linux/fs/f2fs/dir.c

1144 lines
28 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/dir.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <asm/unaligned.h>
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/sched/signal.h>
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
#include <linux/unicode.h>
#include "f2fs.h"
#include "node.h"
#include "acl.h"
#include "xattr.h"
#include <trace/events/f2fs.h>
#if IS_ENABLED(CONFIG_UNICODE)
extern struct kmem_cache *f2fs_cf_name_slab;
#endif
static unsigned long dir_blocks(struct inode *inode)
{
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 15:29:47 +03:00
return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
>> PAGE_SHIFT;
}
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
static unsigned int dir_buckets(unsigned int level, int dir_level)
{
if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
return BIT(level + dir_level);
else
return MAX_DIR_BUCKETS;
}
static unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
2020-05-07 00:59:04 -07:00
/* If @dir is casefolded, initialize @fname->cf_name from @fname->usr_fname. */
int f2fs_init_casefolded_name(const struct inode *dir,
struct f2fs_filename *fname)
{
#if IS_ENABLED(CONFIG_UNICODE)
struct super_block *sb = dir->i_sb;
2020-05-07 00:59:04 -07:00
if (IS_CASEFOLDED(dir) &&
!is_dot_dotdot(fname->usr_fname->name, fname->usr_fname->len)) {
fname->cf_name.name = f2fs_kmem_cache_alloc(f2fs_cf_name_slab,
GFP_NOFS, false, F2FS_SB(sb));
2020-05-07 00:59:04 -07:00
if (!fname->cf_name.name)
return -ENOMEM;
fname->cf_name.len = utf8_casefold(sb->s_encoding,
2020-05-07 00:59:04 -07:00
fname->usr_fname,
fname->cf_name.name,
F2FS_NAME_LEN);
if ((int)fname->cf_name.len <= 0) {
kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
2020-05-07 00:59:04 -07:00
fname->cf_name.name = NULL;
if (sb_has_strict_encoding(sb))
2020-05-07 00:59:04 -07:00
return -EINVAL;
/* fall back to treating name as opaque byte sequence */
}
}
#endif
return 0;
}
static int __f2fs_setup_filename(const struct inode *dir,
const struct fscrypt_name *crypt_name,
struct f2fs_filename *fname)
{
int err;
memset(fname, 0, sizeof(*fname));
fname->usr_fname = crypt_name->usr_fname;
fname->disk_name = crypt_name->disk_name;
#ifdef CONFIG_FS_ENCRYPTION
fname->crypto_buf = crypt_name->crypto_buf;
#endif
if (crypt_name->is_nokey_name) {
2020-05-07 00:59:04 -07:00
/* hash was decoded from the no-key name */
fname->hash = cpu_to_le32(crypt_name->hash);
} else {
err = f2fs_init_casefolded_name(dir, fname);
if (err) {
f2fs_free_filename(fname);
return err;
}
f2fs_hash_filename(dir, fname);
}
return 0;
}
/*
* Prepare to search for @iname in @dir. This is similar to
* fscrypt_setup_filename(), but this also handles computing the casefolded name
* and the f2fs dirhash if needed, then packing all the information about this
* filename up into a 'struct f2fs_filename'.
*/
int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct f2fs_filename *fname)
{
struct fscrypt_name crypt_name;
int err;
err = fscrypt_setup_filename(dir, iname, lookup, &crypt_name);
if (err)
return err;
return __f2fs_setup_filename(dir, &crypt_name, fname);
}
/*
* Prepare to look up @dentry in @dir. This is similar to
* fscrypt_prepare_lookup(), but this also handles computing the casefolded name
* and the f2fs dirhash if needed, then packing all the information about this
* filename up into a 'struct f2fs_filename'.
*/
int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
struct f2fs_filename *fname)
{
struct fscrypt_name crypt_name;
int err;
err = fscrypt_prepare_lookup(dir, dentry, &crypt_name);
if (err)
return err;
return __f2fs_setup_filename(dir, &crypt_name, fname);
}
void f2fs_free_filename(struct f2fs_filename *fname)
{
#ifdef CONFIG_FS_ENCRYPTION
kfree(fname->crypto_buf.name);
fname->crypto_buf.name = NULL;
#endif
#if IS_ENABLED(CONFIG_UNICODE)
if (fname->cf_name.name) {
kmem_cache_free(f2fs_cf_name_slab, fname->cf_name.name);
fname->cf_name.name = NULL;
}
2020-05-07 00:59:04 -07:00
#endif
}
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
static unsigned long dir_block_index(unsigned int level,
int dir_level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
static struct f2fs_dir_entry *find_in_block(struct inode *dir,
struct page *dentry_page,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname,
int *max_slots)
{
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr d;
dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
make_dentry_ptr_block(dir, &d, dentry_blk);
return f2fs_find_target_dentry(&d, fname, max_slots);
}
#if IS_ENABLED(CONFIG_UNICODE)
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
/*
* Test whether a case-insensitive directory entry matches the filename
* being searched for.
*
* Returns 1 for a match, 0 for no match, and -errno on an error.
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
*/
static int f2fs_match_ci_name(const struct inode *dir, const struct qstr *name,
2020-05-07 00:59:04 -07:00
const u8 *de_name, u32 de_name_len)
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
{
const struct super_block *sb = dir->i_sb;
const struct unicode_map *um = sb->s_encoding;
struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
2020-05-07 00:59:04 -07:00
struct qstr entry = QSTR_INIT(de_name, de_name_len);
int res;
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
if (IS_ENCRYPTED(dir)) {
const struct fscrypt_str encrypted_name =
FSTR_INIT((u8 *)de_name, de_name_len);
if (WARN_ON_ONCE(!fscrypt_has_encryption_key(dir)))
return -EINVAL;
decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
if (!decrypted_name.name)
return -ENOMEM;
res = fscrypt_fname_disk_to_usr(dir, 0, 0, &encrypted_name,
&decrypted_name);
if (res < 0)
goto out;
entry.name = decrypted_name.name;
entry.len = decrypted_name.len;
}
2020-05-07 00:59:04 -07:00
res = utf8_strncasecmp_folded(um, name, &entry);
/*
* In strict mode, ignore invalid names. In non-strict mode,
* fall back to treating them as opaque byte sequences.
