2005-04-17 02:20:36 +04:00
Tmpfs is a file system which keeps all files in virtual memory.
Everything in tmpfs is temporary in the sense that no files will be
created on your hard drive. If you unmount a tmpfs instance,
everything stored therein is lost.
tmpfs puts everything into the kernel internal caches and grows and
shrinks to accommodate the files it contains and is able to swap
unneeded pages out to swap space. It has maximum size limits which can
be adjusted on the fly via 'mount -o remount ...'
If you compare it to ramfs (which was the template to create tmpfs)
you gain swapping and limit checking. Another similar thing is the RAM
disk (/dev/ram*), which simulates a fixed size hard disk in physical
RAM, where you have to create an ordinary filesystem on top. Ramdisks
cannot swap and you do not have the possibility to resize them.
Since tmpfs lives completely in the page cache and on swap, all tmpfs
pages currently in memory will show up as cached. It will not show up
as shared or something like that. Further on you can check the actual
RAM+swap use of a tmpfs instance with df(1) and du(1).
tmpfs has the following uses:
1) There is always a kernel internal mount which you will not see at
all. This is used for shared anonymous mappings and SYSV shared
memory.
This mount does not depend on CONFIG_TMPFS. If CONFIG_TMPFS is not
set, the user visible part of tmpfs is not build. But the internal
mechanisms are always present.
2) glibc 2.2 and above expects tmpfs to be mounted at /dev/shm for
POSIX shared memory (shm_open, shm_unlink). Adding the following
line to /etc/fstab should take care of this:
tmpfs /dev/shm tmpfs defaults 0 0
Remember to create the directory that you intend to mount tmpfs on
2006-10-04 00:17:48 +04:00
if necessary.
2005-04-17 02:20:36 +04:00
This mount is _not_ needed for SYSV shared memory. The internal
mount is used for that. (In the 2.3 kernel versions it was
necessary to mount the predecessor of tmpfs (shm fs) to use SYSV
shared memory)
3) Some people (including me) find it very convenient to mount it
e.g. on /tmp and /var/tmp and have a big swap partition. And now
loop mounts of tmpfs files do work, so mkinitrd shipped by most
distributions should succeed with a tmpfs /tmp.
4) And probably a lot more I do not know about :-)
tmpfs has three mount options for sizing:
size: The limit of allocated bytes for this tmpfs instance. The
default is half of your physical RAM without swap. If you
oversize your tmpfs instances the machine will deadlock
since the OOM handler will not be able to free that memory.
nr_blocks: The same as size, but in blocks of PAGE_CACHE_SIZE.
nr_inodes: The maximum number of inodes for this instance. The default
is half of the number of your physical RAM pages, or (on a
2006-10-04 00:57:56 +04:00
machine with highmem) the number of lowmem RAM pages,
2005-04-17 02:20:36 +04:00
whichever is the lower.
These parameters accept a suffix k, m or g for kilo, mega and giga and
can be changed on remount. The size parameter also accepts a suffix %
to limit this tmpfs instance to that percentage of your physical RAM:
the default, when neither size nor nr_blocks is specified, is size=50%
2005-06-22 04:15:04 +04:00
If nr_blocks=0 (or size=0), blocks will not be limited in that instance;
if nr_inodes=0, inodes will not be limited. It is generally unwise to
2005-04-17 02:20:36 +04:00
mount with such options, since it allows any user with write access to
use up all the memory on the machine; but enhances the scalability of
that instance in a system with many cpus making intensive use of it.
2006-01-15 00:20:48 +03:00
tmpfs has a mount option to set the NUMA memory allocation policy for
2006-02-22 02:49:47 +03:00
all files in that instance (if CONFIG_NUMA is enabled) - which can be
adjusted on the fly via 'mount -o remount ...'
2006-01-15 00:20:48 +03:00
2006-02-22 02:49:47 +03:00
mpol=default prefers to allocate memory from the local node
mpol=prefer:Node prefers to allocate memory from the given Node
mpol=bind:NodeList allocates memory only from nodes in NodeList
mpol=interleave prefers to allocate from each node in turn
mpol=interleave:NodeList allocates from each node of NodeList in turn
NodeList format is a comma-separated list of decimal numbers and ranges,
a range being two hyphen-separated decimal numbers, the smallest and
largest node numbers in the range. For example, mpol=bind:0-3,5,7,9-15
2006-01-15 00:20:48 +03:00
2008-04-28 13:12:31 +04:00
NUMA memory allocation policies have optional flags that can be used in
conjunction with their modes. These optional flags can be specified
when tmpfs is mounted by appending them to the mode before the NodeList.
See Documentation/vm/numa_memory_policy.txt for a list of all available
memory allocation policy mode flags.
=static is equivalent to MPOL_F_STATIC_NODES
=relative is equivalent to MPOL_F_RELATIVE_NODES
For example, mpol=bind=static:NodeList, is the equivalent of an
allocation policy of MPOL_BIND | MPOL_F_STATIC_NODES.
2006-02-25 00:04:26 +03:00
Note that trying to mount a tmpfs with an mpol option will fail if the
running kernel does not support NUMA; and will fail if its nodelist
2007-06-09 00:46:46 +04:00
specifies a node which is not online. If your system relies on that
tmpfs being mounted, but from time to time runs a kernel built without
NUMA capability (perhaps a safe recovery kernel), or with fewer nodes
online, then it is advisable to omit the mpol option from automatic
2006-02-25 00:04:26 +03:00
mount options. It can be added later, when the tmpfs is already mounted
on MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.
2006-01-15 00:20:48 +03:00
2005-04-17 02:20:36 +04:00
To specify the initial root directory you can use the following mount
options:
mode: The permissions as an octal number
uid: The user id
gid: The group id
These options do not have any effect on remount. You can change these
parameters with chmod(1), chown(1) and chgrp(1) on a mounted filesystem.
So 'mount -t tmpfs -o size=10G,nr_inodes=10k,mode=700 tmpfs /mytmpfs'
will give you tmpfs instance on /mytmpfs which can allocate 10GB
RAM/SWAP in 10240 inodes and it is only accessible by root.
Author:
Christoph Rohland <cr@sap.com>, 1.12.01
Updated:
2009-05-21 23:33:58 +04:00
Hugh Dickins, 4 June 2007