */
hpios_delay_micro_seconds(100);
/* loop through all DSPs, downloading DSP code */
for (dsp_index = 0; dsp_index < phw->num_dsp; dsp_index++) {
struct dsp_obj *pdo = &phw->ado[dsp_index];
/* configure DSP so that we download code into the SRAM */
/* set control reg for little endian, HWOB=1 */
iowrite32(0x00010001, pdo->prHPI_control);
/* test access to the HPI address register (HPIA) */
test_data = 0x00000001;
for (j = 0; j < 32; j++) {
iowrite32(test_data, pdo->prHPI_address);
data = ioread32(pdo->prHPI_address);
if (data != test_data) {
HPI_DEBUG_LOG(ERROR, "INIT_DSPHPI %x %x %x\n",
test_data, data, dsp_index);
return HPI6000_ERROR_INIT_DSPHPI;
}
test_data = test_data << 1;
}
/* if C6713 the setup PLL to generate 225MHz from 25MHz.
* Since the PLLDIV1 read is sometimes wrong, even on a C6713,
* we're going to do this unconditionally
*/
/* PLLDIV1 should have a value of 8000 after reset */
/*
if (HpiReadWord(pdo,0x01B7C118) == 0x8000)
*/
{
/* C6713 datasheet says we cannot program PLL from HPI,
* and indeed if we try to set the PLL multiply from the
* HPI, the PLL does not seem to lock,
* so we enable the PLL and use the default of x 7
*/
/* bypass PLL */
hpi_write_word(pdo, 0x01B7C100, 0x0000);
hpios_delay_micro_seconds(100);
/* ** use default of PLL x7 ** */
/* EMIF = 225/3=75MHz */
hpi_write_word(pdo, 0x01B7C120, 0x8002);
hpios_delay_micro_seconds(100);
/* peri = 225/2 */
hpi_write_word(pdo, 0x01B7C11C, 0x8001);
hpios_delay_micro_seconds(100);
/* cpu = 225/1 */
hpi_write_word(pdo, 0x01B7C118, 0x8000);
/* ~2ms delay */
hpios_delay_micro_seconds(2000);
/* PLL not bypassed */
hpi_write_word(pdo, 0x01B7C100, 0x0001);
/* ~2ms delay */
hpios_delay_micro_seconds(2000);
}
/* test r/w to internal DSP memory
* C6711 has L2 cache mapped to 0x0 when reset
*
* revB - because of bug 3.0.1 last HPI read
* (before HPI address issued) must be non-autoinc
*/
/* test each bit in the 32bit word */
for (i = 0; i < 100; i++) {
test_addr = 0x00000000;
test_data = 0x00000001;
for (j = 0; j < 32; j++) {
hpi_write_word(pdo, test_addr + i, test_data);
data = hpi_read_word(pdo, test_addr + i);
if (data != test_data) {
HPI_DEBUG_LOG(ERROR,
"DSP mem %x %x %x %x\n",
test_addr + i, test_data,
data, dsp_index);
return HPI6000_ERROR_INIT_DSPINTMEM;
}
test_data = test_data << 1;
}
}
/* memory map of ASI6200
00000000-0000FFFF 16Kx32 internal program
01800000-019FFFFF Internal peripheral
80000000-807FFFFF CE0 2Mx32 SDRAM running @ 100MHz
90000000-9000FFFF CE1 Async peripherals:
EMIF config
------------
Global EMIF control
0 -
1 -
2 -
3 CLK2EN = 1 CLKOUT2 enabled
4 CLK1EN = 0 CLKOUT1 disabled
5 EKEN = 1 <--!! C6713 specific, enables ECLKOUT
6 -
7 NOHOLD = 1 external HOLD disabled
8 HOLDA = 0 HOLDA output is low
9 HOLD = 0 HOLD input is low
10 ARDY = 1 ARDY input is high
11 BUSREQ = 0 BUSREQ output is low
12,13 Reserved = 1
*/
hpi_write_word(pdo, 0x01800000, 0x34A8);
/* EMIF CE0 setup - 2Mx32 Sync DRAM
31..28 Wr setup
27..22 Wr strobe
21..20 Wr hold
19..16 Rd setup
15..14 -
13..8 Rd strobe
7..4 MTYPE 0011 Sync DRAM 32bits
3 Wr hold MSB
2..0 Rd hold
*/
hpi_write_word(pdo, 0x01800008, 0x00000030);
/* EMIF SDRAM Extension
31-21 0
20 WR2RD = 0
