linux/drivers/gpu/drm/nouveau/nouveau_bo.c

1054 lines
27 KiB
C
Raw Normal View History

/*
* Copyright 2007 Dave Airlied
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Authors: Dave Airlied <airlied@linux.ie>
* Ben Skeggs <darktama@iinet.net.au>
* Jeremy Kolb <jkolb@brandeis.edu>
*/
#include "drmP.h"
#include "nouveau_drm.h"
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_mm.h"
#include "nouveau_vm.h"
#include <linux/log2.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
#include <linux/slab.h>
static void
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct drm_device *dev = dev_priv->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
if (unlikely(nvbo->gem))
DRM_ERROR("bo %p still attached to GEM object\n", bo);
nv10_mem_put_tile_region(dev, nvbo->tile, NULL);
nouveau_vm_put(&nvbo->vma);
kfree(nvbo);
}
static void
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, u32 flags,
int *align, int *size, int *page_shift)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(nvbo->bo.bdev);
if (dev_priv->card_type < NV_50) {
if (nvbo->tile_mode) {
if (dev_priv->chipset >= 0x40) {
*align = 65536;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (dev_priv->chipset >= 0x30) {
*align = 32768;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (dev_priv->chipset >= 0x20) {
*align = 16384;
*size = roundup(*size, 64 * nvbo->tile_mode);
} else if (dev_priv->chipset >= 0x10) {
*align = 16384;
*size = roundup(*size, 32 * nvbo->tile_mode);
}
}
} else {
if (likely(dev_priv->chan_vm)) {
if (!(flags & TTM_PL_FLAG_TT) && *size > 256 * 1024)
*page_shift = dev_priv->chan_vm->lpg_shift;
else
*page_shift = dev_priv->chan_vm->spg_shift;
} else {
*page_shift = 12;
}
*size = roundup(*size, (1 << *page_shift));
*align = max((1 << *page_shift), *align);
}
*size = roundup(*size, PAGE_SIZE);
}
int
nouveau_bo_new(struct drm_device *dev, struct nouveau_channel *chan,
int size, int align, uint32_t flags, uint32_t tile_mode,
uint32_t tile_flags, struct nouveau_bo **pnvbo)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_bo *nvbo;
int ret = 0, page_shift = 0;
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
if (!nvbo)
return -ENOMEM;
INIT_LIST_HEAD(&nvbo->head);
INIT_LIST_HEAD(&nvbo->entry);
nvbo->tile_mode = tile_mode;
nvbo->tile_flags = tile_flags;
nvbo->bo.bdev = &dev_priv->ttm.bdev;
nouveau_bo_fixup_align(nvbo, flags, &align, &size, &page_shift);
align >>= PAGE_SHIFT;
if (dev_priv->chan_vm) {
ret = nouveau_vm_get(dev_priv->chan_vm, size, page_shift,
NV_MEM_ACCESS_RW, &nvbo->vma);
if (ret) {
kfree(nvbo);
return ret;
}
}
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
nouveau_bo_placement_set(nvbo, flags, 0);
nvbo->channel = chan;
ret = ttm_bo_init(&dev_priv->ttm.bdev, &nvbo->bo, size,
ttm_bo_type_device, &nvbo->placement, align, 0,
false, NULL, size, nouveau_bo_del_ttm);
if (ret) {
/* ttm will call nouveau_bo_del_ttm if it fails.. */
return ret;
}
nvbo->channel = NULL;
if (nvbo->vma.node) {
if (nvbo->bo.mem.mem_type == TTM_PL_VRAM)
nvbo->bo.offset = nvbo->vma.offset;
}
*pnvbo = nvbo;
return 0;
}
static void
set_placement_list(uint32_t *pl, unsigned *n, uint32_t type, uint32_t flags)
{
*n = 0;
if (type & TTM_PL_FLAG_VRAM)
pl[(*n)++] = TTM_PL_FLAG_VRAM | flags;
if (type & TTM_PL_FLAG_TT)
pl[(*n)++] = TTM_PL_FLAG_TT | flags;
if (type & TTM_PL_FLAG_SYSTEM)
pl[(*n)++] = TTM_PL_FLAG_SYSTEM | flags;
}
static void
set_placement_range(struct nouveau_bo *nvbo, uint32_t type)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(nvbo->bo.bdev);
int vram_pages = dev_priv->vram_size >> PAGE_SHIFT;
if (dev_priv->card_type == NV_10 &&
nvbo->tile_mode && (type & TTM_PL_FLAG_VRAM) &&
nvbo->bo.mem.num_pages < vram_pages / 2) {
/*
* Make sure that the color and depth buffers are handled
* by independent memory controller units. Up to a 9x
* speed up when alpha-blending and depth-test are enabled
* at the same time.