*/
if (res < 0 && !sb_has_strict_encoding(sb)) {
res = name->len == entry.len &&
memcmp(name->name, entry.name, name->len) == 0;
} else {
/* utf8_strncasecmp_folded returns 0 on match */
res = (res == 0);
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
}
out:
kfree(decrypted_name.name);
return res;
f2fs: Support case-insensitive file name lookups Modeled after commit b886ee3e778e ("ext4: Support case-insensitive file name lookups") """ This patch implements the actual support for case-insensitive file name lookups in f2fs, based on the feature bit and the encoding stored in the superblock. A filesystem that has the casefold feature set is able to configure directories with the +F (F2FS_CASEFOLD_FL) attribute, enabling lookups to succeed in that directory in a case-insensitive fashion, i.e: match a directory entry even if the name used by userspace is not a byte per byte match with the disk name, but is an equivalent case-insensitive version of the Unicode string. This operation is called a case-insensitive file name lookup. The feature is configured as an inode attribute applied to directories and inherited by its children. This attribute can only be enabled on empty directories for filesystems that support the encoding feature, thus preventing collision of file names that only differ by case. * dcache handling: For a +F directory, F2Fs only stores the first equivalent name dentry used in the dcache. This is done to prevent unintentional duplication of dentries in the dcache, while also allowing the VFS code to quickly find the right entry in the cache despite which equivalent string was used in a previous lookup, without having to resort to ->lookup(). d_hash() of casefolded directories is implemented as the hash of the casefolded string, such that we always have a well-known bucket for all the equivalencies of the same string. d_compare() uses the utf8_strncasecmp() infrastructure, which handles the comparison of equivalent, same case, names as well. For now, negative lookups are not inserted in the dcache, since they would need to be invalidated anyway, because we can't trust missing file dentries. This is bad for performance but requires some leveraging of the vfs layer to fix. We can live without that for now, and so does everyone else. * on-disk data: Despite using a specific version of the name as the internal representation within the dcache, the name stored and fetched from the disk is a byte-per-byte match with what the user requested, making this implementation 'name-preserving'. i.e. no actual information is lost when writing to storage. DX is supported by modifying the hashes used in +F directories to make them case/encoding-aware. The new disk hashes are calculated as the hash of the full casefolded string, instead of the string directly. This allows us to efficiently search for file names in the htree without requiring the user to provide an exact name. * Dealing with invalid sequences: By default, when a invalid UTF-8 sequence is identified, ext4 will treat it as an opaque byte sequence, ignoring the encoding and reverting to the old behavior for that unique file. This means that case-insensitive file name lookup will not work only for that file. An optional bit can be set in the superblock telling the filesystem code and userspace tools to enforce the encoding. When that optional bit is set, any attempt to create a file name using an invalid UTF-8 sequence will fail and return an error to userspace. * Normalization algorithm: The UTF-8 algorithms used to compare strings in f2fs is implemented in fs/unicode, and is based on a previous version developed by SGI. It implements the Canonical decomposition (NFD) algorithm described by the Unicode specification 12.1, or higher, combined with the elimination of ignorable code points (NFDi) and full case-folding (CF) as documented in fs/unicode/utf8_norm.c. NFD seems to be the best normalization method for F2FS because: - It has a lower cost than NFC/NFKC (which requires decomposing to NFD as an intermediary step) - It doesn't eliminate important semantic meaning like compatibility decompositions. Although: - This implementation is not completely linguistic accurate, because different languages have conflicting rules, which would require the specialization of the filesystem to a given locale, which brings all sorts of problems for removable media and for users who use more than one language. """ Signed-off-by: Daniel Rosenberg <drosen@google.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2019-07-23 16:05:29 -07:00
}
2020-05-07 00:59:04 -07:00
#endif /* CONFIG_UNICODE */
static inline int f2fs_match_name(const struct inode *dir,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname,
const u8 *de_name, u32 de_name_len)
{
2020-05-07 00:59:04 -07:00
struct fscrypt_name f;
#if IS_ENABLED(CONFIG_UNICODE)
2020-05-07 00:59:04 -07:00
if (fname->cf_name.name) {
struct qstr cf = FSTR_TO_QSTR(&fname->cf_name);
2020-05-07 00:59:04 -07:00
return f2fs_match_ci_name(dir, &cf, de_name, de_name_len);
}
#endif
2020-05-07 00:59:04 -07:00
f.usr_fname = fname->usr_fname;
f.disk_name = fname->disk_name;
#ifdef CONFIG_FS_ENCRYPTION
f.crypto_buf = fname->crypto_buf;
#endif
return fscrypt_match_name(&f, de_name, de_name_len);
}
2020-05-07 00:59:04 -07:00
struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
const struct f2fs_filename *fname, int *max_slots)
{
struct f2fs_dir_entry *de;
unsigned long bit_pos = 0;
int max_len = 0;
int res = 0;
if (max_slots)
*max_slots = 0;
while (bit_pos < d->max) {
if (!test_bit_le(bit_pos, d->bitmap)) {
bit_pos++;
max_len++;
continue;
}
de = &d->dentry[bit_pos];
if (unlikely(!de->name_len)) {
bit_pos++;
continue;
}
if (de->hash_code == fname->hash) {
res = f2fs_match_name(d->inode, fname,
d->filename[bit_pos],
le16_to_cpu(de->name_len));
if (res < 0)
return ERR_PTR(res);
if (res)
goto found;
}
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
max_len = 0;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
}
de = NULL;
found:
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
return de;
}
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
unsigned int level,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname,
struct page **res_page)
{
2020-05-07 00:59:04 -07:00
int s = GET_DENTRY_SLOTS(fname->disk_name.len);
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
struct page *dentry_page;
struct f2fs_dir_entry *de = NULL;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
