2005-04-16 15:20:36 -07:00
/*
* linux / kernel / posix_timers . c
*
*
* 2002 - 10 - 15 Posix Clocks & timers
* by George Anzinger george @ mvista . com
*
* Copyright ( C ) 2002 2003 by MontaVista Software .
*
* 2004 - 06 - 01 Fix CLOCK_REALTIME clock / timer TIMER_ABSTIME bug .
* Copyright ( C ) 2004 Boris Hu
*
* This program is free software ; you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation ; either version 2 of the License , or ( at
* your option ) any later version .
*
* This program is distributed in the hope that it will be useful , but
* WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* General Public License for more details .
* You should have received a copy of the GNU General Public License
* along with this program ; if not , write to the Free Software
* Foundation , Inc . , 675 Mass Ave , Cambridge , MA 0213 9 , USA .
*
* MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
*/
/* These are all the functions necessary to implement
* POSIX clocks & timers
*/
# include <linux/mm.h>
# include <linux/smp_lock.h>
# include <linux/interrupt.h>
# include <linux/slab.h>
# include <linux/time.h>
# include <asm/uaccess.h>
# include <asm/semaphore.h>
# include <linux/list.h>
# include <linux/init.h>
# include <linux/compiler.h>
# include <linux/idr.h>
# include <linux/posix-timers.h>
# include <linux/syscalls.h>
# include <linux/wait.h>
# include <linux/workqueue.h>
# include <linux/module.h>
/*
* Management arrays for POSIX timers . Timers are kept in slab memory
* Timer ids are allocated by an external routine that keeps track of the
* id and the timer . The external interface is :
*
* void * idr_find ( struct idr * idp , int id ) ; to find timer_id < id >
* int idr_get_new ( struct idr * idp , void * ptr ) ; to get a new id and
* related it to < ptr >
* void idr_remove ( struct idr * idp , int id ) ; to release < id >
* void idr_init ( struct idr * idp ) ; to initialize < idp >
* which we supply .
* The idr_get_new * may * call slab for more memory so it must not be
* called under a spin lock . Likewise idr_remore may release memory
* ( but it may be ok to do this under a lock . . . ) .
* idr_find is just a memory look up and is quite fast . A - 1 return
* indicates that the requested id does not exist .
*/
/*
* Lets keep our timers in a slab cache : - )
*/
static kmem_cache_t * posix_timers_cache ;
static struct idr posix_timers_id ;
static DEFINE_SPINLOCK ( idr_lock ) ;
/*
* we assume that the new SIGEV_THREAD_ID shares no bits with the other
* SIGEV values . Here we put out an error if this assumption fails .
*/
# if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
~ ( SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD ) )
# error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
# endif
/*
* The timer ID is turned into a timer address by idr_find ( ) .
* Verifying a valid ID consists of :
*
* a ) checking that idr_find ( ) returns other than - 1.
* b ) checking that the timer id matches the one in the timer itself .
* c ) that the timer owner is in the callers thread group .
*/
/*
* CLOCKs : The POSIX standard calls for a couple of clocks and allows us
* to implement others . This structure defines the various
* clocks and allows the possibility of adding others . We
* provide an interface to add clocks to the table and expect
* the " arch " code to add at least one clock that is high
* resolution . Here we define the standard CLOCK_REALTIME as a
* 1 / HZ resolution clock .
*
* RESOLUTION : Clock resolution is used to round up timer and interval
* times , NOT to report clock times , which are reported with as
* much resolution as the system can muster . In some cases this
* resolution may depend on the underlying clock hardware and
* may not be quantifiable until run time , and only then is the
* necessary code is written . The standard says we should say
* something about this issue in the documentation . . .
*
* FUNCTIONS : The CLOCKs structure defines possible functions to handle
* various clock functions . For clocks that use the standard
* system timer code these entries should be NULL . This will
* allow dispatch without the overhead of indirect function
* calls . CLOCKS that depend on other sources ( e . g . WWV or GPS )
* must supply functions here , even if the function just returns
* ENOSYS . The standard POSIX timer management code assumes the
* following : 1. ) The k_itimer struct ( sched . h ) is used for the
* timer . 2. ) The list , it_lock , it_clock , it_id and it_process
* fields are not modified by timer code .
*
* At this time all functions EXCEPT clock_nanosleep can be
* redirected by the CLOCKS structure . Clock_nanosleep is in
* there , but the code ignores it .
*
* Permissions : It is assumed that the clock_settime ( ) function defined
* for each clock will take care of permission checks . Some
* clocks may be set able by any user ( i . e . local process
* clocks ) others not . Currently the only set able clock we
* have is CLOCK_REALTIME and its high res counter part , both of
* which we beg off on and pass to do_sys_settimeofday ( ) .
*/
static struct k_clock posix_clocks [ MAX_CLOCKS ] ;
2006-01-09 20:52:38 -08:00
2005-04-16 15:20:36 -07:00
/*
2006-01-09 20:52:38 -08:00
* These ones are defined below .