19-18 WR2DEAC = 1
17 WR2WR = 0
16-15 R2WDQM = 2
14-12 RD2WR = 4
11-10 RD2DEAC = 1
9 RD2RD = 1
8-7 THZP = 10b
6-5 TWR = 2-1 = 01b (tWR = 10ns)
4 TRRD = 0b = 2 ECLK (tRRD = 14ns)
3-1 TRAS = 5-1 = 100b (Tras=42ns = 5 ECLK)
1 CAS latency = 3 ECLK
(for Micron 2M32-7 operating at 100Mhz)
*/
/* need to use this else DSP code crashes */
hpi_write_word(pdo, 0x01800020, 0x001BDF29);
/* EMIF SDRAM control - set up for a 2Mx32 SDRAM (512x32x4 bank)
31 - -
30 SDBSZ 1 4 bank
29..28 SDRSZ 00 11 row address pins
27..26 SDCSZ 01 8 column address pins
25 RFEN 1 refersh enabled
24 INIT 1 init SDRAM
23..20 TRCD 0001
19..16 TRP 0001
15..12 TRC 0110
11..0 - -
*/
/* need to use this else DSP code crashes */
hpi_write_word(pdo, 0x01800018, 0x47117000);
/* EMIF SDRAM Refresh Timing */
hpi_write_word(pdo, 0x0180001C, 0x00000410);
/*MIF CE1 setup - Async peripherals
@100MHz bus speed, each cycle is 10ns,
31..28 Wr setup = 1
27..22 Wr strobe = 3 30ns
21..20 Wr hold = 1
19..16 Rd setup =1
15..14 Ta = 2
13..8 Rd strobe = 3 30ns
7..4 MTYPE 0010 Async 32bits
3 Wr hold MSB =0
2..0 Rd hold = 1
*/
{
u32 cE1 =
(1L << 28) | (3L << 22) | (1L << 20) | (1L <<
16) | (2L << 14) | (3L << 8) | (2L << 4) | 1L;
hpi_write_word(pdo, 0x01800004, cE1);
}
/* delay a little to allow SDRAM and DSP to "get going" */
hpios_delay_micro_seconds(1000);
/* test access to SDRAM */
{
test_addr = 0x80000000;
test_data = 0x00000001;
/* test each bit in the 32bit word */
for (j = 0; j < 32; j++) {
hpi_write_word(pdo, test_addr, test_data);
data = hpi_read_word(pdo, test_addr);
if (data != test_data) {
HPI_DEBUG_LOG(ERROR,
"DSP dram %x %x %x %x\n",
test_addr, test_data, data,
dsp_index);
return HPI6000_ERROR_INIT_SDRAM1;
}
test_data = test_data << 1;
}
/* test every Nth address in the DRAM */
#define DRAM_SIZE_WORDS 0x200000 /*2_mx32 */
#define DRAM_INC 1024
test_addr = 0x80000000;
test_data = 0x0;
for (i = 0; i < DRAM_SIZE_WORDS; i = i + DRAM_INC) {
hpi_write_word(pdo, test_addr + i, test_data);
test_data++;
}
test_addr = 0x80000000;
test_data = 0x0;
for (i = 0; i < DRAM_SIZE_WORDS; i = i + DRAM_INC) {
data = hpi_read_word(pdo, test_addr + i);
if (data != test_data) {
HPI_DEBUG_LOG(ERROR,
"DSP dram %x %x %x %x\n",
test_addr + i, test_data,
data, dsp_index);
return HPI6000_ERROR_INIT_SDRAM2;
}
test_data++;
}
}
/* write the DSP code down into the DSPs memory */
error = hpi_dsp_code_open(boot_load_family, pao->pci.pci_dev,
&dsp_code, pos_error_code);
if (error)
return error;
while (1) {
u32 length;
u32 address;
u32 type;
u32 *pcode;
error = hpi_dsp_code_read_word(&dsp_code, &length);
if (error)
break;
if (length == 0xFFFFFFFF)
break; /* end of code */
error = hpi_dsp_code_read_word(&dsp_code, &address);
if (error)
break;
error = hpi_dsp_code_read_word(&dsp_code, &type);
if (error)
break;
error = hpi_dsp_code_read_block(length, &dsp_code,
&pcode);
if (error)
break;
error = hpi6000_dsp_block_write32(pao, (u16)dsp_index,
address, pcode, length);
if (error)
break;
}
if (error) {
hpi_dsp_code_close(&dsp_code);
return error;
}
/* verify that code was written correctly */
/* this time through, assume no errors in DSP code file/array */
hpi_dsp_code_rewind(&dsp_code);
while (1) {
u32 length;