pgoff_t next_pgofs;
bool room = false;
int max_slots;
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
2020-05-07 00:59:04 -07:00
le32_to_cpu(fname->hash) % nbucket);
end_block = bidx + nblock;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
while (bidx < end_block) {
/* no need to allocate new dentry pages to all the indices */
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT) {
room = true;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
bidx = next_pgofs;
continue;
} else {
*res_page = dentry_page;
break;
}
}
de = find_in_block(dir, dentry_page, fname, &max_slots);
if (IS_ERR(de)) {
*res_page = ERR_CAST(de);
de = NULL;
break;
} else if (de) {
*res_page = dentry_page;
break;
}
if (max_slots >= s)
room = true;
f2fs_put_page(dentry_page, 0);
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
bidx++;
}
2020-05-07 00:59:04 -07:00
if (!de && room && F2FS_I(dir)->chash != fname->hash) {
F2FS_I(dir)->chash = fname->hash;
F2FS_I(dir)->clevel = level;
}
return de;
}
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname,
struct page **res_page)
{
unsigned long npages = dir_blocks(dir);
struct f2fs_dir_entry *de = NULL;
unsigned int max_depth;
unsigned int level;
*res_page = NULL;
if (f2fs_has_inline_dentry(dir)) {
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
de = f2fs_find_in_inline_dir(dir, fname, res_page);
goto out;
}
if (npages == 0)
goto out;
max_depth = F2FS_I(dir)->i_current_depth;
if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u",
dir->i_ino, max_depth);
max_depth = MAX_DIR_HASH_DEPTH;
f2fs_i_depth_write(dir, max_depth);
}
for (level = 0; level < max_depth; level++) {
de = find_in_level(dir, level, fname, res_page);
if (de || IS_ERR(*res_page))
break;
}
out:
/* This is to increase the speed of f2fs_create */
if (!de)
F2FS_I(dir)->task = current;
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
const struct qstr *child, struct page **res_page)
{
struct f2fs_dir_entry *de = NULL;
2020-05-07 00:59:04 -07:00
struct f2fs_filename fname;
int err;
2020-05-07 00:59:04 -07:00
err = f2fs_setup_filename(dir, child, 1, &fname);
if (err) {
if (err == -ENOENT)
*res_page = NULL;
else
*res_page = ERR_PTR(err);
return NULL;
}
de = __f2fs_find_entry(dir, &fname, res_page);
2020-05-07 00:59:04 -07:00
f2fs_free_filename(&fname);
return de;
}
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
{
return f2fs_find_entry(dir, &dotdot_name, p);
}
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
struct page **page)
{
ino_t res = 0;
struct f2fs_dir_entry *de;
de = f2fs_find_entry(dir, qstr, page);
if (de) {
res = le32_to_cpu(de->ino);
f2fs_put_page(*page, 0);
}
return res;
}
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode)
{
enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
lock_page(page);
f2fs_wait_on_page_writeback(page, type, true, true);
de->ino = cpu_to_le32(inode->i_ino);
de->file_type = fs_umode_to_ftype(inode->i_mode);
set_page_dirty(page);
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
f2fs_put_page(page, 1);
}
static void init_dent_inode(struct inode *dir, struct inode *inode,
const struct f2fs_filename *fname,
2020-05-07 00:59:04 -07:00
struct page *ipage)
{
struct f2fs_inode *ri;
if (!fname) /* tmpfile case? */
return;
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
/* copy name info. to this inode page */
ri = F2FS_INODE(ipage);
2020-05-07 00:59:04 -07:00
ri->i_namelen = cpu_to_le32(fname->disk_name.len);
memcpy(ri->i_name, fname->disk_name.name, fname->disk_name.len);
if (IS_ENCRYPTED(dir)) {
file_set_enc_name(inode);
/*
* Roll-forward recovery doesn't have encryption keys available,
* so it can't compute the dirhash for encrypted+casefolded
* filenames. Append it to i_name if possible. Else, disable
* roll-forward recovery of the dentry (i.e., make fsync'ing the
* file force a checkpoint) by setting LOST_PINO.
*/
if (IS_CASEFOLDED(dir)) {
if (fname->disk_name.len + sizeof(f2fs_hash_t) <=
F2FS_NAME_LEN)
put_unaligned(fname->hash, (f2fs_hash_t *)
&ri->i_name[fname->disk_name.len]);
else
file_lost_pino(inode);
}
}
set_page_dirty(ipage);
}
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
struct f2fs_dentry_ptr *d)
{
2020-05-07 00:59:04 -07:00
struct fscrypt_str dot = FSTR_INIT(".", 1);
struct fscrypt_str dotdot = FSTR_INIT("..", 2);
/* update dirent of "." */
f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
/* update dirent of ".." */
f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
}
static int make_empty_dir(struct inode *inode,
struct inode *parent, struct page *page)
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
{
struct page *dentry_page;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr d;
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
if (f2fs_has_inline_dentry(inode))
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
return f2fs_make_empty_inline_dir(inode, parent, page);
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
make_dentry_ptr_block(NULL, &d, dentry_blk);
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_do_make_empty_dir(inode, parent, &d);
f2fs: introduce a new global lock scheme In the previous version, f2fs uses global locks according to the usage types, such as directory operations, block allocation, block write, and so on. Reference the following lock types in f2fs.h. enum lock_type { RENAME, /* for renaming operations */ DENTRY_OPS, /* for directory operations */ DATA_WRITE, /* for data write */ DATA_NEW, /* for data allocation */ DATA_TRUNC, /* for data truncate */ NODE_NEW, /* for node allocation */ NODE_TRUNC, /* for node truncate */ NODE_WRITE, /* for node write */ NR_LOCK_TYPE, }; In that case, we lose the performance under the multi-threading environment, since every types of operations must be conducted one at a time. In order to address the problem, let's share the locks globally with a mutex array regardless of any types. So, let users grab a mutex and perform their jobs in parallel as much as possbile. For this, I propose a new global lock scheme as follows. 0. Data structure - f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS] - f2fs_sb_info -> node_write 1. mutex_lock_op(sbi) - try to get an avaiable lock from the array. - returns the index of the gottern lock variable. 2. mutex_unlock_op(sbi, index of the lock) - unlock the given index of the lock. 3. mutex_lock_all(sbi) - grab all the locks in the array before the checkpoint. 4. mutex_unlock_all(sbi) - release all the locks in the array after checkpoint. 5. block_operations() - call mutex_lock_all() - sync_dirty_dir_inodes() - grab node_write - sync_node_pages() Note that, the pairs of mutex_lock_op()/mutex_unlock_op() and mutex_lock_all()/mutex_unlock_all() should be used together. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