2005-04-16 15:20:36 -07:00
*/
2006-01-09 20:52:38 -08:00
static int common_nsleep ( const clockid_t , int flags , struct timespec * t ,
struct timespec __user * rmtp ) ;
static void common_timer_get ( struct k_itimer * , struct itimerspec * ) ;
static int common_timer_set ( struct k_itimer * , int ,
struct itimerspec * , struct itimerspec * ) ;
static int common_timer_del ( struct k_itimer * timer ) ;
2005-04-16 15:20:36 -07:00
2006-01-09 20:52:38 -08:00
static int posix_timer_fn ( void * data ) ;
2005-04-16 15:20:36 -07:00
static struct k_itimer * lock_timer ( timer_t timer_id , unsigned long * flags ) ;
static inline void unlock_timer ( struct k_itimer * timr , unsigned long flags )
{
spin_unlock_irqrestore ( & timr - > it_lock , flags ) ;
}
/*
* Call the k_clock hook function if non - null , or the default function .
*/
# define CLOCK_DISPATCH(clock, call, arglist) \
( ( clock ) < 0 ? posix_cpu_ # # call arglist : \
( posix_clocks [ clock ] . call ! = NULL \
? ( * posix_clocks [ clock ] . call ) arglist : common_ # # call arglist ) )
/*
* Default clock hook functions when the struct k_clock passed
* to register_posix_clock leaves a function pointer null .
*
* The function common_CALL is the default implementation for
* the function pointer CALL in struct k_clock .
*/
2006-01-09 20:52:27 -08:00
static inline int common_clock_getres ( const clockid_t which_clock ,
2005-04-16 15:20:36 -07:00
struct timespec * tp )
{
tp - > tv_sec = 0 ;
tp - > tv_nsec = posix_clocks [ which_clock ] . res ;
return 0 ;
}
2006-01-09 20:52:38 -08:00
/*
* Get real time for posix timers
*/
static int common_clock_get ( clockid_t which_clock , struct timespec * tp )
2005-04-16 15:20:36 -07:00
{
2006-01-09 20:52:38 -08:00
ktime_get_real_ts ( tp ) ;
2005-04-16 15:20:36 -07:00
return 0 ;
}
2006-01-09 20:52:27 -08:00
static inline int common_clock_set ( const clockid_t which_clock ,
struct timespec * tp )
2005-04-16 15:20:36 -07:00
{
return do_sys_settimeofday ( tp , NULL ) ;
}
static inline int common_timer_create ( struct k_itimer * new_timer )
{
2006-01-09 20:52:38 -08:00
hrtimer_init ( & new_timer - > it . real . timer , new_timer - > it_clock ) ;
new_timer - > it . real . timer . data = new_timer ;
2005-04-16 15:20:36 -07:00
new_timer - > it . real . timer . function = posix_timer_fn ;
return 0 ;
}
/*
2006-01-09 20:52:38 -08:00
* Return nonzero if we know a priori this clockid_t value is bogus .
2005-04-16 15:20:36 -07:00
*/
2006-01-09 20:52:27 -08:00
static inline int invalid_clockid ( const clockid_t which_clock )
2005-04-16 15:20:36 -07:00
{
if ( which_clock < 0 ) /* CPU clock, posix_cpu_* will check it */
return 0 ;
if ( ( unsigned ) which_clock > = MAX_CLOCKS )
return 1 ;
if ( posix_clocks [ which_clock ] . clock_getres ! = NULL )
return 0 ;
if ( posix_clocks [ which_clock ] . res ! = 0 )
return 0 ;
return 1 ;
}
2006-01-09 20:52:38 -08:00
/*
* Get monotonic time for posix timers
*/
static int posix_ktime_get_ts ( clockid_t which_clock , struct timespec * tp )
{
ktime_get_ts ( tp ) ;
return 0 ;
}
2005-04-16 15:20:36 -07:00
/*
* Initialize everything , well , just everything in Posix clocks / timers ; )
*/
static __init int init_posix_timers ( void )
{
2006-01-09 20:52:38 -08:00
struct k_clock clock_realtime = {
. clock_getres = hrtimer_get_res ,
2005-04-16 15:20:36 -07:00
} ;
2006-01-09 20:52:38 -08:00
struct k_clock clock_monotonic = {
. clock_getres = hrtimer_get_res ,
. clock_get = posix_ktime_get_ts ,
. clock_set = do_posix_clock_nosettime ,
2005-04-16 15:20:36 -07:00
} ;
register_posix_clock ( CLOCK_REALTIME , & clock_realtime ) ;
register_posix_clock ( CLOCK_MONOTONIC , & clock_monotonic ) ;
posix_timers_cache = kmem_cache_create ( " posix_timers_cache " ,
sizeof ( struct k_itimer ) , 0 , 0 , NULL , NULL ) ;
idr_init ( & posix_timers_id ) ;
return 0 ;
}
__initcall ( init_posix_timers ) ;
static void schedule_next_timer ( struct k_itimer * timr )
{
2006-01-09 20:52:38 -08:00
if ( timr - > it . real . interval . tv64 = = 0 )
2005-04-16 15:20:36 -07:00
return ;
2006-01-09 20:52:38 -08:00
timr - > it_overrun + = hrtimer_forward ( & timr - > it . real . timer ,
timr - > it . real . interval ) ;
2005-04-16 15:20:36 -07:00
timr - > it_overrun_last = timr - > it_overrun ;
timr - > it_overrun = - 1 ;
+ + timr - > it_requeue_pending ;
2006-01-09 20:52:38 -08:00
hrtimer_restart ( & timr - > it . real . timer ) ;
2005-04-16 15:20:36 -07:00
}
/*
* This function is exported for use by the signal deliver code . It is
* called just prior to the info block being released and passes that
* block to us . It ' s function is to update the overrun entry AND to
* restart the timer . It should only be called if the timer is to be
* restarted ( i . e . we have flagged this in the sys_private entry of the
* info block ) .