*/
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_ZETA) {
nvbo->placement.fpfn = vram_pages / 2;
nvbo->placement.lpfn = ~0;
} else {
nvbo->placement.fpfn = 0;
nvbo->placement.lpfn = vram_pages / 2;
}
}
}
void
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t type, uint32_t busy)
{
struct ttm_placement *pl = &nvbo->placement;
uint32_t flags = TTM_PL_MASK_CACHING |
(nvbo->pin_refcnt ? TTM_PL_FLAG_NO_EVICT : 0);
pl->placement = nvbo->placements;
set_placement_list(nvbo->placements, &pl->num_placement,
type, flags);
pl->busy_placement = nvbo->busy_placements;
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
type | busy, flags);
set_placement_range(nvbo, type);
}
int
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t memtype)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
int ret;
if (nvbo->pin_refcnt && !(memtype & (1 << bo->mem.mem_type))) {
NV_ERROR(nouveau_bdev(bo->bdev)->dev,
"bo %p pinned elsewhere: 0x%08x vs 0x%08x\n", bo,
1 << bo->mem.mem_type, memtype);
return -EINVAL;
}
if (nvbo->pin_refcnt++)
return 0;
ret = ttm_bo_reserve(bo, false, false, false, 0);
if (ret)
goto out;
nouveau_bo_placement_set(nvbo, memtype, 0);
ret = nouveau_bo_validate(nvbo, false, false, false);
if (ret == 0) {
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
dev_priv->fb_aper_free -= bo->mem.size;
break;
case TTM_PL_TT:
dev_priv->gart_info.aper_free -= bo->mem.size;
break;
default:
break;
}
}
ttm_bo_unreserve(bo);
out:
if (unlikely(ret))
nvbo->pin_refcnt--;
return ret;
}
int
nouveau_bo_unpin(struct nouveau_bo *nvbo)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
int ret;
if (--nvbo->pin_refcnt)
return 0;
ret = ttm_bo_reserve(bo, false, false, false, 0);
if (ret)
return ret;
nouveau_bo_placement_set(nvbo, bo->mem.placement, 0);
ret = nouveau_bo_validate(nvbo, false, false, false);
if (ret == 0) {
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
dev_priv->fb_aper_free += bo->mem.size;
break;
case TTM_PL_TT:
dev_priv->gart_info.aper_free += bo->mem.size;
break;
default:
break;
}
}
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_map(struct nouveau_bo *nvbo)
{
int ret;
ret = ttm_bo_reserve(&nvbo->bo, false, false, false, 0);
if (ret)
return ret;
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
ttm_bo_unreserve(&nvbo->bo);
return ret;
}
void
nouveau_bo_unmap(struct nouveau_bo *nvbo)
{
if (nvbo)
ttm_bo_kunmap(&nvbo->kmap);
}
int
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
bool no_wait_reserve, bool no_wait_gpu)
{
int ret;
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, interruptible,
no_wait_reserve, no_wait_gpu);
if (ret)
return ret;
if (nvbo->vma.node) {
if (nvbo->bo.mem.mem_type == TTM_PL_VRAM)
nvbo->bo.offset = nvbo->vma.offset;
}
return 0;
}
u16
nouveau_bo_rd16(struct nouveau_bo *nvbo, unsigned index)
{
bool is_iomem;
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = &mem[index];
if (is_iomem)
return ioread16_native((void __force __iomem *)mem);
else
return *mem;
}
void
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
{
bool is_iomem;
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = &mem[index];
if (is_iomem)
iowrite16_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
u32
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = &mem[index];
if (is_iomem)
return ioread32_native((void __force __iomem *)mem);
else
return *mem;
}
void
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem = &mem[index];
if (is_iomem)
iowrite32_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
static struct ttm_backend *