set_page_dirty(dentry_page);
f2fs_put_page(dentry_page, 1);
return 0;
}
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname, struct page *dpage)
{
struct page *page;
int err;
if (is_inode_flag_set(inode, FI_NEW_INODE)) {
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
page = f2fs_new_inode_page(inode);
if (IS_ERR(page))
return page;
if (S_ISDIR(inode->i_mode)) {
/* in order to handle error case */
get_page(page);
err = make_empty_dir(inode, dir, page);
if (err) {
lock_page(page);
goto put_error;
}
put_page(page);
}
f2fs: avoid deadlock on init_inode_metadata Previously, init_inode_metadata does not hold any parent directory's inode page. So, f2fs_init_acl can grab its parent inode page without any problem. But, when we use inline_dentry, that page is grabbed during f2fs_add_link, so that we can fall into deadlock condition like below. INFO: task mknod:11006 blocked for more than 120 seconds. Tainted: G OE 3.17.0-rc1+ #13 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. mknod D ffff88003fc94580 0 11006 11004 0x00000000 ffff880007717b10 0000000000000002 ffff88003c323220 ffff880007717fd8 0000000000014580 0000000000014580 ffff88003daecb30 ffff88003c323220 ffff88003fc94e80 ffff88003ffbb4e8 ffff880007717ba0 0000000000000002 Call Trace: [<ffffffff8173dc40>] ? bit_wait+0x50/0x50 [<ffffffff8173d4cd>] io_schedule+0x9d/0x130 [<ffffffff8173dc6c>] bit_wait_io+0x2c/0x50 [<ffffffff8173da3b>] __wait_on_bit_lock+0x4b/0xb0 [<ffffffff811640a7>] __lock_page+0x67/0x70 [<ffffffff810acf50>] ? autoremove_wake_function+0x40/0x40 [<ffffffff811652cc>] pagecache_get_page+0x14c/0x1e0 [<ffffffffa029afa9>] get_node_page+0x59/0x130 [f2fs] [<ffffffffa02a63ad>] read_all_xattrs+0x24d/0x430 [f2fs] [<ffffffffa02a6ca2>] f2fs_getxattr+0x52/0xe0 [f2fs] [<ffffffffa02a7481>] f2fs_get_acl+0x41/0x2d0 [f2fs] [<ffffffff8122d847>] get_acl+0x47/0x70 [<ffffffff8122db5a>] posix_acl_create+0x5a/0x150 [<ffffffffa02a7759>] f2fs_init_acl+0x29/0xcb [f2fs] [<ffffffffa0286a8d>] init_inode_metadata+0x5d/0x340 [f2fs] [<ffffffffa029253a>] f2fs_add_inline_entry+0x12a/0x2e0 [f2fs] [<ffffffffa0286ea5>] __f2fs_add_link+0x45/0x4a0 [f2fs] [<ffffffffa028b5b6>] ? f2fs_new_inode+0x146/0x220 [f2fs] [<ffffffffa028b816>] f2fs_mknod+0x86/0xf0 [f2fs] [<ffffffff811e3ec1>] vfs_mknod+0xe1/0x160 [<ffffffff811e4b26>] SyS_mknod+0x1f6/0x200 [<ffffffff81741d7f>] tracesys+0xe1/0xe6 Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2014-10-13 19:42:53 -07:00
err = f2fs_init_acl(inode, dir, page, dpage);
if (err)
goto put_error;
2020-05-07 00:59:04 -07:00
err = f2fs_init_security(inode, dir,
fname ? fname->usr_fname : NULL, page);
if (err)
goto put_error;
if (IS_ENCRYPTED(inode)) {
f2fs: use fscrypt_prepare_new_inode() and fscrypt_set_context() Convert f2fs to use the new functions fscrypt_prepare_new_inode() and fscrypt_set_context(). This avoids calling fscrypt_get_encryption_info() from under f2fs_lock_op(), which can deadlock because fscrypt_get_encryption_info() isn't GFP_NOFS-safe. For more details about this problem, see the earlier patch "fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context()". This also fixes a f2fs-specific deadlock when the filesystem is mounted with '-o test_dummy_encryption' and a file is created in an unencrypted directory other than the root directory: INFO: task touch:207 blocked for more than 30 seconds. Not tainted 5.9.0-rc4-00099-g729e3d0919844 #2 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:touch state:D stack: 0 pid: 207 ppid: 167 flags:0x00000000 Call Trace: [...] lock_page include/linux/pagemap.h:548 [inline] pagecache_get_page+0x25e/0x310 mm/filemap.c:1682 find_or_create_page include/linux/pagemap.h:348 [inline] grab_cache_page include/linux/pagemap.h:424 [inline] f2fs_grab_cache_page fs/f2fs/f2fs.h:2395 [inline] f2fs_grab_cache_page fs/f2fs/f2fs.h:2373 [inline] __get_node_page.part.0+0x39/0x2d0 fs/f2fs/node.c:1350 __get_node_page fs/f2fs/node.c:35 [inline] f2fs_get_node_page+0x2e/0x60 fs/f2fs/node.c:1399 read_inline_xattr+0x88/0x140 fs/f2fs/xattr.c:288 lookup_all_xattrs+0x1f9/0x2c0 fs/f2fs/xattr.c:344 f2fs_getxattr+0x9b/0x160 fs/f2fs/xattr.c:532 f2fs_get_context+0x1e/0x20 fs/f2fs/super.c:2460 fscrypt_get_encryption_info+0x9b/0x450 fs/crypto/keysetup.c:472 fscrypt_inherit_context+0x2f/0xb0 fs/crypto/policy.c:640 f2fs_init_inode_metadata+0xab/0x340 fs/f2fs/dir.c:540 f2fs_add_inline_entry+0x145/0x390 fs/f2fs/inline.c:621 f2fs_add_dentry+0x31/0x80 fs/f2fs/dir.c:757 f2fs_do_add_link+0xcd/0x130 fs/f2fs/dir.c:798 f2fs_add_link fs/f2fs/f2fs.h:3234 [inline] f2fs_create+0x104/0x290 fs/f2fs/namei.c:344 lookup_open.isra.0+0x2de/0x500 fs/namei.c:3103 open_last_lookups+0xa9/0x340 fs/namei.c:3177 path_openat+0x8f/0x1b0 fs/namei.c:3365 do_filp_open+0x87/0x130 fs/namei.c:3395 do_sys_openat2+0x96/0x150 fs/open.c:1168 [...] That happened because f2fs_add_inline_entry() locks the directory inode's page in order to add the dentry, then f2fs_get_context() tries to lock it recursively in order to read the encryption xattr. This problem is specific to "test_dummy_encryption" because normally the directory's fscrypt_info would be set up prior to f2fs_add_inline_entry() in order to encrypt the new filename. Regardless, the new design fixes this test_dummy_encryption deadlock as well as potential deadlocks with fs reclaim, by setting up any needed fscrypt_info structs prior to taking so many locks. The test_dummy_encryption deadlock was reported by Daniel Rosenberg. Reported-by: Daniel Rosenberg <drosen@google.com> Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-5-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-16 21:11:27 -07:00
err = fscrypt_set_context(inode, page);
if (err)
goto put_error;
}
} else {
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
if (IS_ERR(page))
return page;
}
init_dent_inode(dir, inode, fname, page);
/*
* This file should be checkpointed during fsync.
* We lost i_pino from now on.
*/
if (is_inode_flag_set(inode, FI_INC_LINK)) {
if (!S_ISDIR(inode->i_mode))
file_lost_pino(inode);
/*
* If link the tmpfile to alias through linkat path,
* we should remove this inode from orphan list.