*
* To protect aginst the timer going away while the interrupt is queued ,
* we require that the it_requeue_pending flag be set .
*/
void do_schedule_next_timer ( struct siginfo * info )
{
struct k_itimer * timr ;
unsigned long flags ;
timr = lock_timer ( info - > si_tid , & flags ) ;
2006-01-09 20:52:38 -08:00
if ( timr & & timr - > it_requeue_pending = = info - > si_sys_private ) {
if ( timr - > it_clock < 0 )
posix_cpu_timer_schedule ( timr ) ;
else
schedule_next_timer ( timr ) ;
2005-04-16 15:20:36 -07:00
2006-01-09 20:52:38 -08:00
info - > si_overrun = timr - > it_overrun_last ;
}
unlock_timer ( timr , flags ) ;
2005-04-16 15:20:36 -07:00
}
int posix_timer_event ( struct k_itimer * timr , int si_private )
{
memset ( & timr - > sigq - > info , 0 , sizeof ( siginfo_t ) ) ;
timr - > sigq - > info . si_sys_private = si_private ;
2006-01-09 20:52:38 -08:00
/* Send signal to the process that owns this timer.*/
2005-04-16 15:20:36 -07:00
timr - > sigq - > info . si_signo = timr - > it_sigev_signo ;
timr - > sigq - > info . si_errno = 0 ;
timr - > sigq - > info . si_code = SI_TIMER ;
timr - > sigq - > info . si_tid = timr - > it_id ;
timr - > sigq - > info . si_value = timr - > it_sigev_value ;
2005-09-06 15:17:42 -07:00
2005-04-16 15:20:36 -07:00
if ( timr - > it_sigev_notify & SIGEV_THREAD_ID ) {
2005-09-06 15:17:42 -07:00
struct task_struct * leader ;
int ret = send_sigqueue ( timr - > it_sigev_signo , timr - > sigq ,
timr - > it_process ) ;
if ( likely ( ret > = 0 ) )
return ret ;
timr - > it_sigev_notify = SIGEV_SIGNAL ;
leader = timr - > it_process - > group_leader ;
put_task_struct ( timr - > it_process ) ;
timr - > it_process = leader ;
2005-04-16 15:20:36 -07:00
}
2005-09-06 15:17:42 -07:00
return send_group_sigqueue ( timr - > it_sigev_signo , timr - > sigq ,
timr - > it_process ) ;
2005-04-16 15:20:36 -07:00
}
EXPORT_SYMBOL_GPL ( posix_timer_event ) ;
/*
* This function gets called when a POSIX .1 b interval timer expires . It
* is used as a callback from the kernel internal timer . The
* run_timer_list code ALWAYS calls with interrupts on .
* This code is for CLOCK_REALTIME * and CLOCK_MONOTONIC * timers .
*/
2006-01-09 20:52:38 -08:00
static int posix_timer_fn ( void * data )
2005-04-16 15:20:36 -07:00
{
2006-01-09 20:52:38 -08:00
struct k_itimer * timr = data ;
2005-04-16 15:20:36 -07:00
unsigned long flags ;
2006-01-09 20:52:38 -08:00
int si_private = 0 ;
int ret = HRTIMER_NORESTART ;
2005-04-16 15:20:36 -07:00
spin_lock_irqsave ( & timr - > it_lock , flags ) ;
2006-01-09 20:52:38 -08:00
if ( timr - > it . real . interval . tv64 ! = 0 )
si_private = + + timr - > it_requeue_pending ;
2005-04-16 15:20:36 -07:00
2006-01-09 20:52:38 -08:00
if ( posix_timer_event ( timr , si_private ) ) {
/*
* signal was not sent because of sig_ignor
* we will not get a call back to restart it AND
* it should be restarted .
