linux/net/xdp/xskmap.c

266 lines
6.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* XSKMAP used for AF_XDP sockets
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/bpf.h>
#include <linux/capability.h>
#include <net/xdp_sock.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include "xsk.h"
static struct xsk_map_node *xsk_map_node_alloc(struct xsk_map *map,
struct xdp_sock **map_entry)
{
struct xsk_map_node *node;
node = bpf_map_kzalloc(&map->map, sizeof(*node),
GFP_ATOMIC | __GFP_NOWARN);
if (!node)
return ERR_PTR(-ENOMEM);
bpf_map_inc(&map->map);
node->map = map;
node->map_entry = map_entry;
return node;
}
static void xsk_map_node_free(struct xsk_map_node *node)
{
bpf_map_put(&node->map->map);
kfree(node);
}
static void xsk_map_sock_add(struct xdp_sock *xs, struct xsk_map_node *node)
{
spin_lock_bh(&xs->map_list_lock);
list_add_tail(&node->node, &xs->map_list);
spin_unlock_bh(&xs->map_list_lock);
}
static void xsk_map_sock_delete(struct xdp_sock *xs,
struct xdp_sock **map_entry)
{
struct xsk_map_node *n, *tmp;
spin_lock_bh(&xs->map_list_lock);
list_for_each_entry_safe(n, tmp, &xs->map_list, node) {
if (map_entry == n->map_entry) {
list_del(&n->node);
xsk_map_node_free(n);
}
}
spin_unlock_bh(&xs->map_list_lock);
}
static struct bpf_map *xsk_map_alloc(union bpf_attr *attr)
{
struct xsk_map *m;
int numa_node;
u64 size;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 ||
attr->map_flags & ~(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY))
return ERR_PTR(-EINVAL);
numa_node = bpf_map_attr_numa_node(attr);
size = struct_size(m, xsk_map, attr->max_entries);
m = bpf_map_area_alloc(size, numa_node);
if (!m)
return ERR_PTR(-ENOMEM);
bpf_map_init_from_attr(&m->map, attr);
spin_lock_init(&m->lock);
return &m->map;
}
static void xsk_map_free(struct bpf_map *map)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
synchronize_net();
bpf_map_area_free(m);
}
static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = next_key;
if (index >= m->map.max_entries) {
*next = 0;
return 0;
}
if (index == m->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
bpf: Allow for map-in-map with dynamic inner array map entries Recent work in f4d05259213f ("bpf: Add map_meta_equal map ops") and 134fede4eecf ("bpf: Relax max_entries check for most of the inner map types") added support for dynamic inner max elements for most map-in-map types. Exceptions were maps like array or prog array where the map_gen_lookup() callback uses the maps' max_entries field as a constant when emitting instructions. We recently implemented Maglev consistent hashing into Cilium's load balancer which uses map-in-map with an outer map being hash and inner being array holding the Maglev backend table for each service. This has been designed this way in order to reduce overall memory consumption given the outer hash map allows to avoid preallocating a large, flat memory area for all services. Also, the number of service mappings is not always known a-priori. The use case for dynamic inner array map entries is to further reduce memory overhead, for example, some services might just have a small number of back ends while others could have a large number. Right now the Maglev backend table for small and large number of backends would need to have the same inner array map entries which adds a lot of unneeded overhead. Dynamic inner array map entries can be realized by avoiding the inlined code generation for their lookup. The lookup will still be efficient since it will be calling into array_map_lookup_elem() directly and thus avoiding retpoline. The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips inline code generation and relaxes array_map_meta_equal() check to ignore both maps' max_entries. This also still allows to have faster lookups for map-in-map when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed. Example code generation where inner map is dynamic sized array: # bpftool p d x i 125 int handle__sys_enter(void * ctx): ; int handle__sys_enter(void *ctx) 0: (b4) w1 = 0 ; int key = 0; 1: (63) *(u32 *)(r10 -4) = r1 2: (bf) r2 = r10 ; 3: (07) r2 += -4 ; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key); 4: (18) r1 = map[id:468] 6: (07) r1 += 272 7: (61) r0 = *(u32 *)(r2 +0) 8: (35) if r0 >= 0x3 goto pc+5 9: (67) r0 <<= 3 10: (0f) r0 += r1 11: (79) r0 = *(u64 *)(r0 +0) 12: (15) if r0 == 0x0 goto pc+1 13: (05) goto pc+1 14: (b7) r0 = 0 15: (b4) w6 = -1 ; if (!inner_map) 16: (15) if r0 == 0x0 goto pc+6 17: (bf) r2 = r10 ; 18: (07) r2 += -4 ; val = bpf_map_lookup_elem(inner_map, &key); 19: (bf) r1 = r0 | No inlining but instead 20: (85) call array_map_lookup_elem#149280 | call to array_map_lookup_elem() ; return val ? *val : -1; | for inner array lookup. 21: (15) if r0 == 0x0 goto pc+1 ; return val ? *val : -1; 22: (61) r6 = *(u32 *)(r0 +0) ; } 23: (bc) w0 = w6 24: (95) exit Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net