u32 address;
u32 type;
u32 *pcode;
hpi_dsp_code_read_word(&dsp_code, &length);
if (length == 0xFFFFFFFF)
break; /* end of code */
hpi_dsp_code_read_word(&dsp_code, &address);
hpi_dsp_code_read_word(&dsp_code, &type);
hpi_dsp_code_read_block(length, &dsp_code, &pcode);
for (i = 0; i < length; i++) {
data = hpi_read_word(pdo, address);
if (data != *pcode) {
error = HPI6000_ERROR_INIT_VERIFY;
HPI_DEBUG_LOG(ERROR,
"DSP verify %x %x %x %x\n",
address, *pcode, data,
dsp_index);
break;
}
pcode++;
address += 4;
}
if (error)
break;
}
hpi_dsp_code_close(&dsp_code);
if (error)
return error;
/* zero out the hostmailbox */
{
u32 address = HPI_HIF_ADDR(host_cmd);
for (i = 0; i < 4; i++) {
hpi_write_word(pdo, address, 0);
address += 4;
}
}
/* write the DSP number into the hostmailbox */
/* structure before starting the DSP */
hpi_write_word(pdo, HPI_HIF_ADDR(dsp_number), dsp_index);
/* write the DSP adapter Info into the */
/* hostmailbox before starting the DSP */
if (dsp_index > 0)
hpi_write_word(pdo, HPI_HIF_ADDR(adapter_info),
adapter_info);
/* step 3. Start code by sending interrupt */
iowrite32(0x00030003, pdo->prHPI_control);
hpios_delay_micro_seconds(10000);
/* wait for a non-zero value in hostcmd -
* indicating initialization is complete
*
* Init could take a while if DSP checks SDRAM memory
* Was 200000. Increased to 2000000 for ASI8801 so we
* don't get 938 errors.
*/
timeout = 2000000;
while (timeout) {
do {
read = hpi_read_word(pdo,
HPI_HIF_ADDR(host_cmd));
} while (--timeout
&& hpi6000_check_PCI2040_error_flag(pao,
H6READ));
if (read)
break;
/* The following is a workaround for bug #94:
* Bluescreen on install and subsequent boots on a
* DELL PowerEdge 600SC PC with 1.8GHz P4 and
* ServerWorks chipset. Without this delay the system
* locks up with a bluescreen (NOT GPF or pagefault).
*/
else
hpios_delay_micro_seconds(10000);
}
if (timeout == 0)
return HPI6000_ERROR_INIT_NOACK;
/* read the DSP adapter Info from the */
/* hostmailbox structure after starting the DSP */
if (dsp_index == 0) {
/*u32 dwTestData=0; */
u32 mask = 0;
adapter_info =
hpi_read_word(pdo,
HPI_HIF_ADDR(adapter_info));
if (HPI_ADAPTER_FAMILY_ASI
(HPI_HIF_ADAPTER_INFO_EXTRACT_ADAPTER
(adapter_info)) ==
HPI_ADAPTER_FAMILY_ASI(0x6200))
/* all 6200 cards have this many DSPs */
phw->num_dsp = 2;
/* test that the PLD is programmed */
/* and we can read/write 24bits */
#define PLD_BASE_ADDRESS 0x90000000L /*for ASI6100/6200/8800 */
switch (boot_load_family) {
case HPI_ADAPTER_FAMILY_ASI(0x6200):
/* ASI6100/6200 has 24bit path to FPGA */
mask = 0xFFFFFF00L;
/* ASI5100 uses AX6 code, */
/* but has no PLD r/w register to test */
if (HPI_ADAPTER_FAMILY_ASI(pao->pci.pci_dev->
subsystem_device) ==
HPI_ADAPTER_FAMILY_ASI(0x5100))
mask = 0x00000000L;
/* ASI5200 uses AX6 code, */
/* but has no PLD r/w register to test */
if (HPI_ADAPTER_FAMILY_ASI(pao->pci.pci_dev->
subsystem_device) ==
HPI_ADAPTER_FAMILY_ASI(0x5200))
mask = 0x00000000L;
break;
case HPI_ADAPTER_FAMILY_ASI(0x8800):
/* ASI8800 has 16bit path to FPGA */
mask = 0xFFFF0000L;
break;
}
test_data = 0xAAAAAA00L & mask;
/* write to 24 bit Debug register (D31-D8) */
hpi_write_word(pdo, PLD_BASE_ADDRESS + 4L, test_data);