*/
if ( timr - > it . real . interval . tv64 ! = 0 ) {
timr - > it_overrun + =
hrtimer_forward ( & timr - > it . real . timer ,
timr - > it . real . interval ) ;
ret = HRTIMER_RESTART ;
2005-04-16 15:20:36 -07:00
}
}
2006-01-09 20:52:38 -08:00
unlock_timer ( timr , flags ) ;
return ret ;
}
2005-04-16 15:20:36 -07:00
static inline struct task_struct * good_sigevent ( sigevent_t * event )
{
struct task_struct * rtn = current - > group_leader ;
if ( ( event - > sigev_notify & SIGEV_THREAD_ID ) & &
( ! ( rtn = find_task_by_pid ( event - > sigev_notify_thread_id ) ) | |
rtn - > tgid ! = current - > tgid | |
( event - > sigev_notify & ~ SIGEV_THREAD_ID ) ! = SIGEV_SIGNAL ) )
return NULL ;
if ( ( ( event - > sigev_notify & ~ SIGEV_THREAD_ID ) ! = SIGEV_NONE ) & &
( ( event - > sigev_signo < = 0 ) | | ( event - > sigev_signo > SIGRTMAX ) ) )
return NULL ;
return rtn ;
}
2006-01-09 20:52:27 -08:00
void register_posix_clock ( const clockid_t clock_id , struct k_clock * new_clock )
2005-04-16 15:20:36 -07:00
{
if ( ( unsigned ) clock_id > = MAX_CLOCKS ) {
printk ( " POSIX clock register failed for clock_id %d \n " ,
clock_id ) ;
return ;
}
posix_clocks [ clock_id ] = * new_clock ;
}
EXPORT_SYMBOL_GPL ( register_posix_clock ) ;
static struct k_itimer * alloc_posix_timer ( void )
{
struct k_itimer * tmr ;
tmr = kmem_cache_alloc ( posix_timers_cache , GFP_KERNEL ) ;
if ( ! tmr )
return tmr ;
memset ( tmr , 0 , sizeof ( struct k_itimer ) ) ;
if ( unlikely ( ! ( tmr - > sigq = sigqueue_alloc ( ) ) ) ) {
kmem_cache_free ( posix_timers_cache , tmr ) ;
tmr = NULL ;
}
return tmr ;
}
# define IT_ID_SET 1
# define IT_ID_NOT_SET 0
static void release_posix_timer ( struct k_itimer * tmr , int it_id_set )
{
if ( it_id_set ) {
unsigned long flags ;
spin_lock_irqsave ( & idr_lock , flags ) ;
idr_remove ( & posix_timers_id , tmr - > it_id ) ;
spin_unlock_irqrestore ( & idr_lock , flags ) ;
}
sigqueue_free ( tmr - > sigq ) ;
if ( unlikely ( tmr - > it_process ) & &
tmr - > it_sigev_notify = = ( SIGEV_SIGNAL | SIGEV_THREAD_ID ) )
put_task_struct ( tmr - > it_process ) ;
kmem_cache_free ( posix_timers_cache , tmr ) ;
}
/* Create a POSIX.1b interval timer. */
asmlinkage long
2006-01-09 20:52:27 -08:00
sys_timer_create ( const clockid_t which_clock ,
2005-04-16 15:20:36 -07:00
struct sigevent __user * timer_event_spec ,
timer_t __user * created_timer_id )
{
int error = 0 ;
struct k_itimer * new_timer = NULL ;
int new_timer_id ;
struct task_struct * process = NULL ;
unsigned long flags ;
sigevent_t event ;
int it_id_set = IT_ID_NOT_SET ;
if ( invalid_clockid ( which_clock ) )
return - EINVAL ;
new_timer = alloc_posix_timer ( ) ;
if ( unlikely ( ! new_timer ) )
return - EAGAIN ;
spin_lock_init ( & new_timer - > it_lock ) ;
retry :
if ( unlikely ( ! idr_pre_get ( & posix_timers_id , GFP_KERNEL ) ) ) {
error = - EAGAIN ;
goto out ;
}
spin_lock_irq ( & idr_lock ) ;
2006-01-09 20:52:38 -08:00
error = idr_get_new ( & posix_timers_id , ( void * ) new_timer ,
2005-04-16 15:20:36 -07:00
& new_timer_id ) ;
spin_unlock_irq ( & idr_lock ) ;
if ( error = = - EAGAIN )
goto retry ;
else if ( error ) {
/*
* Wierd looking , but we return EAGAIN if the IDR is
* full ( proper POSIX return value for this )
*/
error = - EAGAIN ;
goto out ;
}
it_id_set = IT_ID_SET ;
new_timer - > it_id = ( timer_t ) new_timer_id ;
new_timer - > it_clock = which_clock ;
new_timer - > it_overrun = - 1 ;
error = CLOCK_DISPATCH ( which_clock , timer_create , ( new_timer ) ) ;
if ( error )
goto out ;
/*
* return the timer_id now . The next step is hard to
* back out if there is an error .