*/
if (inode->i_nlink == 0)
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
f2fs_i_links_write(inode, true);
}
return page;
put_error:
clear_nlink(inode);
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth)
{
if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, true);
clear_inode_flag(inode, FI_NEW_INODE);
}
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (F2FS_I(dir)->i_current_depth != current_depth)
f2fs_i_depth_write(dir, current_depth);
if (inode && is_inode_flag_set(inode, FI_INC_LINK))
clear_inode_flag(inode, FI_INC_LINK);
}
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
{
int bit_start = 0;
int zero_start, zero_end;
next:
zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
if (zero_start >= max_slots)
return max_slots;
zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= max_slots)
return max_slots;
goto next;
}
bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
2020-05-07 00:59:04 -07:00
const struct f2fs_filename *fname)
{
struct f2fs_dentry_ptr d;
unsigned int bit_pos;
2020-05-07 00:59:04 -07:00
int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage));
bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
return bit_pos < d.max;
}
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2020-05-07 00:59:04 -07:00
const struct fscrypt_str *name, f2fs_hash_t name_hash,
unsigned int bit_pos)
{
struct f2fs_dir_entry *de;
int slots = GET_DENTRY_SLOTS(name->len);
int i;
de = &d->dentry[bit_pos];
de->hash_code = name_hash;
de->name_len = cpu_to_le16(name->len);
memcpy(d->filename[bit_pos], name->name, name->len);
de->ino = cpu_to_le32(ino);
de->file_type = fs_umode_to_ftype(mode);
for (i = 0; i < slots; i++) {
__set_bit_le(bit_pos + i, (void *)d->bitmap);
/* avoid wrong garbage data for readdir */
if (i)
(de + i)->name_len = 0;
}
}
2020-05-07 00:59:04 -07:00
int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode)
{
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
unsigned long bidx, block;
unsigned int nbucket, nblock;
struct page *dentry_page = NULL;
struct f2fs_dentry_block *dentry_blk = NULL;
struct f2fs_dentry_ptr d;
struct page *page = NULL;
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
int slots, err = 0;
level = 0;
2020-05-07 00:59:04 -07:00
slots = GET_DENTRY_SLOTS(fname->disk_name.len);
current_depth = F2FS_I(dir)->i_current_depth;
2020-05-07 00:59:04 -07:00
if (F2FS_I(dir)->chash == fname->hash) {
level = F2FS_I(dir)->clevel;
F2FS_I(dir)->chash = 0;
}
start:
if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH))
return -ENOSPC;
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
return -ENOSPC;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
f2fs: introduce large directory support This patch introduces an i_dir_level field to support large directory. Previously, f2fs maintains multi-level hash tables to find a dentry quickly from a bunch of chiild dentries in a directory, and the hash tables consist of the following tree structure as below. In Documentation/filesystems/f2fs.txt, ---------------------- A : bucket B : block N : MAX_DIR_HASH_DEPTH ---------------------- level #0 | A(2B) | level #1 | A(2B) - A(2B) | level #2 | A(2B) - A(2B) - A(2B) - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) But, if we can guess that a directory will handle a number of child files, we don't need to traverse the tree from level #0 to #N all the time. Since the lower level tables contain relatively small number of dentries, the miss ratio of the target dentry is likely to be high. In order to avoid that, we can configure the hash tables sparsely from level #0 like this. level #0 | A(2B) - A(2B) - A(2B) - A(2B) level #1 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B) . | . . . . level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B) With this structure, we can skip the ineffective tree searches in lower level hash tables. This patch adds just a facility for this by introducing i_dir_level in f2fs_inode. Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2014-02-27 18:20:00 +09:00
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
2020-05-07 00:59:04 -07:00
(le32_to_cpu(fname->hash) % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
slots, NR_DENTRY_IN_BLOCK);
if (bit_pos < NR_DENTRY_IN_BLOCK)
goto add_dentry;
f2fs_put_page(dentry_page, 1);
}
/* Move to next level to find the empty slot for new dentry */
++level;
goto start;
add_dentry:
f2fs_wait_on_page_writeback(dentry_page, DATA, true, true);
if (inode) {
f2fs_down_write(&F2FS_I(inode)->i_sem);
2020-05-07 00:59:04 -07:00
page = f2fs_init_inode_metadata(inode, dir, fname, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
}
make_dentry_ptr_block(NULL, &d, dentry_blk);
2020-05-07 00:59:04 -07:00
f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
bit_pos);
set_page_dirty(dentry_page);
if (inode) {
f2fs_i_pino_write(inode, dir->i_ino);
/* synchronize inode page's data from inode cache */
if (is_inode_flag_set(inode, FI_NEW_INODE))
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
}
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_update_parent_metadata(dir, inode, current_depth);
fail:
if (inode)
f2fs_up_write(&F2FS_I(inode)->i_sem);
f2fs_put_page(dentry_page, 1);
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
return err;
}
2020-05-07 00:59:04 -07:00
int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode)
{
int err = -EAGAIN;
if (f2fs_has_inline_dentry(dir)) {
/*
* Should get i_xattr_sem to keep the lock order:
* i_xattr_sem -> inode_page lock used by f2fs_setxattr.
*/
f2fs_down_read(&F2FS_I(dir)->i_xattr_sem);
2020-05-07 00:59:04 -07:00
err = f2fs_add_inline_entry(dir, fname, inode, ino, mode);
f2fs_up_read(&F2FS_I(dir)->i_xattr_sem);
}
if (err == -EAGAIN)
2020-05-07 00:59:04 -07:00
err = f2fs_add_regular_entry(dir, fname, inode, ino, mode);
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
return err;
}
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
/*
* Caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
*/
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
struct inode *inode, nid_t ino, umode_t mode)
{
2020-05-07 00:59:04 -07:00
struct f2fs_filename fname;
struct page *page = NULL;
struct f2fs_dir_entry *de = NULL;
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
int err;
2020-05-07 00:59:04 -07:00
err = f2fs_setup_filename(dir, name, 0, &fname);
f2fs: fix to convert inline directory correctly With below serials, we will lose parts of dirents: 1) mount f2fs with inline_dentry option 2) echo 1 > /sys/fs/f2fs/sdX/dir_level 3) mkdir dir 4) touch 180 files named [1-180] in dir 5) touch 181 in dir 6) echo 3 > /proc/sys/vm/drop_caches 7) ll dir ls: cannot access 2: No such file or directory ls: cannot access 4: No such file or directory ls: cannot access 5: No such file or directory ls: cannot access 6: No such file or directory ls: cannot access 8: No such file or directory ls: cannot access 9: No such file or directory ... total 360 drwxr-xr-x 2 root root 4096 Feb 19 15:12 ./ drwxr-xr-x 3 root root 4096 Feb 19 15:11 ../ -rw-r--r-- 1 root root 0 Feb 19 15:12 1 -rw-r--r-- 1 root root 0 Feb 19 15:12 10 -rw-r--r-- 1 root root 0 Feb 19 15:12 100 -????????? ? ? ? ? ? 101 -????????? ? ? ? ? ? 102 -????????? ? ? ? ? ? 103 ... The reason is: when doing the inline dir conversion, we didn't consider that directory has hierarchical hash structure which can be configured through sysfs interface 'dir_level'. By default, dir_level of directory inode is 0, it means we have one bucket in hash table located in first level, all dirents will be hashed in this bucket, so it has no problem for us to do the duplication simply between inline dentry page and converted normal dentry page. However, if we configured dir_level with the value N (greater than 0), it will expand the bucket number of first level hash table by 2^N - 1, it hashs dirents into different buckets according their hash value, if we still move all dirents to first bucket, it makes incorrent locating for inline dirents, the result is, although we can iterate all dirents through ->readdir, we can't stat some of them in ->lookup which based on hash table searching. This patch fixes this issue by rehashing dirents into correct position when converting inline directory. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2016-02-22 18:29:18 +08:00
if (err)
return err;
/*
* An immature stackable filesystem shows a race condition between lookup
* and create. If we have same task when doing lookup and create, it's
* definitely fine as expected by VFS normally. Otherwise, let's just
* verify on-disk dentry one more time, which guarantees filesystem
* consistency more.