2020-10-11 01:40:03 +02:00
static int xsk_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
{
const int ret = BPF_REG_0, mp = BPF_REG_1, index = BPF_REG_2;
struct bpf_insn *insn = insn_buf;
*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(sizeof(struct xsk_sock *)));
*insn++ = BPF_ALU64_IMM(BPF_ADD, mp, offsetof(struct xsk_map, xsk_map));
*insn++ = BPF_ALU64_REG(BPF_ADD, ret, mp);
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(struct xsk_sock *), ret, ret, 0);
*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
*insn++ = BPF_MOV64_IMM(ret, 0);
return insn - insn_buf;
}
static void *__xsk_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
if (key >= map->max_entries)
return NULL;
return READ_ONCE(m->xsk_map[key]);
}
static void *xsk_map_lookup_elem(struct bpf_map *map, void *key)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return __xsk_map_lookup_elem(map, *(u32 *)key);
}
static void *xsk_map_lookup_elem_sys_only(struct bpf_map *map, void *key)
{
return ERR_PTR(-EOPNOTSUPP);
}
static int xsk_map_update_elem(struct bpf_map *map, void *key, void *value,
u64 map_flags)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
struct xdp_sock *xs, *old_xs, **map_entry;
u32 i = *(u32 *)key, fd = *(u32 *)value;
struct xsk_map_node *node;
struct socket *sock;
int err;
if (unlikely(map_flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= m->map.max_entries))
return -E2BIG;
sock = sockfd_lookup(fd, &err);
if (!sock)
return err;
if (sock->sk->sk_family != PF_XDP) {
sockfd_put(sock);
return -EOPNOTSUPP;
}
xs = (struct xdp_sock *)sock->sk;
map_entry = &m->xsk_map[i];
node = xsk_map_node_alloc(m, map_entry);
if (IS_ERR(node)) {
sockfd_put(sock);
return PTR_ERR(node);
}
spin_lock_bh(&m->lock);
old_xs = READ_ONCE(*map_entry);
if (old_xs == xs) {
err = 0;
goto out;
} else if (old_xs && map_flags == BPF_NOEXIST) {
err = -EEXIST;
goto out;
} else if (!old_xs && map_flags == BPF_EXIST) {
err = -ENOENT;
goto out;
}
xsk_map_sock_add(xs, node);
WRITE_ONCE(*map_entry, xs);
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
sockfd_put(sock);
return 0;
out:
spin_unlock_bh(&m->lock);
sockfd_put(sock);
xsk_map_node_free(node);
return err;
}
static int xsk_map_delete_elem(struct bpf_map *map, void *key)
{
struct xsk_map *m = container_of(map, struct xsk_map, map);
struct xdp_sock *old_xs, **map_entry;
int k = *(u32 *)key;
if (k >= map->max_entries)
return -EINVAL;
spin_lock_bh(&m->lock);
map_entry = &m->xsk_map[k];
old_xs = xchg(map_entry, NULL);
if (old_xs)
xsk_map_sock_delete(old_xs, map_entry);
spin_unlock_bh(&m->lock);
return 0;
}
static int xsk_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
{
return __bpf_xdp_redirect_map(map, ifindex, flags, __xsk_map_lookup_elem);
}
void xsk_map_try_sock_delete(struct xsk_map *map, struct xdp_sock *xs,
struct xdp_sock **map_entry)
{
spin_lock_bh(&map->lock);
if (READ_ONCE(*map_entry) == xs) {
WRITE_ONCE(*map_entry, NULL);
xsk_map_sock_delete(xs, map_entry);
}
spin_unlock_bh(&map->lock);
}
static bool xsk_map_meta_equal(const struct bpf_map *meta0,
const struct bpf_map *meta1)
{
return meta0->max_entries == meta1->max_entries &&
bpf_map_meta_equal(meta0, meta1);
}
static int xsk_map_btf_id;
const struct bpf_map_ops xsk_map_ops = {
.map_meta_equal = xsk_map_meta_equal,
.map_alloc = xsk_map_alloc,
.map_free = xsk_map_free,
.map_get_next_key = xsk_map_get_next_key,
.map_lookup_elem = xsk_map_lookup_elem,
.map_gen_lookup = xsk_map_gen_lookup,
.map_lookup_elem_sys_only = xsk_map_lookup_elem_sys_only,
.map_update_elem = xsk_map_update_elem,
.map_delete_elem = xsk_map_delete_elem,
.map_check_btf = map_check_no_btf,
.map_btf_name = "xsk_map",
.map_btf_id = &xsk_map_btf_id,
.map_redirect = xsk_map_redirect,
};