*/
if ( copy_to_user ( created_timer_id ,
& new_timer_id , sizeof ( new_timer_id ) ) ) {
error = - EFAULT ;
goto out ;
}
if ( timer_event_spec ) {
if ( copy_from_user ( & event , timer_event_spec , sizeof ( event ) ) ) {
error = - EFAULT ;
goto out ;
}
new_timer - > it_sigev_notify = event . sigev_notify ;
new_timer - > it_sigev_signo = event . sigev_signo ;
new_timer - > it_sigev_value = event . sigev_value ;
read_lock ( & tasklist_lock ) ;
if ( ( process = good_sigevent ( & event ) ) ) {
/*
* We may be setting up this process for another
* thread . It may be exiting . To catch this
* case the we check the PF_EXITING flag . If
* the flag is not set , the siglock will catch
* him before it is too late ( in exit_itimers ) .
*
* The exec case is a bit more invloved but easy
* to code . If the process is in our thread
* group ( and it must be or we would not allow
* it here ) and is doing an exec , it will cause
* us to be killed . In this case it will wait
* for us to die which means we can finish this
* linkage with our last gasp . I . e . no code : )
*/
spin_lock_irqsave ( & process - > sighand - > siglock , flags ) ;
if ( ! ( process - > flags & PF_EXITING ) ) {
new_timer - > it_process = process ;
list_add ( & new_timer - > list ,
& process - > signal - > posix_timers ) ;
spin_unlock_irqrestore ( & process - > sighand - > siglock , flags ) ;
if ( new_timer - > it_sigev_notify = = ( SIGEV_SIGNAL | SIGEV_THREAD_ID ) )
get_task_struct ( process ) ;
} else {
spin_unlock_irqrestore ( & process - > sighand - > siglock , flags ) ;
process = NULL ;
}
}
read_unlock ( & tasklist_lock ) ;
if ( ! process ) {
error = - EINVAL ;
goto out ;
}
} else {
new_timer - > it_sigev_notify = SIGEV_SIGNAL ;
new_timer - > it_sigev_signo = SIGALRM ;
new_timer - > it_sigev_value . sival_int = new_timer - > it_id ;
process = current - > group_leader ;
spin_lock_irqsave ( & process - > sighand - > siglock , flags ) ;
new_timer - > it_process = process ;
list_add ( & new_timer - > list , & process - > signal - > posix_timers ) ;
spin_unlock_irqrestore ( & process - > sighand - > siglock , flags ) ;
}
/*
* In the case of the timer belonging to another task , after
* the task is unlocked , the timer is owned by the other task
* and may cease to exist at any time . Don ' t use or modify
* new_timer after the unlock call .
*/
out :
if ( error )
release_posix_timer ( new_timer , it_id_set ) ;
return error ;
}
/*
* Locking issues : We need to protect the result of the id look up until
* we get the timer locked down so it is not deleted under us . The
* removal is done under the idr spinlock so we use that here to bridge
* the find to the timer lock . To avoid a dead lock , the timer id MUST
* be release with out holding the timer lock .
*/
static struct k_itimer * lock_timer ( timer_t timer_id , unsigned long * flags )
{
struct k_itimer * timr ;
/*
* Watch out here . We do a irqsave on the idr_lock and pass the
* flags part over to the timer lock . Must not let interrupts in
* while we are moving the lock .
*/
spin_lock_irqsave ( & idr_lock , * flags ) ;
timr = ( struct k_itimer * ) idr_find ( & posix_timers_id , ( int ) timer_id ) ;
if ( timr ) {
spin_lock ( & timr - > it_lock ) ;
spin_unlock ( & idr_lock ) ;
if ( ( timr - > it_id ! = timer_id ) | | ! ( timr - > it_process ) | |
timr - > it_process - > tgid ! = current - > tgid ) {
unlock_timer ( timr , * flags ) ;
timr = NULL ;
}
} else
spin_unlock_irqrestore ( & idr_lock , * flags ) ;
return timr ;
}
/*
* Get the time remaining on a POSIX .1 b interval timer . This function
* is ALWAYS called with spin_lock_irq on the timer , thus it must not
* mess with irq .
*
* We have a couple of messes to clean up here . First there is the case
* of a timer that has a requeue pending . These timers should appear to
* be in the timer list with an expiry as if we were to requeue them
* now .
*
* The second issue is the SIGEV_NONE timer which may be active but is
* not really ever put in the timer list ( to save system resources ) .
* This timer may be expired , and if so , we will do it here . Otherwise
* it is the same as a requeue pending timer WRT to what we should
* report .
*/
static void
common_timer_get ( struct k_itimer * timr , struct itimerspec * cur_setting )
{
2006-01-09 20:52:38 -08:00
ktime_t remaining ;
struct hrtimer * timer = & timr - > it . real . timer ;
2005-04-16 15:20:36 -07:00
2006-01-09 20:52:38 -08:00
memset ( cur_setting , 0 , sizeof ( struct itimerspec ) ) ;
remaining = hrtimer_get_remaining ( timer ) ;
/* Time left ? or timer pending */
if ( remaining . tv64 > 0 | | hrtimer_active ( timer ) )
goto calci ;
/* interval timer ? */
if ( timr - > it . real . interval . tv64 = = 0 )
return ;
/*
* When a requeue is pending or this is a SIGEV_NONE timer
* move the expiry time forward by intervals , so expiry is >
* now .