nouveau_bo_create_ttm_backend_entry(struct ttm_bo_device *bdev)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct drm_device *dev = dev_priv->dev;
switch (dev_priv->gart_info.type) {
#if __OS_HAS_AGP
case NOUVEAU_GART_AGP:
return ttm_agp_backend_init(bdev, dev->agp->bridge);
#endif
case NOUVEAU_GART_PDMA:
case NOUVEAU_GART_HW:
return nouveau_sgdma_init_ttm(dev);
default:
NV_ERROR(dev, "Unknown GART type %d\n",
dev_priv->gart_info.type);
break;
}
return NULL;
}
static int
nouveau_bo_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
/* We'll do this from user space. */
return 0;
}
static int
nouveau_bo_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct drm_device *dev = dev_priv->dev;
switch (type) {
case TTM_PL_SYSTEM:
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_VRAM:
if (dev_priv->card_type >= NV_50) {
man->func = &nouveau_vram_manager;
man->io_reserve_fastpath = false;
man->use_io_reserve_lru = true;
} else {
man->func = &ttm_bo_manager_func;
}
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
break;
case TTM_PL_TT:
man->func = &ttm_bo_manager_func;
switch (dev_priv->gart_info.type) {
case NOUVEAU_GART_AGP:
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
break;
case NOUVEAU_GART_PDMA:
case NOUVEAU_GART_HW:
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE |
TTM_MEMTYPE_FLAG_CMA;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
man->gpu_offset = dev_priv->gart_info.aper_base;
break;
default:
NV_ERROR(dev, "Unknown GART type: %d\n",
dev_priv->gart_info.type);
return -EINVAL;
}
break;
default:
NV_ERROR(dev, "Unsupported memory type %u\n", (unsigned)type);
return -EINVAL;
}
return 0;
}
static void
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_TT,
TTM_PL_FLAG_SYSTEM);
break;
default:
nouveau_bo_placement_set(nvbo, TTM_PL_FLAG_SYSTEM, 0);
break;
}
*pl = nvbo->placement;
}
/* GPU-assisted copy using NV_MEMORY_TO_MEMORY_FORMAT, can access
* TTM_PL_{VRAM,TT} directly.
*/
static int
nouveau_bo_move_accel_cleanup(struct nouveau_channel *chan,
struct nouveau_bo *nvbo, bool evict,
bool no_wait_reserve, bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct nouveau_fence *fence = NULL;
int ret;
ret = nouveau_fence_new(chan, &fence, true);
if (ret)
return ret;
ret = ttm_bo_move_accel_cleanup(&nvbo->bo, fence, NULL, evict,
no_wait_reserve, no_wait_gpu, new_mem);
nouveau_fence_unref(&fence);
return ret;
}
static int
nvc0_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
u32 page_count = new_mem->num_pages;
u64 src_offset, dst_offset;
int ret;
src_offset = old_mem->start << PAGE_SHIFT;
if (old_mem->mem_type == TTM_PL_VRAM)
src_offset = nvbo->vma.offset;
else
src_offset += dev_priv->gart_info.aper_base;
dst_offset = new_mem->start << PAGE_SHIFT;
if (new_mem->mem_type == TTM_PL_VRAM)
dst_offset = nvbo->vma.offset;
else
dst_offset += dev_priv->gart_info.aper_base;
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0238, 2);
OUT_RING (chan, upper_32_bits(dst_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
BEGIN_NVC0(chan, 2, NvSubM2MF, 0x030c, 6);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
BEGIN_NVC0(chan, 2, NvSubM2MF, 0x0300, 1);
OUT_RING (chan, 0x00100110);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nv50_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
u64 length = (new_mem->num_pages << PAGE_SHIFT);
u64 src_offset, dst_offset;
int ret;
src_offset = old_mem->start << PAGE_SHIFT;
if (old_mem->mem_type == TTM_PL_VRAM)
src_offset = nvbo->vma.offset;
else
src_offset += dev_priv->gart_info.aper_base;
dst_offset = new_mem->start << PAGE_SHIFT;
if (new_mem->mem_type == TTM_PL_VRAM)