read = hpi_read_word(pdo,
PLD_BASE_ADDRESS + 4L) & mask;
if (read != test_data) {
HPI_DEBUG_LOG(ERROR, "PLD %x %x\n", test_data,
read);
return HPI6000_ERROR_INIT_PLDTEST1;
}
test_data = 0x55555500L & mask;
hpi_write_word(pdo, PLD_BASE_ADDRESS + 4L, test_data);
read = hpi_read_word(pdo,
PLD_BASE_ADDRESS + 4L) & mask;
if (read != test_data) {
HPI_DEBUG_LOG(ERROR, "PLD %x %x\n", test_data,
read);
return HPI6000_ERROR_INIT_PLDTEST2;
}
}
} /* for numDSP */
return 0;
}
#define PCI_TIMEOUT 100
static int hpi_set_address(struct dsp_obj *pdo, u32 address)
{
u32 timeout = PCI_TIMEOUT;
do {
iowrite32(address, pdo->prHPI_address);
} while (hpi6000_check_PCI2040_error_flag(pdo->pa_parent_adapter,
H6WRITE)
&& --timeout);
if (timeout)
return 0;
return 1;
}
/* write one word to the HPI port */
static void hpi_write_word(struct dsp_obj *pdo, u32 address, u32 data)
{
if (hpi_set_address(pdo, address))
return;
iowrite32(data, pdo->prHPI_data);
}
/* read one word from the HPI port */
static u32 hpi_read_word(struct dsp_obj *pdo, u32 address)
{
u32 data = 0;
if (hpi_set_address(pdo, address))
return 0; /*? No way to return error */
/* take care of errata in revB DSP (2.0.1) */
data = ioread32(pdo->prHPI_data);
return data;
}
/* write a block of 32bit words to the DSP HPI port using auto-inc mode */
static void hpi_write_block(struct dsp_obj *pdo, u32 address, u32 *pdata,
u32 length)
{
u16 length16 = length - 1;
if (length == 0)
return;
if (hpi_set_address(pdo, address))
return;
iowrite32_rep(pdo->prHPI_data_auto_inc, pdata, length16);
/* take care of errata in revB DSP (2.0.1) */
/* must end with non auto-inc */
iowrite32(*(pdata + length - 1), pdo->prHPI_data);
}
/** read a block of 32bit words from the DSP HPI port using auto-inc mode
*/
static void hpi_read_block(struct dsp_obj *pdo, u32 address, u32 *pdata,
u32 length)
{
u16 length16 = length - 1;
if (length == 0)
return;
if (hpi_set_address(pdo, address))
return;
ioread32_rep(pdo->prHPI_data_auto_inc, pdata, length16);
/* take care of errata in revB DSP (2.0.1) */
/* must end with non auto-inc */
*(pdata + length - 1) = ioread32(pdo->prHPI_data);
}
static u16 hpi6000_dsp_block_write32(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 hpi_address, u32 *source, u32 count)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 time_out = PCI_TIMEOUT;
int c6711_burst_size = 128;
u32 local_hpi_address = hpi_address;
int local_count = count;
int xfer_size;
u32 *pdata = source;
while (local_count) {
if (local_count > c6711_burst_size)
xfer_size = c6711_burst_size;
else
xfer_size = local_count;
time_out = PCI_TIMEOUT;
do {
hpi_write_block(pdo, local_hpi_address, pdata,
xfer_size);
} while (hpi6000_check_PCI2040_error_flag(pao, H6WRITE)
&& --time_out);
if (!time_out)
break;
pdata += xfer_size;
local_hpi_address += sizeof(u32) * xfer_size;
local_count -= xfer_size;
}
if (time_out)
return 0;
else
return 1;
}
static u16 hpi6000_dsp_block_read32(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 hpi_address, u32 *dest, u32 count)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 time_out = PCI_TIMEOUT;
int c6711_burst_size = 16;
u32 local_hpi_address = hpi_address;