*/
if ( timr - > it_requeue_pending & REQUEUE_PENDING | |
( timr - > it_sigev_notify & ~ SIGEV_THREAD_ID ) = = SIGEV_NONE ) {
timr - > it_overrun + =
hrtimer_forward ( timer , timr - > it . real . interval ) ;
remaining = hrtimer_get_remaining ( timer ) ;
2005-04-16 15:20:36 -07:00
}
2006-01-09 20:52:38 -08:00
calci :
/* interval timer ? */
if ( timr - > it . real . interval . tv64 ! = 0 )
cur_setting - > it_interval =
ktime_to_timespec ( timr - > it . real . interval ) ;
/* Return 0 only, when the timer is expired and not pending */
if ( remaining . tv64 < = 0 )
cur_setting - > it_value . tv_nsec = 1 ;
else
cur_setting - > it_value = ktime_to_timespec ( remaining ) ;
2005-04-16 15:20:36 -07:00
}
/* Get the time remaining on a POSIX.1b interval timer. */
asmlinkage long
sys_timer_gettime ( timer_t timer_id , struct itimerspec __user * setting )
{
struct k_itimer * timr ;
struct itimerspec cur_setting ;
unsigned long flags ;
timr = lock_timer ( timer_id , & flags ) ;
if ( ! timr )
return - EINVAL ;
CLOCK_DISPATCH ( timr - > it_clock , timer_get , ( timr , & cur_setting ) ) ;
unlock_timer ( timr , flags ) ;
if ( copy_to_user ( setting , & cur_setting , sizeof ( cur_setting ) ) )
return - EFAULT ;
return 0 ;
}
2006-01-09 20:52:38 -08:00
2005-04-16 15:20:36 -07:00
/*
* Get the number of overruns of a POSIX .1 b interval timer . This is to
* be the overrun of the timer last delivered . At the same time we are
* accumulating overruns on the next timer . The overrun is frozen when
* the signal is delivered , either at the notify time ( if the info block
* is not queued ) or at the actual delivery time ( as we are informed by
* the call back to do_schedule_next_timer ( ) . So all we need to do is
* to pick up the frozen overrun .
*/
asmlinkage long
sys_timer_getoverrun ( timer_t timer_id )
{
struct k_itimer * timr ;
int overrun ;
long flags ;
timr = lock_timer ( timer_id , & flags ) ;
if ( ! timr )
return - EINVAL ;
overrun = timr - > it_overrun_last ;
unlock_timer ( timr , flags ) ;
return overrun ;
}
/* Set a POSIX.1b interval timer. */
/* timr->it_lock is taken. */
static inline int
common_timer_set ( struct k_itimer * timr , int flags ,
struct itimerspec * new_setting , struct itimerspec * old_setting )
{
2006-01-09 20:52:38 -08:00
struct hrtimer * timer = & timr - > it . real . timer ;
2005-04-16 15:20:36 -07:00
if ( old_setting )
common_timer_get ( timr , old_setting ) ;
/* disable the timer */
2006-01-09 20:52:38 -08:00
timr - > it . real . interval . tv64 = 0 ;
2005-04-16 15:20:36 -07:00
/*
* careful here . If smp we could be in the " fire " routine which will
* be spinning as we hold the lock . But this is ONLY an SMP issue .
*/
2006-01-09 20:52:38 -08:00
if ( hrtimer_try_to_cancel ( timer ) < 0 )
2005-04-16 15:20:36 -07:00
return TIMER_RETRY ;
timr - > it_requeue_pending = ( timr - > it_requeue_pending + 2 ) &
~ REQUEUE_PENDING ;
timr - > it_overrun_last = 0 ;
2006-01-09 20:52:38 -08:00
/* switch off the timer when it_value is zero */
if ( ! new_setting - > it_value . tv_sec & & ! new_setting - > it_value . tv_nsec )
return 0 ;
2005-04-16 15:20:36 -07:00
2006-01-09 20:52:38 -08:00
/* Posix madness. Only absolute CLOCK_REALTIME timers
* are affected by clock sets . So we must reiniatilize
* the timer .
2005-04-16 15:20:36 -07:00
*/
2006-01-09 20:52:38 -08:00
if ( timr - > it_clock = = CLOCK_REALTIME & & ( flags & TIMER_ABSTIME ) )
hrtimer_rebase ( timer , CLOCK_REALTIME ) ;
else
hrtimer_rebase ( timer , CLOCK_MONOTONIC ) ;
timer - > expires = timespec_to_ktime ( new_setting - > it_value ) ;
/* Convert interval */
timr - > it . real . interval = timespec_to_ktime ( new_setting - > it_interval ) ;
/* SIGEV_NONE timers are not queued ! See common_timer_get */
if ( ( ( timr - > it_sigev_notify & ~ SIGEV_THREAD_ID ) = = SIGEV_NONE ) )
return 0 ;
hrtimer_start ( timer , timer - > expires , ( flags & TIMER_ABSTIME ) ?