*/
if (current != F2FS_I(dir)->task) {
de = __f2fs_find_entry(dir, &fname, &page);
F2FS_I(dir)->task = NULL;
}
if (de) {
f2fs_put_page(page, 0);
err = -EEXIST;
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
} else {
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
}
2020-05-07 00:59:04 -07:00
f2fs_free_filename(&fname);
return err;
}
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
{
struct page *page;
int err = 0;
f2fs_down_write(&F2FS_I(inode)->i_sem);
2020-05-07 00:59:04 -07:00
page = f2fs_init_inode_metadata(inode, dir, NULL, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
f2fs_put_page(page, 1);
clear_inode_flag(inode, FI_NEW_INODE);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
fail:
f2fs_up_write(&F2FS_I(inode)->i_sem);
return err;
}
void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
f2fs_down_write(&F2FS_I(inode)->i_sem);
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, false);
inode->i_ctime = current_time(inode);
f2fs_i_links_write(inode, false);
if (S_ISDIR(inode->i_mode)) {
f2fs_i_links_write(inode, false);
f2fs_i_size_write(inode, 0);
}
f2fs_up_write(&F2FS_I(inode)->i_sem);
if (inode->i_nlink == 0)
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_add_orphan_inode(inode);
else
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_release_orphan_inode(sbi);
}
/*
* It only removes the dentry from the dentry page, corresponding name
* entry in name page does not need to be touched during deletion.
*/
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_dentry_block *dentry_blk;
unsigned int bit_pos;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
int i;
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
if (f2fs_has_inline_dentry(dir))
return f2fs_delete_inline_entry(dentry, page, dir, inode);
lock_page(page);
f2fs_wait_on_page_writeback(page, DATA, true, true);
dentry_blk = page_address(page);
bit_pos = dentry - dentry_blk->dentry;
for (i = 0; i < slots; i++)
__clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
0);
set_page_dirty(page);
if (bit_pos == NR_DENTRY_IN_BLOCK &&
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
!f2fs_truncate_hole(dir, page->index, page->index + 1)) {
f2fs_clear_page_cache_dirty_tag(page);
clear_page_dirty_for_io(page);
ClearPageUptodate(page);
clear_page_private_all(page);
f2fs: restructure f2fs page.private layout Restruct f2fs page private layout for below reasons: There are some cases that f2fs wants to set a flag in a page to indicate a specified status of page: a) page is in transaction list for atomic write b) page contains dummy data for aligned write c) page is migrating for GC d) page contains inline data for inline inode flush e) page belongs to merkle tree, and is verified for fsverity f) page is dirty and has filesystem/inode reference count for writeback g) page is temporary and has decompress io context reference for compression There are existed places in page structure we can use to store f2fs private status/data: - page.flags: PG_checked, PG_private - page.private However it was a mess when we using them, which may cause potential confliction: page.private PG_private PG_checked page._refcount (+1 at most) a) -1 set +1 b) -2 set c), d), e) set f) 0 set +1 g) pointer set The other problem is page.flags has no free slot, if we can avoid set zero to page.private and set PG_private flag, then we use non-zero value to indicate PG_private status, so that we may have chance to reclaim PG_private slot for other usage. [1] The other concern is f2fs has bad scalability in aspect of indicating more page status. So in this patch, let's restructure f2fs' page.private as below to solve above issues: Layout A: lowest bit should be 1 | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | bit 0 PAGE_PRIVATE_NOT_POINTER bit 1 PAGE_PRIVATE_ATOMIC_WRITE bit 2 PAGE_PRIVATE_DUMMY_WRITE bit 3 PAGE_PRIVATE_ONGOING_MIGRATION bit 4 PAGE_PRIVATE_INLINE_INODE bit 5 PAGE_PRIVATE_REF_RESOURCE bit 6- f2fs private data Layout B: lowest bit should be 0 page.private is a wrapped pointer. After the change: page.private PG_private PG_checked page._refcount (+1 at most) a) 11 set +1 b) 101 set +1 c) 1001 set +1 d) 10001 set +1 e) set f) 100001 set +1 g) pointer set +1 [1] https://lore.kernel.org/linux-f2fs-devel/20210422154705.GO3596236@casper.infradead.org/T/#u Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2021-04-28 17:20:31 +08:00
inode_dec_dirty_pages(dir);
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_remove_dirty_inode(dir);
}
f2fs_put_page(page, 1);
dir->i_ctime = dir->i_mtime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (inode)
f2fs_drop_nlink(dir, inode);
}
bool f2fs_empty_dir(struct inode *dir)
{
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
unsigned long bidx = 0;
struct page *dentry_page;
unsigned int bit_pos;
struct f2fs_dentry_block *dentry_blk;
unsigned long nblock = dir_blocks(dir);
if (f2fs_has_inline_dentry(dir))
return f2fs_empty_inline_dir(dir);
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
while (bidx < nblock) {
pgoff_t next_pgofs;
dentry_page = f2fs_find_data_page(dir, bidx, &next_pgofs);
if (IS_ERR(dentry_page)) {
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
if (PTR_ERR(dentry_page) == -ENOENT) {
bidx = next_pgofs;
continue;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
} else {
return false;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
}
}
dentry_blk = page_address(dentry_page);
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_pos);
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
f2fs_put_page(dentry_page, 0);
if (bit_pos < NR_DENTRY_IN_BLOCK)
return false;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
bidx++;
}
return true;
}
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
unsigned int start_pos, struct fscrypt_str *fstr)
{
unsigned char d_type = DT_UNKNOWN;
unsigned int bit_pos;
struct f2fs_dir_entry *de = NULL;
struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
struct blk_plug plug;
bool readdir_ra = sbi->readdir_ra;