int local_count = count;
int xfer_size;
u32 *pdata = dest;
while (local_count) {
if (local_count > c6711_burst_size)
xfer_size = c6711_burst_size;
else
xfer_size = local_count;
time_out = PCI_TIMEOUT;
do {
hpi_read_block(pdo, local_hpi_address, pdata,
xfer_size);
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ)
&& --time_out);
if (!time_out)
break;
pdata += xfer_size;
local_hpi_address += sizeof(u32) * xfer_size;
local_count -= xfer_size;
}
if (time_out)
return 0;
else
return 1;
}
static short hpi6000_message_response_sequence(struct hpi_adapter_obj *pao,
u16 dsp_index, struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 timeout;
u16 ack;
u32 address;
u32 length;
u32 *p_data;
u16 error = 0;
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_IDLE);
if (ack & HPI_HIF_ERROR_MASK) {
pao->dsp_crashed++;
return HPI6000_ERROR_MSG_RESP_IDLE_TIMEOUT;
}
pao->dsp_crashed = 0;
/* get the message address and size */
if (phw->message_buffer_address_on_dsp == 0) {
timeout = TIMEOUT;
do {
address =
hpi_read_word(pdo,
HPI_HIF_ADDR(message_buffer_address));
phw->message_buffer_address_on_dsp = address;
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ)
&& --timeout);
if (!timeout)
return HPI6000_ERROR_MSG_GET_ADR;
} else
address = phw->message_buffer_address_on_dsp;
length = phm->size;
/* send the message */
p_data = (u32 *)phm;
if (hpi6000_dsp_block_write32(pao, dsp_index, address, p_data,
(u16)length / 4))
return HPI6000_ERROR_MSG_RESP_BLOCKWRITE32;
if (hpi6000_send_host_command(pao, dsp_index, HPI_HIF_GET_RESP))
return HPI6000_ERROR_MSG_RESP_GETRESPCMD;
hpi6000_send_dsp_interrupt(pdo);
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_GET_RESP);
if (ack & HPI_HIF_ERROR_MASK)
return HPI6000_ERROR_MSG_RESP_GET_RESP_ACK;
/* get the response address */
if (phw->response_buffer_address_on_dsp == 0) {
timeout = TIMEOUT;
do {
address =
hpi_read_word(pdo,
HPI_HIF_ADDR(response_buffer_address));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ)
&& --timeout);
phw->response_buffer_address_on_dsp = address;
if (!timeout)
return HPI6000_ERROR_RESP_GET_ADR;
} else
address = phw->response_buffer_address_on_dsp;
/* read the length of the response back from the DSP */
timeout = TIMEOUT;
do {
length = hpi_read_word(pdo, HPI_HIF_ADDR(length));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ) && --timeout);
if (!timeout)
return HPI6000_ERROR_RESP_GET_LEN;
if (length > phr->size)
return HPI_ERROR_RESPONSE_BUFFER_TOO_SMALL;
/* get the response */
p_data = (u32 *)phr;
if (hpi6000_dsp_block_read32(pao, dsp_index, address, p_data,
(u16)length / 4))
return HPI6000_ERROR_MSG_RESP_BLOCKREAD32;
/* set i/f back to idle */
if (hpi6000_send_host_command(pao, dsp_index, HPI_HIF_IDLE))
return HPI6000_ERROR_MSG_RESP_IDLECMD;
hpi6000_send_dsp_interrupt(pdo);
error = hpi_validate_response(phm, phr);
return error;
}
/* have to set up the below defines to match stuff in the MAP file */
#define MSG_ADDRESS (HPI_HIF_BASE+0x18)
#define MSG_LENGTH 11
#define RESP_ADDRESS (HPI_HIF_BASE+0x44)
#define RESP_LENGTH 16
#define QUEUE_START (HPI_HIF_BASE+0x88)
#define QUEUE_SIZE 0x8000
static short hpi6000_send_data_check_adr(u32 address, u32 length_in_dwords)