dst_offset = nvbo->vma.offset;
else
dst_offset += dev_priv->gart_info.aper_base;
while (length) {
u32 amount, stride, height;
amount = min(length, (u64)(4 * 1024 * 1024));
stride = 16 * 4;
height = amount / stride;
if (new_mem->mem_type == TTM_PL_VRAM &&
nouveau_bo_tile_layout(nvbo)) {
ret = RING_SPACE(chan, 8);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, 0x0200, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
ret = RING_SPACE(chan, 2);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, 0x0200, 1);
OUT_RING (chan, 1);
}
if (old_mem->mem_type == TTM_PL_VRAM &&
nouveau_bo_tile_layout(nvbo)) {
ret = RING_SPACE(chan, 8);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, 0x021c, 7);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 1);
OUT_RING (chan, 0);
OUT_RING (chan, 0);
} else {
ret = RING_SPACE(chan, 2);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, 0x021c, 1);
OUT_RING (chan, 1);
}
ret = RING_SPACE(chan, 14);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, 0x0238, 2);
OUT_RING (chan, upper_32_bits(src_offset));
OUT_RING (chan, upper_32_bits(dst_offset));
BEGIN_RING(chan, NvSubM2MF, 0x030c, 8);
OUT_RING (chan, lower_32_bits(src_offset));
OUT_RING (chan, lower_32_bits(dst_offset));
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, stride);
OUT_RING (chan, height);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_RING(chan, NvSubM2MF, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
length -= amount;
src_offset += amount;
dst_offset += amount;
}
return 0;
}
static inline uint32_t
nouveau_bo_mem_ctxdma(struct ttm_buffer_object *bo,
struct nouveau_channel *chan, struct ttm_mem_reg *mem)
{
if (mem->mem_type == TTM_PL_TT)
return chan->gart_handle;
return chan->vram_handle;
}
static int
nv04_bo_move_m2mf(struct nouveau_channel *chan, struct ttm_buffer_object *bo,
struct ttm_mem_reg *old_mem, struct ttm_mem_reg *new_mem)
{
u32 src_offset = old_mem->start << PAGE_SHIFT;
u32 dst_offset = new_mem->start << PAGE_SHIFT;
u32 page_count = new_mem->num_pages;
int ret;
ret = RING_SPACE(chan, 3);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE, 2);
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, old_mem));
OUT_RING (chan, nouveau_bo_mem_ctxdma(bo, chan, new_mem));
page_count = new_mem->num_pages;
while (page_count) {
int line_count = (page_count > 2047) ? 2047 : page_count;
ret = RING_SPACE(chan, 11);
if (ret)
return ret;
BEGIN_RING(chan, NvSubM2MF,
NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN, 8);
OUT_RING (chan, src_offset);
OUT_RING (chan, dst_offset);
OUT_RING (chan, PAGE_SIZE); /* src_pitch */
OUT_RING (chan, PAGE_SIZE); /* dst_pitch */
OUT_RING (chan, PAGE_SIZE); /* line_length */
OUT_RING (chan, line_count);
OUT_RING (chan, 0x00000101);
OUT_RING (chan, 0x00000000);
BEGIN_RING(chan, NvSubM2MF, NV_MEMORY_TO_MEMORY_FORMAT_NOP, 1);
OUT_RING (chan, 0);
page_count -= line_count;
src_offset += (PAGE_SIZE * line_count);
dst_offset += (PAGE_SIZE * line_count);
}
return 0;
}
static int
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict, bool intr,
bool no_wait_reserve, bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nouveau_channel *chan;
int ret;
chan = nvbo->channel;
if (!chan) {
chan = dev_priv->channel;
mutex_lock_nested(&chan->mutex, NOUVEAU_KCHANNEL_MUTEX);
}
if (dev_priv->card_type < NV_50)
ret = nv04_bo_move_m2mf(chan, bo, &bo->mem, new_mem);
else
if (dev_priv->card_type < NV_C0)
ret = nv50_bo_move_m2mf(chan, bo, &bo->mem, new_mem);
else
ret = nvc0_bo_move_m2mf(chan, bo, &bo->mem, new_mem);
if (ret == 0) {