HRTIMER_ABS : HRTIMER_REL ) ;
2005-04-16 15:20:36 -07:00
return 0 ;
}
/* Set a POSIX.1b interval timer */
asmlinkage long
sys_timer_settime ( timer_t timer_id , int flags ,
const struct itimerspec __user * new_setting ,
struct itimerspec __user * old_setting )
{
struct k_itimer * timr ;
struct itimerspec new_spec , old_spec ;
int error = 0 ;
long flag ;
struct itimerspec * rtn = old_setting ? & old_spec : NULL ;
if ( ! new_setting )
return - EINVAL ;
if ( copy_from_user ( & new_spec , new_setting , sizeof ( new_spec ) ) )
return - EFAULT ;
2006-01-09 20:52:38 -08:00
if ( ! timespec_valid ( & new_spec . it_interval ) | |
! timespec_valid ( & new_spec . it_value ) )
2005-04-16 15:20:36 -07:00
return - EINVAL ;
retry :
timr = lock_timer ( timer_id , & flag ) ;
if ( ! timr )
return - EINVAL ;
error = CLOCK_DISPATCH ( timr - > it_clock , timer_set ,
( timr , flags , & new_spec , rtn ) ) ;
unlock_timer ( timr , flag ) ;
if ( error = = TIMER_RETRY ) {
rtn = NULL ; // We already got the old time...
goto retry ;
}
2006-01-09 20:52:38 -08:00
if ( old_setting & & ! error & &
copy_to_user ( old_setting , & old_spec , sizeof ( old_spec ) ) )
2005-04-16 15:20:36 -07:00
error = - EFAULT ;
return error ;
}
static inline int common_timer_del ( struct k_itimer * timer )
{
2006-01-09 20:52:38 -08:00
timer - > it . real . interval . tv64 = 0 ;
2005-06-23 00:09:00 -07:00
2006-01-09 20:52:38 -08:00
if ( hrtimer_try_to_cancel ( & timer - > it . real . timer ) < 0 )
2005-04-16 15:20:36 -07:00
return TIMER_RETRY ;
return 0 ;
}
static inline int timer_delete_hook ( struct k_itimer * timer )
{
return CLOCK_DISPATCH ( timer - > it_clock , timer_del , ( timer ) ) ;
}
/* Delete a POSIX.1b interval timer. */
asmlinkage long
sys_timer_delete ( timer_t timer_id )
{
struct k_itimer * timer ;
long flags ;
retry_delete :
timer = lock_timer ( timer_id , & flags ) ;
if ( ! timer )
return - EINVAL ;
2006-01-09 20:52:38 -08:00
if ( timer_delete_hook ( timer ) = = TIMER_RETRY ) {
2005-04-16 15:20:36 -07:00
unlock_timer ( timer , flags ) ;
goto retry_delete ;
}
2006-01-09 20:52:38 -08:00
2005-04-16 15:20:36 -07:00
spin_lock ( & current - > sighand - > siglock ) ;
list_del ( & timer - > list ) ;
spin_unlock ( & current - > sighand - > siglock ) ;
/*
* This keeps any tasks waiting on the spin lock from thinking
* they got something ( see the lock code above ) .
*/
if ( timer - > it_process ) {
if ( timer - > it_sigev_notify = = ( SIGEV_SIGNAL | SIGEV_THREAD_ID ) )
put_task_struct ( timer - > it_process ) ;
timer - > it_process = NULL ;
}
unlock_timer ( timer , flags ) ;
release_posix_timer ( timer , IT_ID_SET ) ;
return 0 ;
}
2006-01-09 20:52:38 -08:00
2005-04-16 15:20:36 -07:00
/*
* return timer owned by the process , used by exit_itimers
*/
static inline void itimer_delete ( struct k_itimer * timer )
{
unsigned long flags ;
retry_delete :
spin_lock_irqsave ( & timer - > it_lock , flags ) ;
2006-01-09 20:52:38 -08:00
if ( timer_delete_hook ( timer ) = = TIMER_RETRY ) {
2005-04-16 15:20:36 -07:00
unlock_timer ( timer , flags ) ;
goto retry_delete ;
}
list_del ( & timer - > list ) ;
/*
* This keeps any tasks waiting on the spin lock from thinking
* they got something ( see the lock code above ) .
*/
if ( timer - > it_process ) {
if ( timer - > it_sigev_notify = = ( SIGEV_SIGNAL | SIGEV_THREAD_ID ) )
put_task_struct ( timer - > it_process ) ;
timer - > it_process = NULL ;
}
unlock_timer ( timer , flags ) ;
release_posix_timer ( timer , IT_ID_SET ) ;
}
/*
2005-10-21 15:03:29 -07:00
* This is called by do_exit or de_thread , only when there are no more
2005-04-16 15:20:36 -07:00
* references to the shared signal_struct .