{
/*#define CHECKING // comment this line in to enable checking */
#ifdef CHECKING
if (address < (u32)MSG_ADDRESS)
return 0;
if (address > (u32)(QUEUE_START + QUEUE_SIZE))
return 0;
if ((address + (length_in_dwords << 2)) >
(u32)(QUEUE_START + QUEUE_SIZE))
return 0;
#else
(void)address;
(void)length_in_dwords;
return 1;
#endif
}
static short hpi6000_send_data(struct hpi_adapter_obj *pao, u16 dsp_index,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 data_sent = 0;
u16 ack;
u32 length, address;
u32 *p_data = (u32 *)phm->u.d.u.data.pb_data;
u16 time_out = 8;
(void)phr;
/* round dwDataSize down to nearest 4 bytes */
while ((data_sent < (phm->u.d.u.data.data_size & ~3L))
&& --time_out) {
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_IDLE);
if (ack & HPI_HIF_ERROR_MASK)
return HPI6000_ERROR_SEND_DATA_IDLE_TIMEOUT;
if (hpi6000_send_host_command(pao, dsp_index,
HPI_HIF_SEND_DATA))
return HPI6000_ERROR_SEND_DATA_CMD;
hpi6000_send_dsp_interrupt(pdo);
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_SEND_DATA);
if (ack & HPI_HIF_ERROR_MASK)
return HPI6000_ERROR_SEND_DATA_ACK;
do {
/* get the address and size */
address = hpi_read_word(pdo, HPI_HIF_ADDR(address));
/* DSP returns number of DWORDS */
length = hpi_read_word(pdo, HPI_HIF_ADDR(length));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ));
if (!hpi6000_send_data_check_adr(address, length))
return HPI6000_ERROR_SEND_DATA_ADR;
/* send the data. break data into 512 DWORD blocks (2K bytes)
* and send using block write. 2Kbytes is the max as this is the
* memory window given to the HPI data register by the PCI2040
*/
{
u32 len = length;
u32 blk_len = 512;
while (len) {
if (len < blk_len)
blk_len = len;
if (hpi6000_dsp_block_write32(pao, dsp_index,
address, p_data, blk_len))
return HPI6000_ERROR_SEND_DATA_WRITE;
address += blk_len * 4;
p_data += blk_len;
len -= blk_len;
}
}
if (hpi6000_send_host_command(pao, dsp_index, HPI_HIF_IDLE))
return HPI6000_ERROR_SEND_DATA_IDLECMD;
hpi6000_send_dsp_interrupt(pdo);
data_sent += length * 4;
}
if (!time_out)
return HPI6000_ERROR_SEND_DATA_TIMEOUT;
return 0;
}
static short hpi6000_get_data(struct hpi_adapter_obj *pao, u16 dsp_index,
struct hpi_message *phm, struct hpi_response *phr)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 data_got = 0;
u16 ack;
u32 length, address;
u32 *p_data = (u32 *)phm->u.d.u.data.pb_data;
(void)phr; /* this parameter not used! */
/* round dwDataSize down to nearest 4 bytes */
while (data_got < (phm->u.d.u.data.data_size & ~3L)) {
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_IDLE);
if (ack & HPI_HIF_ERROR_MASK)
return HPI6000_ERROR_GET_DATA_IDLE_TIMEOUT;
if (hpi6000_send_host_command(pao, dsp_index,
HPI_HIF_GET_DATA))
return HPI6000_ERROR_GET_DATA_CMD;
hpi6000_send_dsp_interrupt(pdo);
ack = hpi6000_wait_dsp_ack(pao, dsp_index, HPI_HIF_GET_DATA);
if (ack & HPI_HIF_ERROR_MASK)
return HPI6000_ERROR_GET_DATA_ACK;
/* get the address and size */
do {
address = hpi_read_word(pdo, HPI_HIF_ADDR(address));
length = hpi_read_word(pdo, HPI_HIF_ADDR(length));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ));
/* read the data */
{
u32 len = length;