ret = nouveau_bo_move_accel_cleanup(chan, nvbo, evict,
no_wait_reserve,
no_wait_gpu, new_mem);
}
if (chan == dev_priv->channel)
mutex_unlock(&chan->mutex);
return ret;
}
static int
nouveau_bo_move_flipd(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_reserve, bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
u32 placement_memtype = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING;
struct ttm_placement placement;
struct ttm_mem_reg tmp_mem;
int ret;
placement.fpfn = placement.lpfn = 0;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_reserve, no_wait_gpu);
if (ret)
return ret;
ret = ttm_tt_bind(bo->ttm, &tmp_mem);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_reserve, no_wait_gpu, &tmp_mem);
if (ret)
goto out;
ret = ttm_bo_move_ttm(bo, true, no_wait_reserve, no_wait_gpu, new_mem);
out:
ttm_bo_mem_put(bo, &tmp_mem);
return ret;
}
static int
nouveau_bo_move_flips(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_reserve, bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
u32 placement_memtype = TTM_PL_FLAG_TT | TTM_PL_MASK_CACHING;
struct ttm_placement placement;
struct ttm_mem_reg tmp_mem;
int ret;
placement.fpfn = placement.lpfn = 0;
placement.num_placement = placement.num_busy_placement = 1;
placement.placement = placement.busy_placement = &placement_memtype;
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
ret = ttm_bo_mem_space(bo, &placement, &tmp_mem, intr, no_wait_reserve, no_wait_gpu);
if (ret)
return ret;
ret = ttm_bo_move_ttm(bo, true, no_wait_reserve, no_wait_gpu, &tmp_mem);
if (ret)
goto out;
ret = nouveau_bo_move_m2mf(bo, true, intr, no_wait_reserve, no_wait_gpu, new_mem);
if (ret)
goto out;
out:
ttm_bo_mem_put(bo, &tmp_mem);
return ret;
}
static int
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem,
struct nouveau_tile_reg **new_tile)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct drm_device *dev = dev_priv->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
uint64_t offset;
if (new_mem->mem_type != TTM_PL_VRAM) {
/* Nothing to do. */
*new_tile = NULL;
return 0;
}
offset = new_mem->start << PAGE_SHIFT;
if (dev_priv->chan_vm) {
nouveau_vm_map(&nvbo->vma, new_mem->mm_node);
} else if (dev_priv->card_type >= NV_10) {
*new_tile = nv10_mem_set_tiling(dev, offset, new_mem->size,
nvbo->tile_mode,
nvbo->tile_flags);
}
return 0;
}
static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
struct nouveau_tile_reg *new_tile,
struct nouveau_tile_reg **old_tile)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct drm_device *dev = dev_priv->dev;
if (dev_priv->card_type >= NV_10 &&
dev_priv->card_type < NV_50) {
nv10_mem_put_tile_region(dev, *old_tile, bo->sync_obj);
*old_tile = new_tile;
}
}
static int
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict, bool intr,
bool no_wait_reserve, bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct ttm_mem_reg *old_mem = &bo->mem;
struct nouveau_tile_reg *new_tile = NULL;
int ret = 0;
ret = nouveau_bo_vm_bind(bo, new_mem, &new_tile);
if (ret)
return ret;
/* Fake bo copy. */
if (old_mem->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
BUG_ON(bo->mem.mm_node != NULL);
bo->mem = *new_mem;
new_mem->mm_node = NULL;
goto out;
}
/* Software copy if the card isn't up and running yet. */
if (!dev_priv->channel) {
ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, new_mem);
goto out;
}
/* Hardware assisted copy. */
if (new_mem->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flipd(bo, evict, intr, no_wait_reserve, no_wait_gpu, new_mem);
else if (old_mem->mem_type == TTM_PL_SYSTEM)