*/
void exit_itimers ( struct signal_struct * sig )
{
struct k_itimer * tmr ;
while ( ! list_empty ( & sig - > posix_timers ) ) {
tmr = list_entry ( sig - > posix_timers . next , struct k_itimer , list ) ;
itimer_delete ( tmr ) ;
}
}
2006-01-09 20:52:38 -08:00
/* Not available / possible... functions */
2006-01-09 20:52:27 -08:00
int do_posix_clock_nosettime ( const clockid_t clockid , struct timespec * tp )
2005-04-16 15:20:36 -07:00
{
return - EINVAL ;
}
EXPORT_SYMBOL_GPL ( do_posix_clock_nosettime ) ;
int do_posix_clock_notimer_create ( struct k_itimer * timer )
{
return - EINVAL ;
}
EXPORT_SYMBOL_GPL ( do_posix_clock_notimer_create ) ;
2006-01-09 20:52:27 -08:00
int do_posix_clock_nonanosleep ( const clockid_t clock , int flags ,
2006-01-09 20:52:37 -08:00
struct timespec * t , struct timespec __user * r )
2005-04-16 15:20:36 -07:00
{
# ifndef ENOTSUP
return - EOPNOTSUPP ; /* aka ENOTSUP in userland for POSIX */
# else /* parisc does define it separately. */
return - ENOTSUP ;
# endif
}
EXPORT_SYMBOL_GPL ( do_posix_clock_nonanosleep ) ;
2006-01-09 20:52:27 -08:00
asmlinkage long sys_clock_settime ( const clockid_t which_clock ,
const struct timespec __user * tp )
2005-04-16 15:20:36 -07:00
{
struct timespec new_tp ;
if ( invalid_clockid ( which_clock ) )
return - EINVAL ;
if ( copy_from_user ( & new_tp , tp , sizeof ( * tp ) ) )
return - EFAULT ;
return CLOCK_DISPATCH ( which_clock , clock_set , ( which_clock , & new_tp ) ) ;
}
asmlinkage long
2006-01-09 20:52:27 -08:00
sys_clock_gettime ( const clockid_t which_clock , struct timespec __user * tp )
2005-04-16 15:20:36 -07:00
{
struct timespec kernel_tp ;
int error ;
if ( invalid_clockid ( which_clock ) )
return - EINVAL ;
error = CLOCK_DISPATCH ( which_clock , clock_get ,
( which_clock , & kernel_tp ) ) ;
if ( ! error & & copy_to_user ( tp , & kernel_tp , sizeof ( kernel_tp ) ) )
error = - EFAULT ;
return error ;
}
asmlinkage long
2006-01-09 20:52:27 -08:00
sys_clock_getres ( const clockid_t which_clock , struct timespec __user * tp )
2005-04-16 15:20:36 -07:00
{
struct timespec rtn_tp ;
int error ;
if ( invalid_clockid ( which_clock ) )
return - EINVAL ;
error = CLOCK_DISPATCH ( which_clock , clock_getres ,
( which_clock , & rtn_tp ) ) ;
if ( ! error & & tp & & copy_to_user ( tp , & rtn_tp , sizeof ( rtn_tp ) ) ) {
error = - EFAULT ;
}
return error ;
}
2006-01-09 20:52:37 -08:00
/*
* nanosleep for monotonic and realtime clocks
*/
static int common_nsleep ( const clockid_t which_clock , int flags ,
struct timespec * tsave , struct timespec __user * rmtp )
{
int mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL ;
int clockid = which_clock ;
switch ( which_clock ) {
case CLOCK_REALTIME :
/* Posix madness. Only absolute timers on clock realtime
are affected by clock set . */
2006-01-09 20:52:38 -08:00
if ( mode ! = HRTIMER_ABS )
2006-01-09 20:52:37 -08:00
clockid = CLOCK_MONOTONIC ;
case CLOCK_MONOTONIC :
break ;
default :
return - EINVAL ;
}
return hrtimer_nanosleep ( tsave , rmtp , mode , clockid ) ;
}
2005-04-16 15:20:36 -07:00
asmlinkage long
2006-01-09 20:52:27 -08:00
sys_clock_nanosleep ( const clockid_t which_clock , int flags ,
2005-04-16 15:20:36 -07:00
const struct timespec __user * rqtp ,
struct timespec __user * rmtp )
{
struct timespec t ;
if ( invalid_clockid ( which_clock ) )
return - EINVAL ;
if ( copy_from_user ( & t , rqtp , sizeof ( struct timespec ) ) )
return - EFAULT ;
2006-01-09 20:52:29 -08:00
if ( ! timespec_valid ( & t ) )
2005-04-16 15:20:36 -07:00
return - EINVAL ;
2006-01-09 20:52:37 -08:00
return CLOCK_DISPATCH ( which_clock , nsleep ,
( which_clock , flags , & t , rmtp ) ) ;
2005-04-16 15:20:36 -07:00
}