u32 blk_len = 512;
while (len) {
if (len < blk_len)
blk_len = len;
if (hpi6000_dsp_block_read32(pao, dsp_index,
address, p_data, blk_len))
return HPI6000_ERROR_GET_DATA_READ;
address += blk_len * 4;
p_data += blk_len;
len -= blk_len;
}
}
if (hpi6000_send_host_command(pao, dsp_index, HPI_HIF_IDLE))
return HPI6000_ERROR_GET_DATA_IDLECMD;
hpi6000_send_dsp_interrupt(pdo);
data_got += length * 4;
}
return 0;
}
static void hpi6000_send_dsp_interrupt(struct dsp_obj *pdo)
{
iowrite32(0x00030003, pdo->prHPI_control); /* DSPINT */
}
static short hpi6000_send_host_command(struct hpi_adapter_obj *pao,
u16 dsp_index, u32 host_cmd)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 timeout = TIMEOUT;
/* set command */
do {
hpi_write_word(pdo, HPI_HIF_ADDR(host_cmd), host_cmd);
/* flush the FIFO */
hpi_set_address(pdo, HPI_HIF_ADDR(host_cmd));
} while (hpi6000_check_PCI2040_error_flag(pao, H6WRITE) && --timeout);
/* reset the interrupt bit */
iowrite32(0x00040004, pdo->prHPI_control);
if (timeout)
return 0;
else
return 1;
}
/* if the PCI2040 has recorded an HPI timeout, reset the error and return 1 */
static short hpi6000_check_PCI2040_error_flag(struct hpi_adapter_obj *pao,
u16 read_or_write)
{
u32 hPI_error;
struct hpi_hw_obj *phw = pao->priv;
/* read the error bits from the PCI2040 */
hPI_error = ioread32(phw->dw2040_HPICSR + HPI_ERROR_REPORT);
if (hPI_error) {
/* reset the error flag */
iowrite32(0L, phw->dw2040_HPICSR + HPI_ERROR_REPORT);
phw->pCI2040HPI_error_count++;
if (read_or_write == 1)
gw_pci_read_asserts++; /************* inc global */
else
gw_pci_write_asserts++;
return 1;
} else
return 0;
}
static short hpi6000_wait_dsp_ack(struct hpi_adapter_obj *pao, u16 dsp_index,
u32 ack_value)
{
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 ack = 0L;
u32 timeout;
u32 hPIC = 0L;
/* wait for host interrupt to signal ack is ready */
timeout = TIMEOUT;
while (--timeout) {
hPIC = ioread32(pdo->prHPI_control);
if (hPIC & 0x04) /* 0x04 = HINT from DSP */
break;
}
if (timeout == 0)
return HPI_HIF_ERROR_MASK;
/* wait for dwAckValue */
timeout = TIMEOUT;
while (--timeout) {
/* read the ack mailbox */
ack = hpi_read_word(pdo, HPI_HIF_ADDR(dsp_ack));
if (ack == ack_value)
break;
if ((ack & HPI_HIF_ERROR_MASK)
&& !hpi6000_check_PCI2040_error_flag(pao, H6READ))
break;
/*for (i=0;i<1000;i++) */
/* dwPause=i+1; */
}
if (ack & HPI_HIF_ERROR_MASK)
/* indicates bad read from DSP -
typically 0xffffff is read for some reason */
ack = HPI_HIF_ERROR_MASK;
if (timeout == 0)
ack = HPI_HIF_ERROR_MASK;
return (short)ack;
}
static short hpi6000_update_control_cache(struct hpi_adapter_obj *pao,
struct hpi_message *phm)
{
const u16 dsp_index = 0;
struct hpi_hw_obj *phw = pao->priv;
struct dsp_obj *pdo = &phw->ado[dsp_index];
u32 timeout;
u32 cache_dirty_flag;
u16 err;
hpios_dsplock_lock(pao);
timeout = TIMEOUT;
do {
cache_dirty_flag =
hpi_read_word((struct dsp_obj *)pdo,
HPI_HIF_ADDR(control_cache_is_dirty));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ) && --timeout);
if (!timeout) {
err = HPI6000_ERROR_CONTROL_CACHE_PARAMS;
goto unlock;
}
if (cache_dirty_flag) {
/* read the cached controls */
u32 address;
u32 length;
timeout = TIMEOUT;