f2fs: reduce the scope of setting fsck tag when de->name_len is zero I recently found a case where de->name_len is 0 in f2fs_fill_dentries() easily reproduced, and finally set the fsck flag. Thread A Thread B - f2fs_readdir - f2fs_read_inline_dir - ctx->pos = d.max - f2fs_add_dentry - f2fs_add_inline_entry - do_convert_inline_dir - f2fs_add_regular_entry - f2fs_readdir - f2fs_fill_dentries - set_sbi_flag(sbi, SBI_NEED_FSCK) Process A opens the folder, and has been reading without closing it. During this period, Process B created a file under the folder (occupying multiple f2fs_dir_entry, exceeding the d.max of the inline dir). After creation, process A uses the d.max of inline dir to read it again, and it will read that de->name_len is 0. And Chao pointed out that w/o inline conversion, the race condition still can happen as below: dir_entry1: A dir_entry2: B dir_entry3: C free slot: _ ctx->pos: ^ Thread A is traversing directory, ctx-pos moves to below position after readdir() by thread A: AAAABBBB___ ^ Then thread B delete dir_entry2, and create dir_entry3. Thread A calls readdir() to lookup dirents starting from middle of new dirent slots as below: AAAACCCCCC_ ^ In these scenarios, the file system is not damaged, and it's hard to avoid it. But we can bypass tagging FSCK flag if: a) bit_pos (:= ctx->pos % d->max) is non-zero and b) before bit_pos moves to first valid dir_entry. Fixes: ddf06b753a85 ("f2fs: fix to trigger fsck if dirent.name_len is zero") Signed-off-by: Yangtao Li <frank.li@vivo.com> [Chao: clean up description] Reviewed-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2021-08-04 11:29:46 +08:00
bool found_valid_dirent = false;
int err = 0;
bit_pos = ((unsigned long)ctx->pos % d->max);
if (readdir_ra)
blk_start_plug(&plug);
while (bit_pos < d->max) {
bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
if (bit_pos >= d->max)
break;
de = &d->dentry[bit_pos];
if (de->name_len == 0) {
f2fs: reduce the scope of setting fsck tag when de->name_len is zero I recently found a case where de->name_len is 0 in f2fs_fill_dentries() easily reproduced, and finally set the fsck flag. Thread A Thread B - f2fs_readdir - f2fs_read_inline_dir - ctx->pos = d.max - f2fs_add_dentry - f2fs_add_inline_entry - do_convert_inline_dir - f2fs_add_regular_entry - f2fs_readdir - f2fs_fill_dentries - set_sbi_flag(sbi, SBI_NEED_FSCK) Process A opens the folder, and has been reading without closing it. During this period, Process B created a file under the folder (occupying multiple f2fs_dir_entry, exceeding the d.max of the inline dir). After creation, process A uses the d.max of inline dir to read it again, and it will read that de->name_len is 0. And Chao pointed out that w/o inline conversion, the race condition still can happen as below: dir_entry1: A dir_entry2: B dir_entry3: C free slot: _ ctx->pos: ^ Thread A is traversing directory, ctx-pos moves to below position after readdir() by thread A: AAAABBBB___ ^ Then thread B delete dir_entry2, and create dir_entry3. Thread A calls readdir() to lookup dirents starting from middle of new dirent slots as below: AAAACCCCCC_ ^ In these scenarios, the file system is not damaged, and it's hard to avoid it. But we can bypass tagging FSCK flag if: a) bit_pos (:= ctx->pos % d->max) is non-zero and b) before bit_pos moves to first valid dir_entry. Fixes: ddf06b753a85 ("f2fs: fix to trigger fsck if dirent.name_len is zero") Signed-off-by: Yangtao Li <frank.li@vivo.com> [Chao: clean up description] Reviewed-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2021-08-04 11:29:46 +08:00
if (found_valid_dirent || !bit_pos) {
printk_ratelimited(
"%sF2FS-fs (%s): invalid namelen(0), ino:%u, run fsck to fix.",
KERN_WARNING, sbi->sb->s_id,
le32_to_cpu(de->ino));
set_sbi_flag(sbi, SBI_NEED_FSCK);
}
bit_pos++;
ctx->pos = start_pos + bit_pos;
continue;
}
d_type = fs_ftype_to_dtype(de->file_type);
de_name.name = d->filename[bit_pos];
de_name.len = le16_to_cpu(de->name_len);
/* check memory boundary before moving forward */
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
if (unlikely(bit_pos > d->max ||
le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.",
__func__, le16_to_cpu(de->name_len));
set_sbi_flag(sbi, SBI_NEED_FSCK);
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_CORRUPTED_DIRENT);
goto out;
}
if (IS_ENCRYPTED(d->inode)) {
int save_len = fstr->len;
err = fscrypt_fname_disk_to_usr(d->inode,
(u32)le32_to_cpu(de->hash_code),
0, &de_name, fstr);
if (err)
goto out;
de_name = *fstr;
fstr->len = save_len;
}
if (!dir_emit(ctx, de_name.name, de_name.len,
le32_to_cpu(de->ino), d_type)) {
err = 1;
goto out;
}
if (readdir_ra)
f2fs: clean up symbol namespace As Ted reported: "Hi, I was looking at f2fs's sources recently, and I noticed that there is a very large number of non-static symbols which don't have a f2fs prefix. There's well over a hundred (see attached below). As one example, in fs/f2fs/dir.c there is: unsigned char get_de_type(struct f2fs_dir_entry *de) This function is clearly only useful for f2fs, but it has a generic name. This means that if any other file system tries to have the same symbol name, there will be a symbol conflict and the kernel would not successfully build. It also means that when someone is looking f2fs sources, it's not at all obvious whether a function such as read_data_page(), invalidate_blocks(), is a generic kernel function found in the fs, mm, or block layers, or a f2fs specific function. You might want to fix this at some point. Hopefully Kent's bcachefs isn't similarly using genericly named functions, since that might cause conflicts with f2fs's functions --- but just as this would be a problem that we would rightly insist that Kent fix, this is something that we should have rightly insisted that f2fs should have fixed before it was integrated into the mainline kernel. acquire_orphan_inode add_ino_entry add_orphan_inode allocate_data_block allocate_new_segments alloc_nid alloc_nid_done alloc_nid_failed available_free_memory ...." This patch adds "f2fs_" prefix for all non-static symbols in order to: a) avoid conflict with other kernel generic symbols; b) to indicate the function is f2fs specific one instead of generic one; Reported-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-05-30 00:20:41 +08:00