ret = nouveau_bo_move_flips(bo, evict, intr, no_wait_reserve, no_wait_gpu, new_mem);
else
ret = nouveau_bo_move_m2mf(bo, evict, intr, no_wait_reserve, no_wait_gpu, new_mem);
if (!ret)
goto out;
/* Fallback to software copy. */
ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, new_mem);
out:
if (ret)
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
else
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
return ret;
}
static int
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
return 0;
}
static int
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct drm_device *dev = dev_priv->dev;
int ret;
mem->bus.addr = NULL;
mem->bus.offset = 0;
mem->bus.size = mem->num_pages << PAGE_SHIFT;
mem->bus.base = 0;
mem->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* System memory */
return 0;
case TTM_PL_TT:
#if __OS_HAS_AGP
if (dev_priv->gart_info.type == NOUVEAU_GART_AGP) {
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.base = dev_priv->gart_info.aper_base;
mem->bus.is_iomem = true;
}
#endif
break;
case TTM_PL_VRAM:
{
struct nouveau_vram *vram = mem->mm_node;
u8 page_shift;
if (!dev_priv->bar1_vm) {
mem->bus.offset = mem->start << PAGE_SHIFT;
mem->bus.base = pci_resource_start(dev->pdev, 1);
mem->bus.is_iomem = true;
break;
}
if (dev_priv->card_type == NV_C0)
page_shift = vram->page_shift;
else
page_shift = 12;
ret = nouveau_vm_get(dev_priv->bar1_vm, mem->bus.size,
page_shift, NV_MEM_ACCESS_RW,
&vram->bar_vma);
if (ret)
return ret;
nouveau_vm_map(&vram->bar_vma, vram);
if (ret) {
nouveau_vm_put(&vram->bar_vma);
return ret;
}
mem->bus.offset = vram->bar_vma.offset;
if (dev_priv->card_type == NV_50) /*XXX*/
mem->bus.offset -= 0x0020000000ULL;
mem->bus.base = pci_resource_start(dev->pdev, 1);
mem->bus.is_iomem = true;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bdev);
struct nouveau_vram *vram = mem->mm_node;
if (!dev_priv->bar1_vm || mem->mem_type != TTM_PL_VRAM)
return;
if (!vram->bar_vma.node)
return;
nouveau_vm_unmap(&vram->bar_vma);
nouveau_vm_put(&vram->bar_vma);
}
static int
nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
/* as long as the bo isn't in vram, and isn't tiled, we've got
* nothing to do here.
*/
if (bo->mem.mem_type != TTM_PL_VRAM) {
if (dev_priv->card_type < NV_50 ||
!nouveau_bo_tile_layout(nvbo))
return 0;
}
/* make sure bo is in mappable vram */
if (bo->mem.start + bo->mem.num_pages < dev_priv->fb_mappable_pages)
return 0;
nvbo->placement.fpfn = 0;
nvbo->placement.lpfn = dev_priv->fb_mappable_pages;
nouveau_bo_placement_set(nvbo, TTM_PL_VRAM, 0);
return nouveau_bo_validate(nvbo, false, true, false);
}
void
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence)
{
struct nouveau_fence *old_fence;
if (likely(fence))
nouveau_fence_ref(fence);
spin_lock(&nvbo->bo.bdev->fence_lock);
old_fence = nvbo->bo.sync_obj;
nvbo->bo.sync_obj = fence;
spin_unlock(&nvbo->bo.bdev->fence_lock);
nouveau_fence_unref(&old_fence);
}
struct ttm_bo_driver nouveau_bo_driver = {
.create_ttm_backend_entry = nouveau_bo_create_ttm_backend_entry,
.invalidate_caches = nouveau_bo_invalidate_caches,
.init_mem_type = nouveau_bo_init_mem_type,
.evict_flags = nouveau_bo_evict_flags,
.move = nouveau_bo_move,
.verify_access = nouveau_bo_verify_access,
.sync_obj_signaled = __nouveau_fence_signalled,
.sync_obj_wait = __nouveau_fence_wait,
.sync_obj_flush = __nouveau_fence_flush,
.sync_obj_unref = __nouveau_fence_unref,
.sync_obj_ref = __nouveau_fence_ref,
.fault_reserve_notify = &nouveau_ttm_fault_reserve_notify,
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
.io_mem_free = &nouveau_ttm_io_mem_free,
};