if (pdo->control_cache_address_on_dsp == 0) {
do {
address =
hpi_read_word((struct dsp_obj *)pdo,
HPI_HIF_ADDR(control_cache_address));
length = hpi_read_word((struct dsp_obj *)pdo,
HPI_HIF_ADDR
(control_cache_size_in_bytes));
} while (hpi6000_check_PCI2040_error_flag(pao, H6READ)
&& --timeout);
if (!timeout) {
err = HPI6000_ERROR_CONTROL_CACHE_ADDRLEN;
goto unlock;
}
pdo->control_cache_address_on_dsp = address;
pdo->control_cache_length_on_dsp = length;
} else {
address = pdo->control_cache_address_on_dsp;
length = pdo->control_cache_length_on_dsp;
}
if (hpi6000_dsp_block_read32(pao, dsp_index, address,
(u32 *)&phw->control_cache[0],
length / sizeof(u32))) {
err = HPI6000_ERROR_CONTROL_CACHE_READ;
goto unlock;
}
do {
hpi_write_word((struct dsp_obj *)pdo,
HPI_HIF_ADDR(control_cache_is_dirty), 0);
/* flush the FIFO */
hpi_set_address(pdo, HPI_HIF_ADDR(host_cmd));
} while (hpi6000_check_PCI2040_error_flag(pao, H6WRITE)
&& --timeout);
if (!timeout) {
err = HPI6000_ERROR_CONTROL_CACHE_FLUSH;
goto unlock;
}
}
err = 0;
unlock:
hpios_dsplock_unlock(pao);
return err;
}
/** Get dsp index for multi DSP adapters only */
static u16 get_dsp_index(struct hpi_adapter_obj *pao, struct hpi_message *phm)
{
u16 ret = 0;
switch (phm->object) {
case HPI_OBJ_ISTREAM:
if (phm->obj_index < 2)
ret = 1;
break;
case HPI_OBJ_PROFILE:
ret = phm->obj_index;
break;
default:
break;
}
return ret;
}
/** Complete transaction with DSP
Send message, get response, send or get stream data if any.
*/
static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm,
struct hpi_response *phr)
{
u16 error = 0;
u16 dsp_index = 0;
struct hpi_hw_obj *phw = pao->priv;
u16 num_dsp = phw->num_dsp;
if (num_dsp < 2)
dsp_index = 0;
else {
dsp_index = get_dsp_index(pao, phm);
/* is this checked on the DSP anyway? */
if ((phm->function == HPI_ISTREAM_GROUP_ADD)
|| (phm->function == HPI_OSTREAM_GROUP_ADD)) {
struct hpi_message hm;
u16 add_index;
hm.obj_index = phm->u.d.u.stream.stream_index;
hm.object = phm->u.d.u.stream.object_type;
add_index = get_dsp_index(pao, &hm);
if (add_index != dsp_index) {
phr->error = HPI_ERROR_NO_INTERDSP_GROUPS;
return;
}
}
}
hpios_dsplock_lock(pao);
error = hpi6000_message_response_sequence(pao, dsp_index, phm, phr);
if (error) /* something failed in the HPI/DSP interface */
goto err;
if (phr->error) /* something failed in the DSP */
goto out;
switch (phm->function) {
case HPI_OSTREAM_WRITE:
case HPI_ISTREAM_ANC_WRITE:
error = hpi6000_send_data(pao, dsp_index, phm, phr);
break;
case HPI_ISTREAM_READ:
case HPI_OSTREAM_ANC_READ:
error = hpi6000_get_data(pao, dsp_index, phm, phr);
break;
case HPI_ADAPTER_GET_ASSERT:
phr->u.ax.assert.dsp_index = 0; /* dsp 0 default */
if (num_dsp == 2) {
if (!phr->u.ax.assert.count) {
/* no assert from dsp 0, check dsp 1 */
error = hpi6000_message_response_sequence(pao,
1, phm, phr);
phr->u.ax.assert.dsp_index = 1;
}
}
}
err:
if (error) {
if (error >= HPI_ERROR_BACKEND_BASE) {
phr->error = HPI_ERROR_DSP_COMMUNICATION;
phr->specific_error = error;
} else {
phr->error = error;
}
/* just the header of the response is valid */
phr->size = sizeof(struct hpi_response_header);
}
out:
hpios_dsplock_unlock(pao);
return;
}