f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
ctx->pos = start_pos + bit_pos;
f2fs: reduce the scope of setting fsck tag when de->name_len is zero I recently found a case where de->name_len is 0 in f2fs_fill_dentries() easily reproduced, and finally set the fsck flag. Thread A Thread B - f2fs_readdir - f2fs_read_inline_dir - ctx->pos = d.max - f2fs_add_dentry - f2fs_add_inline_entry - do_convert_inline_dir - f2fs_add_regular_entry - f2fs_readdir - f2fs_fill_dentries - set_sbi_flag(sbi, SBI_NEED_FSCK) Process A opens the folder, and has been reading without closing it. During this period, Process B created a file under the folder (occupying multiple f2fs_dir_entry, exceeding the d.max of the inline dir). After creation, process A uses the d.max of inline dir to read it again, and it will read that de->name_len is 0. And Chao pointed out that w/o inline conversion, the race condition still can happen as below: dir_entry1: A dir_entry2: B dir_entry3: C free slot: _ ctx->pos: ^ Thread A is traversing directory, ctx-pos moves to below position after readdir() by thread A: AAAABBBB___ ^ Then thread B delete dir_entry2, and create dir_entry3. Thread A calls readdir() to lookup dirents starting from middle of new dirent slots as below: AAAACCCCCC_ ^ In these scenarios, the file system is not damaged, and it's hard to avoid it. But we can bypass tagging FSCK flag if: a) bit_pos (:= ctx->pos % d->max) is non-zero and b) before bit_pos moves to first valid dir_entry. Fixes: ddf06b753a85 ("f2fs: fix to trigger fsck if dirent.name_len is zero") Signed-off-by: Yangtao Li <frank.li@vivo.com> [Chao: clean up description] Reviewed-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2021-08-04 11:29:46 +08:00
found_valid_dirent = true;
}
out:
if (readdir_ra)
blk_finish_plug(&plug);
return err;
}
static int f2fs_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
unsigned long npages = dir_blocks(inode);
struct f2fs_dentry_block *dentry_blk = NULL;
struct page *dentry_page = NULL;
struct file_ra_state *ra = &file->f_ra;
loff_t start_pos = ctx->pos;
unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
struct f2fs_dentry_ptr d;
struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
int err = 0;
if (IS_ENCRYPTED(inode)) {
err = fscrypt_prepare_readdir(inode);
if (err)
goto out;
err = fscrypt_fname_alloc_buffer(F2FS_NAME_LEN, &fstr);
if (err < 0)
goto out;
}
if (f2fs_has_inline_dentry(inode)) {
err = f2fs_read_inline_dir(file, ctx, &fstr);
goto out_free;
}
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
for (; n < npages; ctx->pos = n * NR_DENTRY_IN_BLOCK) {
pgoff_t next_pgofs;
/* allow readdir() to be interrupted */
if (fatal_signal_pending(current)) {
err = -ERESTARTSYS;
goto out_free;
}
cond_resched();
/* readahead for multi pages of dir */
if (npages - n > 1 && !ra_has_index(ra, n))
page_cache_sync_readahead(inode->i_mapping, ra, file, n,
min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
dentry_page = f2fs_find_data_page(inode, n, &next_pgofs);
if (IS_ERR(dentry_page)) {
err = PTR_ERR(dentry_page);
if (err == -ENOENT) {
err = 0;
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
n = next_pgofs;
continue;
} else {
goto out_free;
}
}
dentry_blk = page_address(dentry_page);
make_dentry_ptr_block(inode, &d, dentry_blk);
err = f2fs_fill_dentries(ctx, &d,
n * NR_DENTRY_IN_BLOCK, &fstr);
if (err) {
f2fs_put_page(dentry_page, 0);
break;
}
f2fs_put_page(dentry_page, 0);
f2fs: optimize iteration over sparse directories Wei Chen reports a kernel bug as blew: INFO: task syz-executor.0:29056 blocked for more than 143 seconds. Not tainted 5.15.0-rc5 #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor.0 state:D stack:14632 pid:29056 ppid: 6574 flags:0x00000004 Call Trace: __schedule+0x4a1/0x1720 schedule+0x36/0xe0 rwsem_down_write_slowpath+0x322/0x7a0 fscrypt_ioctl_set_policy+0x11f/0x2a0 __f2fs_ioctl+0x1a9f/0x5780 f2fs_ioctl+0x89/0x3a0 __x64_sys_ioctl+0xe8/0x140 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae Eric did some investigation on this issue, quoted from reply of Eric: "Well, the quality of this bug report has a lot to be desired (not on upstream kernel, reproducer is full of totally irrelevant stuff, not sent to the mailing list of the filesystem whose disk image is being fuzzed, etc.). But what is going on is that f2fs_empty_dir() doesn't consider the case of a directory with an extremely large i_size on a malicious disk image. Specifically, the reproducer mounts an f2fs image with a directory that has an i_size of 14814520042850357248, then calls FS_IOC_SET_ENCRYPTION_POLICY on it. That results in a call to f2fs_empty_dir() to check whether the directory is empty. f2fs_empty_dir() then iterates through all 3616826182336513 blocks the directory allegedly contains to check whether any contain anything. i_rwsem is held during this, so anything else that tries to take it will hang." In order to solve this issue, let's use f2fs_get_next_page_offset() to speed up iteration by skipping holes for all below functions: - f2fs_empty_dir - f2fs_readdir - find_in_level The way why we can speed up iteration was described in 'commit 3cf4574705b4 ("f2fs: introduce get_next_page_offset to speed up SEEK_DATA")'. Meanwhile, in f2fs_empty_dir(), let's use f2fs_find_data_page() instead f2fs_get_lock_data_page(), due to i_rwsem was held in caller of f2fs_empty_dir(), there shouldn't be any races, so it's fine to not lock dentry page during lookuping dirents in the page. Link: https://lore.kernel.org/lkml/536944df-a0ae-1dd8-148f-510b476e1347@kernel.org/T/ Reported-by: Wei Chen <harperchen1110@gmail.com> Cc: Eric Biggers <ebiggers@google.com> Signed-off-by: Chao Yu <chao@kernel.org> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2022-11-08 22:33:21 +08:00
n++;
}
out_free:
fscrypt_fname_free_buffer(&fstr);
out:
trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
return err < 0 ? err : 0;
}
const struct file_operations f2fs_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate_shared = f2fs_readdir,
.fsync = f2fs_sync_file,
.unlocked_ioctl = f2fs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = f2fs_compat_ioctl,
#endif
};